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Abstract. In this paper we present an strategy to obtain fast optimization solutions that is based on 
the use of the reduced basis techniques in the function and sensitivities computations required by 
the optimizers. To validate the implementation several benchmark examples are considered in this 
work. Trusses applications under static loads are the problems addressed here. 
 
1. INTRODUCTION 
 

Optimization techniques have been extensively used in the past decades. This was mainly due to 
the development of reliable tools such as the method of Finite Elements (FE), sensitivity analysis 
schemes and mathematical programming algorithms together with computational growth. As a 
consequence, more realistic applications, associated with practical engineering problems, have been 
solved. However, practical engineering applications are involved with several aims to be tackled, 
large number of constraints and design variables and complex behavior implying in a difficult 
optimization problem to be solved. Moreover, despite of the modern computational and numerical 
capabilities, the use of optimization techniques for such problems could be in certain cases cost 
prohibitive. To overcome that, several strategies could be used, namely: the use of mathematical 
programming algorithms tailored for large-scale problems, the use of parallel computing and the 
use of approximations techniques (Barthelemy and Haftka, 1993).  

Problem approximation is the focus of the present work. In this context, a model approximation 
based on the so called reduced basis output bound method (RBOBM) is considered here. The 
RBOBM is a Galerkin projection onto low order approximation spaces comprising solutions of the 
problem of interest at selected points in the parameter/design space. The purpose of such scheme is 
to get high a fidelity model information without the computational expense. A standard 



Structural sizing optimization (SSO) algorithm incorporating such procedure in the structural and 
sensitivity analyses will be used to obtain fast optimal trusses design. The output here investigated is 
the structural compliance. Optimization studies will be conducted for trusses problems. Comparisons 
will be conducted with the traditional SSO approach. 
 
2. SSO PROCEDURE 

 
Optimal designs fulfilling several tasks are here obtaining through the use of an automatic SSO 

procedure. The algorithm incorporates different tools such as geometric definition, discretization, 
structural and sensitivity  analyses, and optimizers. The overview of the algorithm is present in Tab. (1) 

 
Table 1. SSO algorithm: Structural Sizing optimization procedure 
 
 
 
 
 
 
 
 
 
 
 

 
In the sequence some remarks referring to the adopted and proposed strategy are described. For  

further details see (Afonso, 1995, Macedo,2002) 
REMARK SSO1 - An objective function, a set of design variables, a set of constraints and limits on 
the design variables must be defined to set the optimization problem. A large number of options is 
available in our system and some will be exploited in the applications presented in this article;  
REMARK SSO3 - For trusses this is coincident to the geometry representation; 
REMARK SSO4 - Static’s, free vibrations and linear buckling analysis can be conduct here. Two 
strategies are considered in this work to perform the structural analyses. The first one is the 
classical approach in which the FE method is used. The second strategy uses the RBOBM;  
REMARK SSO5 - Sensitivities calculations are required when gradient based mathematical 
programming algorithms are considered in the optimization process.  Several schemes such as 
Finite differences (FD), Semi-analytical (SA) and  Analytical (A) are implemented in the integrated 
systems. As in the structural analysis, the sensitivities calculations schemes are implemented in the 
framework of both FE (classical) and the RBOBM strategies;  
REMARK SSO6 - The sequential quadratic programming (SQP) (Powell,1998) algorithm is 
considered here. In the mathematical formulation of the optimization problem, both inequality and 
equality constraints for the chosen constraint functions can be used. We also consider lower and 
upper limits for the set of design variables. In the context of MO solutions the SSO algorithm is 
conducted in a internal loop to allow the Pareto points generation. 

 
2. STRUCTURAL AND SENSITIVITY ANALYSIS 
 
3.1.Classical Approach 
 

SSO1. Define the shape optimization problem; 
SSO2. Generates the geometry; 
SSO3. Discretize the domain; 
SSO4. Peform Structural FE analyses; 
SSO5. Conduct the sensitivity analysis; 
SSO6. Obtain a new design using a mathematical program algorithm;  
SSO7. Check the shape optimization convergence criteria; 
          SSO7.1 stop if the new design satisfies the criteria; 
          SSO7.2 otherwise update the design and go to SO3.; 



Commonly in the analysis module of a SSO procedure a discrete form of the governing 
equations are solved by the FE method. Under static conditions this leads to the set of equations 

 
fKd =                        (1) 

 
In which K  is the stiffness matrix, d are the unknown displacements and f is the external load 

vector. If the structural compliance is the output of interest this is computed as 
 
 s  fd T=                       (2) 
 
Using the direct approach for sensitivities analyses, the displacement sensitivities w.r.t. the 

design variable vector x can be obtained from 
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in which f* is the pseudo load vector: 
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After displacements sensitivities be computed, the derivative of the compliance is easily 
obtained through the following equation 
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3.2.RBOBM Approach 
 
3.2.1 Central idea 

 
To construct an approximation for the displacements and consequently to any solution output 

(here we will focus on the compliance) satisfying efficiency and accuracy requirements. 
 
3.2.2. Efficiency 
 
 The use of an affine decomposition to the stiffness matrix of the conventional (costly) problem 
is the requirement to perform inexpensive computational calculations. Thus we rewrite K as 
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in which each parameter µr is a cross sectional area to be specified for different geometric regions r 
(r = … 1 …, R) of the truss. It is important to emphasize that the stiffness matrix Kr is restricted to 
particular geometric region r and is independent of µ. 
 
 



3.2.3 Approximation 
 

To construct the RBOM approximations, firstly a sample NS  in the design D must be chosen 
 

) (({ ) }N
RR

NS µµµµ ,,...,...,,,... 1
1

1=                   (7) 
 

where each )( i
Rµµ ,,...1 is in D, this means 
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in which LOWµ , UPµ  are the lower and upper limits respectively of D. The associated reduced basis 
space is represented by 
 

{ }NispanW iN ,...1, == ζ                    (9) 
 
in which 

di =ζ ( )( ) Nii
R ,...1,,...,1 =µµ     

             (10) 
Taking the above definitions, the reduced-basis approximation problem can be formulated as: for: 
µ  ∈  D find 

 
Ns ( ) ( )( ) Fd TN µµ =                 (11) 

 
as the approximation of  ( )µs  and Nd  in the Galerkin projection of ( )µd  onto NW . Therefore, 
taking into account the observations made previously, the reduced-basis approximation ( )µNd  is 
expressed as 
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The above equation means that dN can be expressed as a linear combination of the displacements 
solutions iζ . In matrix form Eq. (12) is rewritten as  

 
( ) ( )µαµ Zd N =                   (13) 

 
Using stationary conditions to the total potential energy and Eq. (13) to represent the displacements 
field , we end up in the following equation (Prud’homme et al, 2002) 

 
 ( ) NN FK =µαµ )(                  (14) 
 
in which 
 
 ( ) ( ) NTNNxNTN FZFZKZK ℜ∈=ℜ∈= ;µµ              (15) 



3.2.4 Accuracy 
 

The accuracy checking for  the method is accomplished due to consideration of a posteriori 
error estimator procedure. To compute the  error in a computationally efficient way the following 
residual equation should be solved, 

 
( ) ( ) ( )µµµ RêC =                  (16) 

 
in which ( )µC  is a symmetric operator defined such that 

 
( ) ( ) ( ) ( ) ( ) ( )µµµµµµ êCêeKe TT ≤                   (17) 

 
In the above equations ( )µe is the exact error and ê(µ) is the approximated error and R is the 

residuo. To compute C  we consider the so-called point conditioner strategy (Prud´homme et al, 2002):             
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in which ( ) =µg { } Rrr ,...,1,min =µ   and 
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Finally, an estimative of the error for the structural compliance can be written as 
 

 ( ) =∆ µN  ( )µTê ( )µg ( )µêK
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               (20) 
 
It is important here to emphasize that the solution and error computations are very fast as it take the 

advantage of using several precomputed quantities (µ  independent). This is possible due the Eqs. 
(14,15) together with the decomposed form of our stiffness matrix, defined in Eq. (6). 

 
3.2.5 Compliance Sensitivities  
 
Differentiating Eq. (11) w.r.t. a design variable kx  and using Eq. (13), we obtain 
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Similarly, from Eq. (14) it follows that 

kxα is the solution of  
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in which 

1−NK  is the inverse of NK  and *NF  is the pseudo reduced-basis load force 
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Equations (21,22) are solved for each design variable in turn. In the present context these quantities 

are selected from the parameters µ ( )Rµµ ,...,1=  described in previous section and the total number of 
design variables is dvn . 

As observed, to calculate the output sensitivities we need only to calculate ( )
kx

NK ,µ . Due to the 
affine decomposition used for ( )µK  it is verified that these quantities are in fact precomputed as 
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Upon this observation it is easily verified that only an extra on line step have be implemented to 
completely evaluate the sensitivity of desired output. This is a very important feature as in the 
conventional (costly) approach, the sensitivity analysis can take 50% to 90% (Afonso, 1995) of the 
computational effort required to solve the whole optimization problem.  
 
3.2.6 Computational Implementation  
 

As shown in previous sections, the equation to obtain the output and its derivative and conduct 
error estimation involves two classes of terms respectively parameter/no parameter dependent. 
Therefore an off-line/on-line strategy is used for the computational implementation of the method.. As 
a consequence,  a parameter independent quantity is calculated only once at the so-called off-line stage. 
Subsequently, the on-line stage access the precomputed information to provide real time response to 
the new parameters µ . The algorithm to compute the output and its derivative is presented in Tab. (2). 

 
Table 2. Algorithm RBOBM: off-line/on-line stages 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OFF-LINE – independent of µ : 
1. Choose sample: NS ) (({ ) }N

RR µµµµ ,,...,...,,,... 1
1

1=  
2. Construct matrix of FE solutions: Z = [ζ1,…, ζN]; 
3. Construct the reduced basis matrix: ( ) ( )ZKZK TN µµ = ; 
ON-LINE – for a new vector µ : 

1. From the reduced basis matrix: =)(µNK ∑
=

R

r
r
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2. Solves: ( ) NN FK =µαµ )( ; 
3. Evaluate: Ns ( ) NT Fαµ =  
4. Solves: ( ) ( ) ( )µµµ RêC =  

5. Compute the output error: ( ) =∆ µN  ( )µTê ( )µg ( )µêK
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6. Compute the sensitivities: ( ) NT
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4. OPTIMIZATION PROBLEM 

 
The mathematical formulation is written as (Haftka and Gurdal, 1993) 
 
minimize f: ( )x                  (25) 
 

Subject to the following conditions: 
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In which x is the design variable vector f ( )x   is the objective function which is to be minimized 
or maximized, nobj is the number of objective functions, ig ( )x  is an inequality constraint, ih ( )x is 
an equality constraint and l

kx , u
kx  are respectively the lower an upper limits on a typical design 

variable kx . In a MO optimization context, the mathematical statement uses a vector 
F )(x ),...,,( 21 nobjfff= , which contains the set of objective functions instead of a unique 
objective as indicated in (25) (Afonso et al, 2002). 

 
5. EXAMPLES 

 
The approaches presented before are tested for some truss applications. In this work some 

benchmark examples are analyzed. The examples highlights the advantage of using the RBOBM 
over the conventional approach as problem complexities increases. 

 
5.1.Problems Definitions 

 
Three different benchmark trusses are considered. Ten bar truss, sixty-four-bar truss and two 

hundred-bar truss. Their geometry and loading definition are indicated in figs. (1-3). The property 
Elastic Modulus E is given in Tab. (3) for each truss.  

For the reduced-basis solution, each truss is subdivided in three regions, regions I, II and III, 
indicated in Figs. (1-3), in which the struts are determined to have different cross sectional areas. 
This leads to R = 3 in the present study. The initial area (A1, A2, A3) of each one of the three trusses 
are the same .It is considered N = 9 and the sample NS  for all trusses is indicated in Tab. (4). The 
quantity of interest to be computed is the compliance. 

 
 
 
 
 



 
 

Figure 1. Ten bar truss 

 
 

Figure 2. Sixty-four bar truss 
 

 
 

Figure 3. Two hundred bar truss 
 

Table 3. Trusses examples material proprieties 
 

 10 bars 64 bars 200 bars 
E 1x107 2,07x108 2.068x1011 

 
 

Table 4. Trusses example – sample SN 

 

(µ1,µ2) 
(0.1,0.1) (1,0.1) (10,0.1) (0.1,1) (1.1) (10,1) (0.1,10) (1,10) (0.1,0.1) 

 
 



5.2. Structural and Sensitivity Analysis Studies  
 

The compliances  (S),  (SN)  obtained respectively using FE method and the RBOBM are 
indicated in Tab. (5). In this table the error estimative for the reduced basis approximations is also 
given. As observed the accuracy of the RBOBM is very good despite the small value for N. 

 
Table 5. Initial results for FE and RBOBM methods 
 

Bar Area FE Solution RBOBM 
  S SN ∆N 

10 5 1.483x106 1.483x106 4.4703 x10-9 
64 1 0.0033 0.0033      1.1449x10-16 

200 6.452 0.1256 0.1256 4.147x10-15 

 
The sensitivities studies are conducted considering the area of each region (I, II, III) as design 

variable. Tab. (6) reports the compliance sensitivity calculations for the truss design variables 
investigated. As before both procedures (conventional and RBOBM) give the same results. 

 
Table 6. Compliance sensitivity 

 
 Conventional RBOBM 

Trusses 
1x

s
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10 bar -1.969x105 -0.1976 x105 0.1301x105 -1.969x105 -0.1976 x105 0.1301x105 
64 bar -0.0020 -0.0006 -0.0008 -0.0020 -0.0006 -0.0008 

200 bar -3.913 x10-5 -18.418x10-5 -1924.4x10-5 -3.913 x10-5 -18.418x10-5 -1924.4x10-5 

 
5.3. Optimization Studies 
 

To demonstrate the capabilities of SSO procedure single optimization problems are considered 
first. Again, the three benchmarks trusses are considered. 

The compliance is the objective function to be minimized and the initial total volume, indicated 
in Tabs. (7,8),  is considered as a constraint. A part from that, the design space considered is D = 
[0.1 10] ×  [0.1 10] ×  [0.1 10]. This means that 332211 , AeAA === µµµ  are the design variables 
and their lower and upper limits are respectively 0.1 and 10.  

Tables (7) and (8) show the optimization results considering both strategies (conventional  and 
RBOBM ) investigated here. Both strategies converge to the same optimum. However the fast 
computation inherit to RBOBM is perceived. Also the difference in CPU time using both schemes 
increases as the structure get more complex. For the RBOBM the CPU time is almost constant as 
the number of degrees of freedom increases. For the ten-bar truss N is greater then the total number 
of degrees of freedom. Therefore, as the structure of KN matrix is dense this explains the CPU time 
consumed for that case. This highlights the importance of the use RBOBM for the design of  large 
structures. 

 
 
 
 



 
Table 7 .Optimization results – conventional 

 
 Optimum 
bars A1 A2

 A3
 S V Nint CPU 

10 8.7447 6.4696 0.1000 1.483x106 2.098x104 7 17.646 
64 1.0001 0.9998 1.0000 0.0033 149,5391 1 4.908 

200 6.449 6.445 6.455 0.1255 5.679x103 1 12.277 
 

Table 8 .Optimization results – RBOBM 
 

 Optimum 
bars A1 A2

 A3
 S V Nint CPU 

10 8.7447 6.4696 0.1000 1.483x106 2.098x104 7 5.748 
64 1.0001 0.9998 1.0000 0.0033 149,5391 1 0.951 

200 6.449 6.445 6.455 0.1255 5.679x103 1 0.901 
 

 
6. CONCLUSIONS 

 
Optimum designs were here obtained for classical trusses problems. The RBOBM was 

integrated in a SSO algorithm in order to conduct fast computations. A certify of fidelity for the 
reduced basis was obtained through the implementation of a posteriori error estimator.  

The results were compared to the conventional SSO approach, which employs FE method. As 
the complexity of the FE’s equation increases the advantage of using the reduced basis in the SSO 
algorithm was highlighted.  
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