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Abstract. Light structures are, also, usually lightly damped, which can cause large amplitude 
vibration. Any disturbances in these systems can degrade the demanded performance of mechanical 
systems. An atractive methodology for attenuation structural vibrations is to use active control 
techniques with pieozoelectric sensors and actuators coupled in a base structure, wich has been 
conviccioned to call smart structure. Many control strategies and techniques have been used in 
active vibration control. This paper deals with the use of linear matrix inequalities (LMI) 
framework. It is discussed: the optimal placement of actuators; the model reduction; and the robust 
controller design for active damping through techniques involving LMI. To illustrate the 
methodology, it was considered a cantilever beam with bonded piezoelectric actuators. It was 
designed a robust controller considering parametric variation described by polytopic uncertainty. 
Usually, the order of the model is large enough to cause loss of efficiency in the controller, so, a 
reduced model with observation and control spillover effects was applied. The results demonstrated 
the vibration attenuation in the structure by controlling only some modes and the increased 
damping ratio in the bandwidth of interest. 
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1. INTRODUCTION 
 

Vibration reduction is an important goal in a variety of engineering applications, mainly in 
modern structures of huge space vehicles and aircraft. In special, active vibration control (AVC) in 
mechanical structures has great practical interest because it needs excellent dynamic behavior to 
guarantee stability and light structures, in order to reduce cost. However, these two requirements are 
often contradictory, because light structures have low degree of internal damping, which hinder the 
accuracy requirements, (Yan and Yam, 2002). 

It is possible to use modern techniques of active control associated with intelligent materials to 
execute these demands. These materials are composed by piezoelectric ceramic (PZT, Lead 
Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF, 
PolyVinyliDeno Floride), highly indicated for distributed sensors, (Clark et al., 1998). 

The design process of such structures encompasses three main phases: structural design; optimal 
placement of sensor and actuator; and controller design. Consequently, for optimal design purposes, 



the structure, the placement of sensor/actuator, and the controller have to be considered 
simultaneously (Lopes Jr. et al., 2003). 

We have chosen a recent control technique involving linear matrix inequalities (LMI) due its 
advantages when compared to conventional techniques. Once formulated in terms of LMI a 
problem can be solved efficiently by convex optimization algorithms, for example, using interior-
point methods, (Gahinet et al., 1995). Besides, few researchers explore the use of LMI in the 
structural control community. In this sense, Sana and Rao (2000) utilized a cantilever beam with 
pieozoelectric actuator and sensor distribuided to design an ouput feedback controller to increase 
damping of some modes using LMI. However, the resulting matrix inequalities involved bilinear 
matrix inequalities (BMI) in an unknown variables, and, hence it is not a convex optimization 
problem. So, the BMI could not be solved directly by software package of convex optimization. In 
this case, it is necessary to used iterative methods, as for instance, cone complementarity 
linearization algorithm (El Ghaoui et al., 1997) that is a high cost procedure. 

In another way, Gonçalves et al. (2002) controlled a two degree-of-freedom (2DOF) mechanical 
system comparing the H2 and H∞ optimal control with state-feedback via LMI, in a procedure of 
solution proposed by Peres (1997). Gonçalves et al. (2003a) and (2003b) simulated a state-feedback 
synthesis using classical LMI, described in Boyd et al. (1994), considering norm-bound linear 
diferential inclusions (LDI) for a 2DOF mechanical system and for a fixed-fixed aluminum beam, 
respectively. 

The proposal of the present work is to ilustrate a state-feedback synthesis via LMI for 
uncertainties parametric rejection described by politopic LDI (PLDI) in a procedure that was first 
proposed by Geromel et al. (1991). This technique was numerically applied in a truss structure in 
Silva et al. (2004). 

The actuators optimal locations will be find by using H∞ norm. In the following, a brief review 
of modal state-space model is shown and a LMI structural controller is proposed for vibration 
attenuation, considering only a small number of natural modes. Since, not every states usually are 
available as measurement, it was implemented a dynamic observer, also, using LMI. Analytical 
models determined by finite element method (FEM) with eletromechanical coupling, usually, have 
large number of degrees of freedom (dof). So, for the controller design it was considered a reduced 
model with observation and control spillover effects to overcome this numerical approximation. 
The paper concludes with an application using a beam structure for illustration purposes. 
 
2. STATE-FEEDBACK DESIGN VIA LMI 
 

A linear differential inclusion (LDI) system, in modal state-space form, considering the matrices 
with appropriate dimensions and assumed to be known is given by: 
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where A(t) is the dynamic matrix, B1 is the matrix of disturbance input, B2 is the matrix of control 
input, C is the output matrix, w(t) is the vector of exogenous input, u(t) is the vector of control 
input, y(t) is the output vector, and Ω is a polytope that is described by a list of vertexes in a convex 
space Co, (Boyd et. al., 1994). More information about this topic can be found in Gawronski 
(1998). 

A reduced-order model can be obtained by truncating the states considering the canonical modal 
decomposition. From the Jordan canonical form, it can be obtained: 
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where the subscripts (.)c and (.)r are related to controlled (low frequency modes) and residual modes 
(high frequency modes), respectively. Considering parametric variations only in low frequency 
modes, the dynamic matrix related with the controlled modes is described by PLDI as  
 

( ) { }vc,c,1c t AACoA ,,=Ω,Ω∈ L                                                                                          (3) 
 
where v is the number of vertexes of the polytopic system. The problem to be investigated is the 
state-feedback control with the linear control law u(t) = Gxc(t), where G, the state-feedback gain, 
must be found. The state-space equation related with the controlled modes, described by eq. (2), can 
be rewritten in the closed-loop: 
 

( ) ( )( ) ( ) ( ) ( ) Ω∈,++= ttttt c1ccc2cc AwΒxGΒAx&                                                      (4) 
 

Equation (4) is quadratically stabilizable (via linear state-feedback) if and only if the following 
LMI are feasible: 
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where: the symbols > 0 and < 0 means positive and negative defined, respectively; Ac,i is the ith 
vertex of the polytopic system, with i=1,..., v; Q is a symmetric, positive and defined matrix; and 
Y=GQ, (Boyd et. al., 1994). 

For a given feedback gain G, the output energy of the system from eq. (2) is upper bounded by 
xc(0)TQ-1xc(0) if Q satisfies the LMI: 
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where I is the identity matrix and xc(0) is the initial condition. Regarding Y as a variable, one can 
find a state-feedback gain that guarantees output energy less than β by solving the LMI problem: 
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where β is the bounded output energy. 

When the initial condition, xc(0), is known, it is also possible to define an upper bound for the 
norm of the control input. Therefore, the constraints ��u��≤µ is enforced at all times t>0 if the LMI 
below hold, (Folcher and Ghaoui, 1994): 
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where µ is the maximum value of the amplitude of the control input. In the same way, it can be 
possible to impose a decay rate, α, on the closed-loop: 
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Besides, the optimal decay rate can be found solving the generalized eigenvalue problem 
(GEVP), (Boyd et al., 1993). In summary, the controller design is the result of the following convex 
optimization problem, considering µ and β known and α*=-α: 
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This problem can be solved using interior-point methods, (Gahinet et al., 1995). For each initial 

condition, the input u(t) and the output y(t) assure: 
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The optimal feedback gain is given by: 

 
1−= YQG                                                                                                                                   (12) 

 
where Y and Q are optimal solution from LMI problem given by eq. (10). 
 
3. DYNAMIC OBSERVER VIA LMI 
 

Some states can be not available for feedback, since a limited number of sensor is available, or 
it can still have state variables with difficult access, or even not measurable directly. In this sense, it 
is essential the observers design. In this work is considered the design of a deterministic observer to 
estimate the modal states not available. So, the input control is: 
 

( ) ( )tt cxGu =                                                                                                                              (13) 
 
where cx (t) is the controlled modal state vector estimated. One can write the linear equation of 
modal observer in the form, (Meirovitch, 1990): 
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where L is the observer gain matrix, which can be obtained by different techniques. In the present 
work we, also, use LMI. It is possible to find an observer gain through the solution of the following 
LMI, (Boyd et al., 1994): 
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where γ is the decay rate of the observer, with γ>>α. To every P and W satisfying these LMI, there 
corresponds a stabilizing observer. The observer gain is given by: 
 

WPL 1−=                                                                                                                                  (16) 
 
where P and W are solution from LMI problem given by eq. (15). 

Therefore, the sensor signals include contributions from controlled and residual modes, so the 
output vector is, (Meirovitch, 1990): 
 

( ) ( ) ( )ttt rrcc xCxCy +=                                                                                                            (17) 
 

After some mathematical manipulations, described in full details in Meirovitch (1990), these 
equations can be written in matrix form: 
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where: 
 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )ttt andtttt cccrrcccc xxexLCeLCΑe −=−+=&                                         (19) 
 

The term B2rG is responsible for the excitation of residual modes by the control forces and it is 
known as control spillover. This term has no effect on the eigenvalues of closed-loop system and it 
cannot destabilize the system, although it can cause some degradation in the performance. On the 
other hand, the term –LCr can produce instability in the residual modes. This effect is known as 
observation spillover. However, a small modal damping, inherent in the structure, is often sufficient 
to overcome the observation spillover effect. Another way to reduce this effect is to use a large 
number of sensors or to filter the sensor signals, in order to screen out the contribution of residual 
modes, (Meirovitch, 1990). 
 
4. APPLICATION EXAMPLE 
 

To verify the proposed methodology, an aluminum cantilever beam, as shown on fig. (1), was 
considered. The system is discretized by FEM with 24 elements (2 dof by node). The properties of 
the beam are given in tab. (1). The number of electrical dof changes as a function of the number of 



PZT considered (2 dof by PZT), (Lopes Jr. et. al., 2003). The PZT size is equal to the discrete finite 
element size. The properties of PZT, based on material designation PSI-5A-S4 (Piezo Systems, 
Inc.), are given in tab. (2). The FEM model used considers the eletromechanical coupling between 
PZTs and host structure, but it was not shown in the formulation for clearness proposal, for details 
in this point see Rocha et al. (2004). In order to test the proposed optimization method a pair of PZT 
actuador were bonded on the beam surface in the optimal location. The objective in this test was to 
control the first two vibration modes. It was considered to be possible to bond PZT actuator in all 
elements, while the optimal location for the displacement sensor to state-feedback considered all 
nodes on vertical direction. 
 

Sensor

PZTs

Signal Generator

1

 Data
Acquisition

Hammer

4

24

Test 1:
Test 2:

Conditioning 
amplifier

Figura 1. Schematic diagram of the measurement setup. 
 

Table 1. Beam properties and dimensions. 
Length Width Thickness Dimensions (m) 

0.48 0.025 0.003 
Mass Density (kg.m-3) 2710 
Young’s Modulus (GPa) 70 

 
Table 2. PZT properties and dimensions. 

Length Width Thickness Dimensions (m) 
0.02 0.025 0.00267 

Young’s Modulus (GPa) 63 
Mass Density (kg.m-3) 7650 
Dielectric Constant, d31, (m.V-1) -190e-12 
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Figure 2. Placement indices for control the two first modes versus PZT location. 

 



The placement indices computed from H∞ norm for each candidate position of sensor/actuator 
for the first two modes are shown in fig. (2). The largest value index was found for PZT actuator 
bonded on element 1 and sensor on node of the free end of the beam. In our case the placement of 
the actuator in the first element is not a practical location, then it was collacted on element 2. 

The frequency response functions (FRF) comparing the experimental results and the modeling 
with and without eletromechanical coupling considerations are shown in fig. (3), for excitation with 
impact hammer, H1, and PZT actuators, H2, respectively. So, the transfer functions H1 and H2 are 
relative with the state-space realization (A,B1, C) and (A,B2, C), respectively.  
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Figure 3. Comparing experimental FRF and simulated with and without pieozoelectric coupling. 
 

For active control design proposal, the state-space matrices must be of low order. Otherwise, it 
should compromise the control performance. In this sense, it was considered a fourth order model 
by truncating the modes. One of the biggest advantage of this approach is the possibility of to deal 
with constraints and uncertainties simultaneously. It was considered, in this example, that the 
system can have a possible variation of ±10% in the first and second natural frequencies. So, we 
have 2 uncertainty parameters: 
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and 4 vertexes of a polytopic system (V1, V2, V3, and V4). The FRF magnitude plot H1 and H2 for 
reduced and residual model are shown in fig. (4) and (5) for all four open-loop vertexes. 
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Figura 4. FRFs of the complete model, reduced models and residual modes for polytopic vertexes 
V1 and V2. 
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(a) V3 system. (b) V4 system. 

Figura 5. FRFs of the complete model, reduced models and residual modes for polytopic vertexes 
V3 and V4. 

 
The LMI regulator (controller + observer) was designed considering all vertex system 

simultaneously. In this case, it was obtained a robust controller that mathematically guarantees the 
performance specifications in all convex space. The regulator is obtained from the solution of LMI 
problem of equations (10) and (15), with xC(0)=[-0.009 0 0 -0.009]T, µ= 0.5, β=1 and γ=6α. Figure 
(6) compares the FRF magnitude plots for open-loop and closed-loop system for all four vertex. The 
ressonance peaks of the controlled modes are reduced, as a result of the active damping. 
Furthermore, the amplitude of other modes, which are not explicitly included in the controller, are 
reduced occasionally. Nevertheless, some peaks increase the magnitude, because the controller 
leads to control spillover.  
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Figure 6. FRF for uncontrolled and controlled system considering polytopic vertexes. 
 

Figure (7) shows the modal state in time domain for the controlled system (in the nominal 
condition) considering an impulse disturbance. Clearly, one observes the low influence of the high 
frequency dynamics in the structural control performance. Comparing the modal magnitude of 
residual modes, in fig. (7), we observe that spillover effect exist, but it is small when compared with 
modal magnitude in controlled modes. 
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Figure 7. Closed-loop for controlled and residual modes in time domain in nominal conditions. 
 
5. CONCLUSIONS 
 

An LMI regulator (controller + observer) was proposed for vibration attenuation using only a 
small number of modes. To illustrate the proposed procedure was considered the control of a smart 
structure modeled by FEM. In a first phase the model was verified by comparing the experimental 
and numerical models. Its important to note that eletromechanical coupling can be considered as an 
uncertainty, and it should facilitate the modeling phase. The robust controller using reduced order 
model was designed to reject parametric variations, however other uncertainties should be 
computed. The results demonstrated the improvement of the system performance. The methodology 
developed can be extended to others practical systems, considering different constraints and 
different uncertainties. This combination seems to be the great differential of the LMI approach in 
active vibration control applications. 
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