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Resumo: O presente artigo mostra uma estimativa do amortecimento usando uma técnica de
identificação baseada apenas na resposta, denominada Decomposição no Domínio da Freqüência
(DDF). Neste caso, o amortecimento é estimado sem conhecer as forças de excitação do sistema. O
trabalho discute como identificar o amortecimento de uma estrutura medindo apenas a resposta da
estrutura, quando a mesma é submetida a algum tipo de excitação de banda larga. São abordados
os conceitos básicos envolvidos na análise modal conhecendo apenas as respostas, cuja a
formulação é baseada na decomposição no domínio da freqüência. A matriz de densidade espectral
de saída é decomposta em um conjunto de sistemas de um grau de liberdade utilizando a técnica da
decomposição em valores singulares (SVD) e posteriormente as razões de amortecimento são
estimados. A técnica foi ilustrada em um sistema simulado de dois graus de liberdade e os
resultados obtidos mostraram-se muito promissores. Posteriormente, os resultados serão avaliados
com testes experimentais.
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Decremento Logarítmico, Densidade Espectral de Potência.



1. INTRODUÇÃO

A identificação modal é o processo de estimativa dos parâmetros modais de uma estrutura a
partir das respostas de vibração  medidas em um conjunto de posições previamente selecionadas da
estrutura. Na análise modal convencional, a formulação do problema leva a um modelo matemático,
o qual permite estabelecer uma relação entre a excitação (input) e a resposta (output) da estrutura
em termos dos seus parâmetros modais, freqüência natural, razão de amortecimento e modos de
vibrar (Ewins, D. J, 1984; Soneys, R., 1992; Maia, S., 1997). A relação entrada-saída é calculada a
partir da excitação e das respostas capturadas nos respectivos pontos de excitação e medição
previamente selecionados.  Neste caso, obtém-se um conjunto de funções complexas Hij(iω) que
estabelece uma relação entre a força de excitação aplicada no ponto j e a resposta medida no ponto
i, denominadas Funções de Resposta em Freqüência FRF(s).

Os parâmetros modais do modelo são estimados a partir das FRF(s) medidas, geralmente em
condições de laboratório bem controladas em que a excitação da estrutura é medida. Entretanto, o
comportamento vibro-acústico de uma estrutura em condições de operação, pode ser
significativamente diferente da situação de um teste de laboratório, devido a efeitos de pré-tensão,
suspensão do sistema e outros. Portanto, a identificação do modelo modal da estrutura a partir das
condições de operação poderia ser mais adequada. Na Análise Modal utilizando apenas a resposta
do modelo, esta situação poderia ser melhor satisfeita. Neste caso, seriam utilizados apenas os
dados das respostas e as forças de excitação não necessitariam ser medidas como no caso clássico.
As chamadas técnicas de identificação modal com base apenas na resposta (Brincker, R, L. Zhang
and P. Andersen, 2000) permite a identificação modal sem conhecer a excitação.

 As técnicas de análise modal utilizando apenas a saída são aplicadas geralmente para estruturas
de grande porte, tanto na  área de engenharia civil como mecânica, visto que essas estruturas são
difíceis de serem excitadas artificialmente. Neste caso, uma forma mais adequada para excitar a
estrutura do que aplicar um carregamento artificial é considerar o carregamento natural como uma
fonte de excitação. Exemplos desses tipos de excitações incluem cargas da onda em estruturas
offshore, cargas do vento em edifícios, cargas do tráfego em pontes e outros. A excitação das
estruturas pode ser realizada pelas próprias cargas naturais (ambiente) que atuam no modelo, o que
torna difícil o controle ou medida das forças que excitam a estrutura. Nesses casos, são medidas
apenas as respostas naturais da estrutura e os parâmetros modais são estimados através da
identificação modal utilizando apenas a saída. As principais vantagens dessa técnica seriam a
economia de tempo na montagem dos testes experimentais, pois não é necessário a utilização de um
equipamento para excitar a estrutura, além do que, os testes não interferem na operação da estrutura
e a resposta medida representa exatamente as condições reais de operação da mesma. Em contra
partida, a identificação dos parâmetros de interesse é mais complexas, pois a entrada não é
conhecida e as medidas são geralmente contaminadas com ruído.

O presente artigo discute como identificar o amortecimento de uma estrutura medindo apenas a
resposta da estrutura, quando a mesma é submetida a algum tipo de excitação de banda larga. São
abordados os conceitos básicos envolvidos na análise modal conhecendo apenas as respostas, cuja a
formulação é baseada na decomposição no domínio da freqüência. A matriz de densidade espectral
de saída é decomposta em um conjunto de sistemas de um grau de liberdade utilizando a técnica da
decomposição em valores singulares (SVD) e posteriormente as razões de amortecimento são
estimados.

2. FUNDAMENTOS TEÓRICOS DA DECOMPOSIÇÃO NO DOMÍNIO DA FREQUÊNCIA

A relação entre a entrada (excitação) f(t) e a saída x(t) de um sistema no domínio da freqüência
pode ser expressa (Bendat e Piersol, 1993; Maia, 1997), pela Eq. (1).
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onde, Gff(jω) é a matriz densidade espectral de potência (PSD) da entrada e Gxx(jω) é a matriz
densidade espectral de saída. Para r entradas, Gff  é de ordem rxr e a matriz de saída Gxx é de ordem
mxm, sendo m é o número de respostas medidas. H(jω) é a matriz Função de Resposta em
Freqüência (FRF) de ordem mxr, a barra na matriz H denota o conjugado complexo e o sobrescrito
T denota a transposta.

A matriz H pode ser adequadamente reescrita na forma de frações parciais (Formenti, 1997 e
Heylen et al., 1993), Eq. (2).
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onde, Rk é definido como o resíduo para o K-ésimo pólo, n é o número de modos. Na Análise
Modal o resíduo Rk pode ser definido em termos dos modos, Eq. (3).

T
kkkR γϕ=                                                                                                                                    (3)

onde, ϕk é o k-ésimo modo de vibrar e γk é o vetor participação modal. Assumindo que a entrada
seja um ruído branco, tem-se que a matriz de densidade espectral é constante, ou seja, Gxx(jw) é
igual a uma constante C. Rescrevendo a Eq. (1) em termos da Eq. (2), tem-se a Eq. (4).
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onde, o sobrescrito H denota o complexo conjugado. Agora, efetuando as multiplicações dos termos
da Eq. (4) e utilizando o teorema da fração parcial de Heaviside, a densidade espectral de saída
pode ser redefinida na forma de pólos e resíduos, Eq. (5).
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Assim como a matriz densidade espectral de saída, a matriz de resíduo Ak é de ordem mxm e é
dada pela Eq. (6).
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A contribuição do k-ésimo modo, neste caso, é dada pela Eq. (7).
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onde, αK é o negativo da parte real de KKK jωαλ +−= . No caso de um sistema pouco amortecido
este termo torna-se dominante e portanto o resíduo torna proporcional ao modo de vibrar do
sistema.

KKk RCRA ∝                                                                     (8)

Substituindo a Eq. (3) na Eq. (8), o resíduo pode ser redefinido em termos do k-ésimo modo.
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Para uma dada freqüência ω, apenas um número limitado de modos contribuirá
significativamente para o resíduo, tipicamente um ou dois modos. Isso permite fixar o número de
modos de interesse e a densidade espectral de saída, no caso de sistemas levemente amortecidos,
pode ser definida em termos desse conjunto de modos, Sub(φ).
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onde p, q e Sub (φ), definem o conjunto de modos utilizados na análise. Portanto, a decomposição
modal da matriz espectral é dada em termos de um dado conjunto de modos, os quais formam o
conjunto de modos dominantes. A Equação (10) leva a resultados similares aos obtidos diretamente
pela Eq. (1).

3. IDENTIFICAÇÃO DO AMORTECIMENTO

A estimativa do amortecimento neste caso será feita, utilizando uma técnica de identificação
baseada apenas na resposta, denominada Decomposição no Domínio da Freqüência DDF (Brincker,
R, L. Zhang and P. Andersen, 2000), isto é, o amortecimento do modelo é estimado sem que as
forças de excitação do sistema sejam medidas.

Na decomposição no domínio da freqüência, uma vez estimada a matriz de densidade espectral,
a mesma não é utilizada diretamente como na identificação clássica. Definida a matriz espectral nos
pontos discretos de freqüência (ω=ωi), a mesma é decomposta para cada ponto de freqüência,
utilizando o conceito de decomposição em valores singulares (SVD). Se a excitação for exatamente
um ruído branco, e a estrutura for levemente amortecida e apresentar modos geometricamente
ortogonais a decomposição da matriz densidade espectral de saída leva a um conjunto de auto
funções, cada uma correspondendo a um sistema de 1 grau de liberdade. Os vetores singulares são
usados para a estimativa dos modos de vibrar da estrutura e as freqüências naturais e razões de



amortecimento são obtidas a partir da transformada inversa de Fourier da auto função densidade
espectral de cada sistema de 1GL. A Eq. (11) mostra a decomposição da densidade espectral de
saída.
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A matriz iU  é uma matriz unitária formada dos vetores singulares iju  e iS  é uma matriz diagonal

contendo os valores singulares ijs  da matriz de densidade espectral de saída nas proximidades de um
pico correspondente ao r-ésimo modo. Portanto, as amplitudes dominantes são devidas a um
determinado modo ou algum outro modo próximo. No caso de apenas um modo dominante existe
apenas um único termo na Eq. (10) e de acordo com a teoria da Decomposição no Domínio da
Freqüência, o primeiro vetor singular 1iu  leva a uma estimativa do próprio modo, e o
correspondente valor singular é a função de densidade espectral do correspondente sistema de um
único grau de liberdade (1GL).

1iu=φ
)

                                                                                         (12)

      A função de densidade espectral é identificada em torno do pico comparando o modo estimado
com os vetores singulares para os pontos de freqüência em torno do pico. Quando um dado vetor
singular apresenta uma alta correlação com o correspondente valor singular pertence à função
densidade do sistema 1GL. A correlação dos vetores neste caso é avaliada a partir do MAC valor
(Alemang, 82) entre os vetores, se  a partir de um dado ponto de freqüência, nenhum valor singular
tem um vetor singular com MAC-valores acima de um dado valor pré-definido, a procura por partes
coincidentes com a função de densidade espectral é terminada e as linhas de freqüências restantes
são completadas com zeros.

A partir da identificação da função densidade espectral do sistema de 1GL, a função densidade
espectral é transformada para o domínio do tempo, utilizando a transformada de Fourier inversa e a
freqüência natural e o amortecimento são obtidos a partir da resposta de um sistema de um grau de
liberdade.

O conceito de decremento logarítmico é utilizado para o cálculo do amortecimento e da
freqüência a partir da resposta no tempo (decaimento livre), que é equivalente à função de auto
correlação do sistema 1GL. Primeiramente todos os extremos rk correspondentes aos picos da
função de auto correlação são encontrados e o decremento logarítmico δ é então dado pela Eq. (13).
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onde, r0 é o valor inicial da função de auto correlação e rk é o k-ésimo extremo. Assim, o
decremento logarítmico e o valor inicial na função de correlação podem ser encontrados por
regressão linear e o fator de amortecimento é calculado pela Eq. (14):
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4. SIMULAÇÃO DE UM SISTEMA DE DOIS GRAUS DE LIBERDADE.

A técnica descrita acima é utilizada para a identificação do amortecimento de um sistema
simulado de dois graus de liberdade. O sistema em questão é formado por um sistema amortecido
do tipo massa mola,  e é excitado com ruído branco de densidade espectral unitária (Gff=1). Em
seguida é calculada a matriz de densidade espectral de saída (Gxx), utilizando a Eq.(1). A
decomposição da matriz espectral em valores singulares é feita conforme discutido no item (3), na
estimativa da densidade espectral os pontos de freqüência com MAC-valores abaixo de 0.5 não são
utilizados, ou seja, é feita uma limitação na função de densidade espectral. A Figura (1) mostra a
matriz de densidade espectral do sistema em análise.

Figura 1 – Matriz de densidade espectral de saída de um sistema de dois graus de liberdade.

Inicialmente a resposta do sistema foi dividida em 2 regiões distintas, visto que os modos estão
bem separados e a decomposição da matriz de densidade espectral de saída foi feita para um
conjunto de freqüências discretas em torno do primeiro modo, obtendo assim a curva de densidade
espectral correspondente a um sistema de um grau de liberdade, como ilustra a Fig. (2a). A Figura
(2b) mostra a resposta do sistema de um grau de liberdade no domínio do tempo, obtida a partir da
transformada inversa de Fourier da densidade espectral. Calculando a resposta livre do sistema para
um grau de liberdade, o amortecimento é obtido utilizando o método do decremento logarítmico
para um sistema de (1GL).
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A curva da Fig. (2b) é utilizada para definir os valores das amplitudes dos picos utilizados na
regressão linear da resposta, com o auxílio da Eq. (13) e Eq. (14), calcula-se o fator de
amortecimento do primeiro modo.

Um procedimento similar foi utilizado para o segundo modo, obtendo-se assim a decomposição
da resposta em valores singulares e posteriormente sua correspondente função densidade espectral,
1GL, conforme ilustrado na Fig. (3).

A Tabela (1) mostra uma comparação dos valores de amortecimento utilizados na simulação dos
dados utilizados na análise e os valores estimados a partir da Decomposição no Domínio da
Freqüência. Os valores obtidos, conforme  ilustrado, apresentam-se bem próximos dos valores
utilizados na geração dos dados, com uma diferença em torno de 3%.

Tabela 1 – Fator de amortecimento exato e estimado.

Modos Exato ζ Estimado ζ̂ Erro

1o modo 0,01 0,0097 3 %

2o modo 0,01 0,0096 4 %
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                    (a)                                                                             (b)

Figura 2 – (a) Valores singulares da decomposição  da matriz densidade espectral.
(b) Transformada inversa de Fourier da função de valores singulares.

                          (a)                                                                                   (b)

Figura 3 – (a) Valores singulares da decomposição da matriz densidade espectral (2º modo).
(b) Transformada inversa de Fourier da função de valores singulares (2º modo).



5. DISCUSSÃO E CONCLUSÃO

O artigo discute a utilização de uma técnica relativamente nova de identificação baseada apenas
na saída do modelo, utilizando a decomposição no domínio da freqüência. A técnica é baseada na
decomposição da matriz função densidade espectral de potência usando o método da decomposição
em valores singulares. A matriz densidade espectral de saída é decomposta em vários sistemas de
um grau de liberdade, sendo que cada modo corresponde a um sistema individual de um grau de
liberdade. A técnica foi ilustrada com um exemplo simulado e os resultados obtidos foram bem
próximos dos valores esperados.

A técnica é de fácil implementação, e mostrou ser eficiente na identificação de parâmetros
modais usando apenas a resposta, entretanto, para uma melhor avaliação da sua potencialidade é
necessário a utilização de dados experimentais.
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Abstract: The present paper shows the estimate of the damping by using a technique of
identification based only output of system, call of Frequency Domain Decomposition (FDD), in this
case, the damping is esteemed without knowing the forces of excitation of the system. The present
paper discusses the study of the experimental modal analysis using only the response, in this case,
the structure can be excited from your own operation conditions. The technique was illustrated in
the simulation of a system of two degrees of freedom. Starting from Decomposition in Singular
Values of the Function of Spectrum Density of response, the system was decomposed in two systems
of one degree of freedom. The methodology was used initially in the identification of simulate
models, whose obtained results were compared directly with the data used in the simulation, in
other words, a base of exact comparison was used to evaluate the acting of the results. Later, the
results will be evaluated with experimental tests.

keywords: Modal Analysis, Damping, Frequency Domain Decomposition, Logarithmic
Decrement, Power Spectrum Density.


