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Abstract. In this paper we present an strategy to obtain fast optimization solutions that is based on
the use of the reduced basis techniques in the function and sensitivities computations required by
the optimizers. To validate the implementation several benchmark examples are considered in this
work. Trusses applications under static loads are the problems addressed here.

1. INTRODUCTION

Optimization techniques have been extensively used in the past decades. This was mainly due to
the development of reliable tools such as the method of Finite Elements (FE), sensitivity analysis
schemes and mathematical programming algorithms together with computational growth. As a
consequence, more realistic applications, associated with practical engineering problems, have been
solved. However, practical engineering applications are involved with several aims to be tackled,
large number of constraints and design variables and complex behavior implying in a difficult
optimization problem to be solved. Moreover, despite of the modern computational and numerical
capabilities, the use of optimization techniques for such problems could be in certain cases cost
prohibitive. To overcome that, several strategies could be used, namely: the use of mathematical
programming algorithms tailored for large-scale problems, the use of parallel computing and the
use of approximations techniques (Barthelemy and Haftka, 1993).

Problem approximation is the focus of the present work. In this context, a model approximation
based on the so called reduced basis output bound method (RBOBM) is considered here. The
RBOBM is a Galerkin projection onto low order approximation spaces comprising solutions of the
problem of interest at selected points in the parameter/design space. The purpose of such scheme is
to get high a fidelity model information without the computational expense. A standard



Structural sizing optimization (SSO) algorithm incorporating such procedure in the structural and
sensitivity analyses will be used to obtain fast optimal trusses design. The output here investigated is
the structural compliance. Optimization studies will be conducted for trusses problems. Comparisons
will be conducted with the traditional SSO approach.

2. SSO PROCEDURE
Optimal designs fulfilling several tasks are here obtaining through the use of an automatic SSO
procedure. The algorithm incorporates different tools such as geometric definition, discretization,

structural and sensitivity analyses, and optimizers. The overview of the algorithm is present in Tab. (1)

Table 1. SSO algorithm: Structural Sizing optimization procedure

SSO1. Define the shape optimization problem,;
SSO2. Generates the geometry;
SSO3. Discretize the domain;
SSO4. Peform Structural FE analyses;
SSOS5. Conduct the sensitivity analysis;
SSO6. Obtain a new design using a mathematical program algorithm;
SSO7. Check the shape optimization convergence criteria;
SSO7.1 stop if the new design satisfies the criteria;
SSO7.2 otherwise update the design and go to SO3.;

In the sequence some remarks referring to the adopted and proposed strategy are described. For
further details see (Afonso, 1995, Macedo,2002)
REMARK SSOI - An objective function, a set of design variables, a set of constraints and limits on
the design variables must be defined to set the optimization problem. A large number of options is
available in our system and some will be exploited in the applications presented in this article;
REMARK SSO3 - For trusses this is coincident to the geometry representation;
REMARK SSO4 - Static’s, free vibrations and linear buckling analysis can be conduct here. Two
strategies are considered in this work to perform the structural analyses. The first one is the
classical approach in which the FE method is used. The second strategy uses the RBOBM;
REMARK SSOS5 - Sensitivities calculations are required when gradient based mathematical
programming algorithms are considered in the optimization process. Several schemes such as
Finite differences (FD), Semi-analytical (SA) and Analytical (A) are implemented in the integrated
systems. As in the structural analysis, the sensitivities calculations schemes are implemented in the
framework of both FE (classical) and the RBOBM strategies;
REMARK SSO6 - The sequential quadratic programming (SQP) (Powell,1998) algorithm is
considered here. In the mathematical formulation of the optimization problem, both inequality and
equality constraints for the chosen constraint functions can be used. We also consider lower and
upper limits for the set of design variables. In the context of MO solutions the SSO algorithm is
conducted in a internal loop to allow the Pareto points generation.

2. STRUCTURAL AND SENSITIVITY ANALYSIS

3.1.Classical Approach



Commonly in the analysis module of a SSO procedure a discrete form of the governing
equations are solved by the FE method. Under static conditions this leads to the set of equations

Kd=f (1)

In which K is the stiffness matrix, d are the unknown displacements and f'is the external load
vector. If the structural compliance is the output of interest this is computed as

s =d’'f (2)

Using the direct approach for sensitivities analyses, the displacement sensitivities w.r.t. the
design variable vector x can be obtained from

od .
K& =f (3)
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in which f" is the pseudo load vector:
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After displacements sensitivities be computed, the derivative of the compliance is easily
obtained through the following equation
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3.2.RBOBM Approach

3.2.1 Central idea

To construct an approximation for the displacements and consequently to any solution output
(here we will focus on the compliance) satistying efficiency and accuracy requirements.

3.2.2. Efficiency

The use of an affine decomposition to the stiffness matrix of the conventional (costly) problem
is the requirement to perform inexpensive computational calculations. Thus we rewrite K as

K(u)= Zu, K, (6)

in which each parameter p, is a cross sectional area to be specified for different geometric regions
(r = ... I ..., R) of the truss. It is important to emphasize that the stiffness matrix K, is restricted to
particular geometric region » and is independent of p.



3.2.3 Approximation

To construct the RBOM approximations, firstly a sample S” in the design D must be chosen

SV = {(,ul,...,/uR)l,...,(,ul,...,,uR)N} (7)

where each (,u1 yeeos g )i is in D, this means

/uLOW Sﬂr S/JUP (8)

in which ", u"" are the lower and upper limits respectively of D. The associated reduced basis
space is represented by

wr zspan{fi,izl,...N} 9)

in which
¢ '=d ((:ula'“’ﬂR )l)> i=L..N
(10)

Taking the above definitions, the reduced-basis approximation problem can be formulated as: for:
i € D find

s (u)=(a" () F (11)

as the approximation of s(,u) and d” in the Galerkin projection of d(,u) onto W" . Therefore,

taking into account the observations made previously, the reduced-basis approximation d” (z) is
expressed as
N . ) )
d"(w)=Y alu) ¢’ a’eR” |, j=1..,N (12)

J=1

The above equation means that d" can be expressed as a linear combination of the displacements
solutions ¢ *. In matrix form Eq. (12) is rewritten as

d"(u)=Za(u) (13)

Using stationary conditions to the total potential energy and Eq. (13) to represent the displacements
field , we end up in the following equation (Prud’homme et al, 2002)

K" (wa(u)=F" (14)
in which

KY(u)=2Z"K(u)Z eR™;, F"=Z"F eR" (15)



3.2.4 Accuracy

The accuracy checking for the method is accomplished due to consideration of a posteriori
error estimator procedure. To compute the error in a computationally efficient way the following
residual equation should be solved,

C(u)e(u)=R(n) (16)

in which C(,u) is a symmetric operator defined such that

e’ (1)K (u)e(u) < e (u)C(u)e(n) (17)

In the above equations e(,u)is the exact error and é() is the approximated error and R is the
residuo. To compute C we consider the so-called point conditioner strategy (Prud homme et al, 2002):

Clu)= gu) K (18)

K=Y K, (19)
Finally, an estimative of the error for the structural compliance can be written as

N ()= o™ (i) glu) K &(u) (20)

It is important here to emphasize that the solution and error computations are very fast as it take the
advantage of using several precomputed quantities (x independent). This is possible due the Egs.

(14,15) together with the decomposed form of our stiffness matrix, defined in Eq. (6).
3.2.5 Compliance Sensitivities

Differentiating Eq. (11) w.r.t. a design variable x, and using Eq. (13), we obtain

s (u),, =a, F" @1)
Similarly, from Eq. (14) it follows that e is the solution of

alp),, =—K" (wF"™ (22)

in which K" is the inverse of K" and F"" is the pseudo reduced-basis load force



FY =—K"(u), alu). (23)

Equations (21,22) are solved for each design variable in turn. In the present context these quantities
are selected from the parameters u = (,u, yeees 1 R) described in previous section and the total number of

design variables is n,, .
As observed, to calculate the output sensitivities we need only to calculate K™ (,u),xk . Due to the

affine decomposition used for K(u) it is verified that these quantities are in fact precomputed as
KY(u), =K =2"K,Z (24)

Upon this observation it is easily verified that only an extra on line step have be implemented to
completely evaluate the sensitivity of desired output. This is a very important feature as in the
conventional (costly) approach, the sensitivity analysis can take 50% to 90% (Afonso, 1995) of the
computational effort required to solve the whole optimization problem.

3.2.6 Computational Implementation

As shown in previous sections, the equation to obtain the output and its derivative and conduct
error estimation involves two classes of terms respectively parameter/no parameter dependent.
Therefore an off-line/on-line strategy is used for the computational implementation of the method.. As
a consequence, a parameter independent quantity is calculated only once at the so-called off-line stage.
Subsequently, the on-line stage access the precomputed information to provide real time response to
the new parameters . The algorithm to compute the output and its derivative is presented in Tab. (2).

Table 2. Algorithm RBOBM: off-line/on-line stages

OFF-LINE - independent of u:

1. Choose sample: " = {(yl,...,,uR )1 N (7R )N}
2. Construct matrix of FE solutions: Z = [Cl,..., CN];
3. Construct the reduced basis matrix: K" (u)=Z"K(u)Z ;

ON-LINE - for a new vector u:

R
1. From the reduced basis matrix: K" (¢)=> u, K

r=l

2. Solves: K" (u)a(u)=F";

3. Evaluate: s" (u)=a"F"

4. Solves: C(u)é(u)=R(u)

5. Compute the output error: A" (u)= é" (u) g(u) I%é(,u)

6. Compute the sensitivities: s (z), =a’ F"

Xk Xk




4. OPTIMIZATION PROBLEM
The mathematical formulation is written as (Haftka and Gurdal, 1993)
minimize:  f (x) (25)

Subject to the following conditions:

g, (x)SO i=1,..m
h(x)<0 j=1,.1
xp <x, <xt k=1..n, (206)

In which x is the design variable vector f (x) is the objective function which is to be minimized
or maximized, nobj is the number of objective functions, g, (x) is an inequality constraint, /, (x)is
an equality constraint and x|, x; are respectively the lower an upper limits on a typical design
variable x,. In a MO optimization context, the mathematical statement uses a vector
F (x)=(f\, fy> frapj)» Which contains the set of objective functions instead of a unique
objective as indicated in (25) (Afonso et al, 2002).

5. EXAMPLES

The approaches presented before are tested for some truss applications. In this work some
benchmark examples are analyzed. The examples highlights the advantage of using the RBOBM
over the conventional approach as problem complexities increases.

5.1.Problems Definitions

Three different benchmark trusses are considered. Ten bar truss, sixty-four-bar truss and two
hundred-bar truss. Their geometry and loading definition are indicated in figs. (1-3). The property
Elastic Modulus E is given in Tab. (3) for each truss.

For the reduced-basis solution, each truss is subdivided in three regions, regions I, II and III,
indicated in Figs. (1-3), in which the struts are determined to have different cross sectional areas.
This leads to R = 3 in the present study. The initial area (A;, Ay, A3) of each one of the three trusses
are the same .It is considered N = 9 and the sample S” for all trusses is indicated in Tab. (4). The
quantity of interest to be computed is the compliance.
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Table 3. Trusses examples material proprieties

10 bars 64 bars 200 bars

E 1x10’ 2,07x10° 2.068x10'"

Table 4. Trusses example — sample S™

(M1,12)

(0.1,0.1) (1,0.1) (10,0.1) (0.,1) (1.I)  (10,) (0.1,10) (1,10) (0.1,0.1)




5.2. Structural and Sensitivity Analysis Studies

The compliances (S), (S") obtained respectively using FE method and the RBOBM are
indicated in Tab. (5). In this table the error estimative for the reduced basis approximations is also
given. As observed the accuracy of the RBOBM is very good despite the small value for N.

Table 5. Initial results for FE and RBOBM methods

Bar Area FE Solution RBOBM

S SN AN
10 5 1.483x10° 1.483x10° 44703 x10”
64 1 0.0033 0.0033 1.1449x107'
200 6.452 0.1256 0.1256 4.147x10"°

The sensitivities studies are conducted considering the area of each region (I, II, III) as design
variable. Tab. (6) reports the compliance sensitivity calculations for the truss design variables
investigated. As before both procedures (conventional and RBOBM) give the same results.

Table 6. Compliance sensitivity

Conventional RBOBM
Trusses %/ %/ %/ Gsy 6Sy Os 7
axl 8x2 8x3 6x1 6x2 8x3
10 bar | -1.969x10° |-0.1976 x10° | 0.1301x10° | -1.969x10° |-0.1976 x10° | 0.1301x10°
64 bar -0.0020 -0.0006 -0.0008 -0.0020 -0.0006 -0.0008
200 bar | -3.913 x10° | -18.418x107 | -1924.4x10° | -3.913 x10” | -18.418x107 | -1924.4x107

5.3. Optimization Studies

To demonstrate the capabilities of SSO procedure single optimization problems are considered
first. Again, the three benchmarks trusses are considered.

The compliance is the objective function to be minimized and the initial total volume, indicated
in Tabs. (7,8), is considered as a constraint. A part from that, the design space considered is D =
[0.1 10] x [0.1 10] x [0.1 10]. This means that x, = A4, 1, = A, e u, = A, are the design variables

and their lower and upper limits are respectively 0.1 and 10.

Tables (7) and (8) show the optimization results considering both strategies (conventional and
RBOBM ) investigated here. Both strategies converge to the same optimum. However the fast
computation inherit to RBOBM is perceived. Also the difference in CPU time using both schemes
increases as the structure get more complex. For the RBOBM the CPU time is almost constant as
the number of degrees of freedom increases. For the ten-bar truss N is greater then the total number
of degrees of freedom. Therefore, as the structure of K" matrix is dense this explains the CPU time
consumed for that case. This highlights the importance of the use RBOBM for the design of large
structures.



Table 7 .Optimization results — conventional

Optimum
bars A1 A2 A3 S Vv Nim CPU
10 |8.7447]6.4696(0.1000 | 1.483x10°(2.098x10*| 7 |17.646
64 [1.0001[0.9998|1.0000| 0.0033 |149,5391 | 1 | 4.908
200 | 6.449 | 6.445 | 6.455 | 0.1255 [5.679x10°| 1 [12.277
Table 8 .Optimization results - RBOBM
Optimum
bars| A; Ar As S \Y Nint| CPU
10 |8.7447]6.4696]0.1000]1.483x10°]2.098x10*| 7 | 5.748
64 [1.0001]0.9998|1.0000{ 0.0033 | 149,5391 | 1 | 0.951
200 | 6.449 | 6.445 | 6.455 | 0.1255 [5.679x10°| 1 | 0.901

6. CONCLUSIONS

Optimum designs were here obtained for classical trusses problems. The RBOBM was
integrated in a SSO algorithm in order to conduct fast computations. A certify of fidelity for the
reduced basis was obtained through the implementation of a posteriori error estimator.

The results were compared to the conventional SSO approach, which employs FE method. As
the complexity of the FE’s equation increases the advantage of using the reduced basis in the SSO
algorithm was highlighted.
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