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Resumo. Este trabalho apresenta a modelagem de um giroscópio de suspensão cardânica com dois 
graus de liberdade. Para tal será utilizada uma formulação com o número máximo de coordenadas 
onde as equações de movimento ficam sobre a forma diferencial e algébrica (DAE). Nestas 
equações serão utilizados os parâmetros de Euler como coordenadas de orientação dos corpos que 
compõem o giroscópio, entretanto, como é difícil interpretar fisicamente os resultados com estas 
coordenadas, será apresentado um método para a obtenção dos ângulos relativos de rotação entre 
dois corpos consecutivos. 
      No modelo desenvolvido serão incluídos desalinhamentos entre os corpos do giroscópio, que 
são imperfeições construtivas. Por último é apresentada uma simulação de um giroscópio sujeito à 
aceleração da gravidade e cujo rotor possui desalinhamento. Os resultados desta simulação são 
comparados com resultados encontrados na literatura. 
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1. INTRODUÇÃO 
  
      A modelagem do giroscópio é feita utilizando o número máximo de coordenadas para 
determinação da cinemática dos corpos (Haug e Deyo, 1991; Brisola, 2002 e Blajer 2002), como 
alternativa às extensas manipulações algébricas para a obtenção das equações diferenciais de 
movimento com número mínimo de coordenadas. Em contrapartida, as referidas equações ficam 
sobre a forma diferencial e algébrica (DAE) ao invés da forma diferencial ordinária e podem 
apresentar dificuldades na solução numérica, HAUG et al (1989). 
      Para evitar a ocorrência de singularidades matemáticas na matriz coeficiente das equações de 
movimento, Haug et al (1992), são utilizados parâmetros de Euler para a orientação dos corpos, 
entretanto, como é difícil interpretar fisicamente os resultados com parâmetros de Euler, a 
orientação de cada corpo é apresentada através do ângulo de rotação do corpo em relação ao corpo 
anterior, em torno do eixo da junta de revolução (o único deslocamento angular entre dois corpos 
consecutivos se dá em torno desta junta). Ou seja, os resultados são obtidos em parâmetros de 
Euler, mas são apresentados com os ângulos de rotação relativos entre os corpos.       
      Considera-se que o giroscópio é composto por quatro corpos rígidos (base do giroscópio, anel 
externo, anel interno e rotor), com três juntas de revolução, sendo uma entre cada par de corpos. 
Com uma única junta de revolução entre cada par de corpos evita-se a redundância nas equações de 
restrição cinemática (causada pela ocorrência de duas equações de restrição cinemática idênticas), 
que resultaria em uma singularidade da matriz jacobiana das restrições cinemáticas. Como não se 
deseja obter o valor das reações nas juntas, mas apenas o comportamento dinâmico do giroscópio, 
tal hipótese simplificadora não traz nenhum prejuízo aos resultados, pois, ao se trabalhar com 
giroscópios compostos por corpos rígidos, obtém-se o mesmo comportamento dinâmico, utilizando-
se uma ou duas junta de revolução (que sejam colineares) entre cada par de corpos. 
 



2. ORIENTAÇÃO DE UM CORPO COM PARÂMETROS DE EULER 
 
      Segundo o Teorema de Euler, mencionado por Haug et al (1989), qualquer orientação de um 
corpo no espaço tridimensional pode ser obtida por uma única rotação χ em torno de um vetor 
unitário U a partir de uma orientação de referência (referencial global), que neste trabalho será o 
referencial inercial. Os quatro parâmetros de Euler são definidos como:    
      e0 = cos (χ/2),   e1 = Ux sen (χ/2),   e2 = Uy sen (χ/2),   e3 = Uz sen (χ/2) 
onde Ux, Uy e Uz são as componentes do vetor U nos eixos X Y Z do referencial global. 
      Como existem quatro parâmetros para representar três graus de liberdade de rotação eles não 
são independentes e relacionam-se através da seguinte equação: 
 
      pTp = 1                                                                                                                                         (1) 
 
onde: p = [e0   e1   e2   e3]T       
      Com isso tem-se que:    
 
      e0

2 + e1
2 + e2

2 + e3
2 = 1                                                                                                                 (2) 

 
      A matriz de transformação de coordenadas do referencial local (x y z) para o referencial global 
(X Y Z) é dada por Haug et al (1989): 
 

      A =  2                                                              (3) 
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      A matriz de transformação entre dois referenciais locais (matriz de transformação do referencial 
local fixo no corpo j para o fixo no corpo i) é dada por: 
 
      iA j = Ai

TAj                                                                                                                                               (4) 
 
onde: 
      Ai – Matriz de transformação de coordenadas, do referencial fixo no corpo i para o referencial 
global. 
      Aj – Matriz de transformação de coordenadas, do referencial fixo no corpo j para o referencial 
global. 
 
3. ÂNGULO DE ROTAÇÃO RELATIVO ENTRE DOIS CORPOS 
 
      Quando dois corpos i e j tem dois eixos em comum (zi e zj), onde o corpo j gira em torno do 
eixo zj (eixo da junta de revolução), conforme ilustrado na Fig. (1), pode-se obter o ângulo de 
rotação entre estes corpos em torno dos referidos eixos projetando-se um vetor unitário fixo no 
corpo j (fj, por exemplo) no referencial local que é fixo no corpo i. 
      Na Fig. (2) é apresentado o vetor fj na base formada pelos eixos xi yi zi ( (fj)i ), vetor esse que é 
dado por:    (fj)i = iAj  fj’ 
onde fj’ é o vetor fixo no corpo j, paralelo a xj, em coordenadas do sistema local xjyjzj. 
      - Se  o vetor unitário (fj)i estiver no primeiro quadrante, φ é dado por: 
      φ = acos ( (fj)xi / || fj || ) = acos ((fj)xi / 1) = acos ((fj)xi) 
      - Se  o vetor unitário (fj)i estiver no segundo quadrante: φ = acos ((fj)yi) + π/2 
      - Se  o vetor unitário (fj)i estiver no terceiro quadrante:  φ = acos (- (fj)xi) + π 
      - Se  o vetor unitário (fj)i estiver no quarto quadrante: φ = acos (-(fj)yi) + 3π/2 



 
 
 
 
 
 
 
 
 
 
 

 
 

Figura1. Ângulo de rotação entre dois corpos em torno do eixo da junta de revolução 
 
 
 
 
 
 
 
 
 
 
                       

Figura 2. (
 
4. RESTRIÇÕES CINEMÁT
 
      Neste trabalho a base do g
respectivamente, de corpo 0, c
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referencial local coincidem co
cinemáticas absolutas sobre es
      - vetor das restrições cinem
da origem do referencial local 
 
      Φro = r0 = 0                        
 
que corresponde a três equaçõe
      - vetor das restrições cinem
(e1_0, e2_0, e3_0): 
 
      Φpo = 0                               
 
que corresponde a três equaçõe
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fj)i : Projeção do vetor fj no referencial  xi yi zi 

ICAS NO GIROSCÓPIO 

iroscópio, o anel externo, o anel interno e o rotor serão chamados, 
orpo 1, corpo 2 e corpo 3. Como o corpo 0 não possui nenhum grau 
ção ao referencial global) e, considerando que os eixos do seu 
m os eixos do referencial global, tem-se seis equações de restrições 
te corpo, inclusas nos seguintes vetores: 

áticas absolutas sobre as coordenadas x, y, z (no referencial global) 
do corpo 0: 

                                                                                                          (5) 

s escalares:Φxo=x0=0, Φyo=y0=0 e Φzo=z0=0; 
áticas absolutas sobre os parâmetros de Euler e1, e2, e3 do corpo 0 

                                                                                                           (6) 

s escalares:Φe1_0=e1_0=0, Φe2_0=e2_0=0 e Φe3_0=e3_0=0. 
entada na Fig. (3), que restringe cinco graus de liberdade relativos de 
e dois de rotação), é representada por cinco equações de restrição 
ção cinemática esférica e as outras duas da restrição decorrente do 
 zj. A restrição cinemática esférica, dada pela Eq. (7), estabelece uma 
nta dois pontos Pi e Pj, fixos respectivamente nos corpos i e j, 



coincidentes no espaço tridimensional. A restrição de paralelismo, dada pela Eq. (8), é composta 
por duas equações escalares, dadas pela Eq. (9) e Eq. (10), que estabelecem que os vetores hi e gi 
permanecem sempre ortogonais a hj. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 3. Dois corpos unidos por uma junta de revolução 
      
      ΦS(Pi, Pj) = rj + Ajsj’ – ri – Aisi’ = 0                                                                                            (7) 
 

      Φp1(hi,hj)  = = 0                                                                                                     (8) 
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      Φd1(fi, hj) =  f’i

TAi
TAj h’j = 0                                                                                                       (9) 

 
      Φd1(gi, hj) = g’i

TAi
TAj h’j = 0                                                                                                     (10) 

 
onde: 
      f’i , g’i , h’i  - Vetores unitários paralelos, respectivamente, aos eixos xi yi zi em coordenadas 
deste sistema local. 
      f’j , g’j , h’j  - Vetores unitários paralelos, respectivamente, aos eixos xj yj zj em coordenadas 
deste sistema local. 
      ri – Vetor de posição do centro de massa (e origem do referencial local) do corpo i em relação 
ao referencial global em coordenadas do sistema global. 
      rj – Vetor de posição do centro de massa (e origem do referencial local) do corpo j em relação 
ao referencial global em coordenadas do sistema global. 
      si’ – Vetor da origem do referencial xiyizi a Pi, em coordenadas do sistema  xiyizi.    
      sj’ – Vetor da origem do referencial xjyjzj a Pj, em coordenadas do sistema  xjyjzj.    
      O sistema possui três juntas de revolução, que são representadas por quinze equações de 
restrições cinemáticas. As restrições cinemáticas absolutas sobre a base do giroscópio são 
representadas por seis equações, totalizando vinte e uma equações de restrição cinemática (Eq.(11)). 
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      As restrições dos parâmetros de Euler (uma equação para cada corpo) fornecem as quatro 
equações restantes: 
 
                                                                   (12) TTTTTP ] 1-       1-       1-       1-  [ 33221100 pppppppp=Φ
 
onde, p0, p1, p2 e p3 são, respectivamente, os vetores dos parâmetros de Euler dos corpos 0,1,2 e 3.    



5. EQUAÇÕES DE MOVIMENTO DE SISTEMAS COMPOSTOS POR CORPOS RÍGIDOS  
    COM RESTRIÇÕES 
 
      O sistema de equações diferenciais e algébricas de movimento, na forma matricial, para um 
sistema composto por corpos rígidos com restrições e com os sistemas locais de coordenadas de 
cada corpo com origem nos centros de massas dos mesmos, é dado por:  
 

                                                                                       (13) 
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onde: 
      M - Matriz de massa do sistema. 
      J’  - Tensor de inércia do sistema, em coordenadas dos sistemas locais. 
      fA - Vetor de forças aplicadas no sistema, em coordenadas do sistema global. 
      n’A – Vetor de torques aplicados no sistema, em coordenadas dos sistemas locais. 
      w’ – Vetor das velocidades angulares do sistema, em coordenadas dos sistemas locais.  
      λ - Vetor dos multiplicadores de Lagrange do sistema. 
      Φr e Φπ’ -  Matrizes Jacobianas do vetor das restrições cinemáticas do sistema. 
      γ - Vetor que corresponde ao lado direito da equação cinemática para cálculo das acelerações 
do sistema.   
      Na Eq. (13) encontram-se a derivada segunda do vetor r e a derivada primeira do vetor w’ em 
relação ao tempo. Deseja-se conhecer as coordenadas de posição e orientação (e suas derivadas 
primeiras) do sistema. Para tal deve-se reduzir a ordem do sistema, entretanto w’ não é integrável. 
Existe, porém, uma relação entre velocidade angular e derivada primeira do vetor dos parâmetros de 
Euler:        
 
      = ½ Gp& T w’                                                                                                                 (14)      
 
onde a matriz G para um corpo i é dada por Haug et al (1989):                                                                                
 

      Gi=                                                                                   (15)                 
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e, G = diag(G1, G2, G3, G4). 
      De posse da Eq. (14) e realizando a seguinte substituição de variáveis:        
      
     r = s                                                                                                                             (16)                   &
      
      Pode-se montar um sistema DAE de primeira ordem: 
 

                                                                                       (17) 
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      O sistema pode ser resolvido numericamente para e em seguida integrado para a obtenção 
das posições e velocidades, (Haug, 1989; Fox e Zomaya 2000; Haug e Deyo, 1991 e Brisola 2002). 

w s &&  e



Este algoritmo é conhecido como integração direta, que é fácil de ser implementado e 
computacionalmente rápido, porém podem ocorrer violações nas restrições cinemáticas do sistema, 
uma vez que nas equações de movimento consideram-se apenas as restrições nas acelerações e não 
as equações das restrições nas posições, velocidades e parâmetros de Euler. Um algoritmo que 
também considera tais equações é o de partição de coordenadas, onde após cada passo de integração 
(ou seqüência de passos compreendidos dentro de um pequeno intervalo de integração), interrompe-
se o processo e corrige-se os resultados da integração, de modo que as equações de restrições nas 
posições, velocidades e dos parâmetros de Euler sejam satisfeitas. 
      Para se verificar a satisfação das equações de restrições nas posições e dos parâmetros de Euler, 
utiliza-se os resultados de p e r obtidos na integração numérica das equações de movimento como 
estimativas iniciais para o método de Newton-Raphson, cujo objetivo é a resolução numérica do 
sistema de equações algébricas não lineares das restrições cinemáticas e restrições nos parâmetros 
de Euler. Entretanto, como existem mais coordenadas do que equações de restrição (pois o sistema 
possui três graus de liberdade), é necessário decompô-las em dependentes (u) e independentes (v), 
sendo a quantidade destas últimas igual a quantidade de graus de liberdade do sistema e supõe-se 
que os seus valores, obtidos na integração numérica da equações de movimento, são corretos. O 
método de Newton-Raphson é, então, utilizado para corrigir as coordenadas dependentes (u). O 
próximo passo é verificar se a equação de restrições nas velocidades é satisfeita:  
 
      Φq q&   =  Φt                                                                                                                                   (18)  
 
      O vetor q é composto por todas as coordenadas do sistema e q  por todas as velocidades do 
sistema. Como existem mais variáveis do que equações de restrição, a matriz jacobiana Φ

&

q não será 
uma matriz quadrada, não podendo ser invertida para se obter . Decompõe-se, então, os vetores q 
e  em coordenadas dependentes e independentes e velocidades independentes ( ) e dependentes 
( ), para que estas últimas sejam corrigidas. As velocidades independentes são obtidas da 
integração numérica das equações de movimento. Com a decomposição de q em u e v ( e de q  em 

 e v ) a Eq. (18) fica sendo:    

q&
q&

u&
v&

&

u& &

 
                                                                                                               (19) tvu vu ΦΦ Φ  -  =+ &&

 
      A matriz Φu  que é quadrada pode ser invertida para a obtenção de u&

t

. No caso do giroscópio 
montado em um referencial inercial não há restrições diretoras, com isso Φ = 0 , e u  fica:      &

 
      u                                                                                                                (20) vvu && ΦΦ  -1−=
 
6. DESALINHAMENTOS ENTRE OS CENTROS GEOMÉTRICOS DOS CORPOS  
 
      Considera-se que o centros de massa de cada corpo coincidem com seus centros geométricos, 
que por sua vez podem estar desalinhados devido a imprecisões de montagens, conforme se observa 
nas figuras 4, 5 e 6, onde o problema é ilustrado utilizando-se como exemplo o desalinhamento do 
centro geométrico do corpo 3 em relação ao centro geométrico do corpo 2.  
 
      i) Caso 1 - Centro geométrico do corpo 3 desalinhado com o centro geométrico do corpo 2 
devido a um desalinhamento da junta de revolução em relação ao corpo 2. Neste caso s3’ = 0 e a 
restrição cinemática esférica fica:  ΦS(P3, P2)=r3–r2–A2s2’=0 
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             a)                                                                b) 
 

Figura 4. Desalinhamento da junta de revolução em relação ao corpo 2 

  ii) Caso 2 - Centro geométrico do corpo 3 desalinhado com centro geométrico do corpo 2 
vido a um desalinhamento do corpo 3 em relação a junta de revolução. Neste caso a restrição 
emática esférica fica:   ΦS(P3, P2)=r3–r2+A3s3’=0 

Figura 5

  iii) Caso 3 – Comb
emática é a mesma d
 
 
 
 

. Desalinhamento do corpo 

inação das imperfeições apr
a Eq. (7).  

 
 

Figura 6. Combinação do
                                                                
3 em relação a junta de revolução 

esentadas nos itens i) e ii). Neste caso a restrição 
s dois desalinhamentos 



7. RESULTADOS DA SIMULAÇÃO NUMÉRICA 
                   
      Será apresentada neste item apenas uma simulação numérica, relativa ao desalinhamento 
apresentado na Fig. (4b). Considera-se que os corpos do giroscópio possuem as seguintes massas e 
tensores de inércia:   
      M0 = 1 x 10-3 kg ,  M1 = 10 x10-3 kg ,  M2 = 10 x10-3 kg e M3 = 80 x10-3 kg 

      J’0 =  x10
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      J’2 =  x10
















1000
0200
0010

-7 kg.m2            J’3 = x10
















5000
0500
00100

-7 kg.m2 

e que o centro geométrico do rotor encontra-se com um desalinhamento de 0.000125m em relação 
ao centro geométrico do anel interno, na direção do eixo x2. Considera-se, ainda, que o centro de 
massa dos corpos coincidem com seus centros geométricos e que a aceleração da gravidade é de      
-10 m/s2 na direção do eixo Y. Para se incluir os efeitos da aceleração da gravidade no sistema basta 
utilizar o vetor fA da Eq. (13), igual a: 
 
      fA = M ag                                                                                                                      (21) 
 
onde ag é o vetor da aceleração da gravidade do sistema que é dado por:  
 
      ag = [0   -10    0    0   -10    0    0   -10    0    0   -10    0]T m/s2                                         (22) 
 
      No instante inicial o rotor possui velocidade angular absoluta de 100 rad/s em torno do eixo x3 e 
os anéis interno e externo encontram-se parados e perpendiculares entre si. O tempo de simulação 
foi de 1s. A resolução das equações diferenciais e algébricas de movimento do sistema foi feita com 
o algoritmo de partição de coordenadas, com correção de variáveis a cada 0.0005s e passo máximo 
de integração de 0.0001s. 
 
 
 
 
 
 
 
 
 
                   
                   
 
 
 
                                          a)                                                                   b) 
                                     
                                                                     Figura 7. α(t) e β(t) 
 
onde: 
      α - ângulo relativo entre o anel externo e a base do giroscópio. 
      β - ângulo relativo entre o anel interno e o anel externo. 



      A inclinação da reta em torno da qual ocorre a oscilação do ângulo α, bem como o período de 
oscilação e a amplitude do ângulo β obtidos na simulação encontram-se coerentes com os 
resultados previstos por Cannon et al (1967). 
 
8. CONCLUSÃO 
 
     A utilização do número máximo de coordenadas mostra-se bastante conveniente para a 
modelagem de um giroscópio de suspensão cardânica com dois graus de liberdade, que possui 
desalinhamentos entre os centros geométricos dos corpos. Tal formulação é conveniente, pois 
evitam-se as extensas manipulações algébricas necessárias para a obtenção das equações 
diferenciais de movimento com número mínimo de coordenadas. Com a utilização do número 
máximo de coordenadas tem-se, em contrapartida, mais equações para serem resolvidas 
numericamente, implicando em maiores tempos de processamento. Um outro fator que contribui 
para o aumento no tempo de processamento são as etapas de correção dos resultados da integração. 
Entretanto, deve-se enfatizar que, com o surgimento de computadores cada vez mais velozes, tal 
desvantagem da modelagem com o número máximo de coordenadas em relação a modelagem com 
o número mínimo de coordenadas torna-se cada vez menos relevante.   
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Abstract. This work presents the modelling of a gyroscope with cardan suspension and two 
degrees of freedom. For the modelling, a formulation with a maximal number of coordinates 
will be used, where the equations of motion appear as differential-algebraic equations (DAE). 
In those equations Euler parameters will be used as orientation coordinates for the gyroscope 
bodies, but, as it is difficult to have a physical understanding of the results shown by those 
coordinates, a method to obtain the relative angle of rotation between two consecutive bodies 
will be presented. 
      It will be included in the model misalignments between the bodies, which are constructive 
imperfections. At last will be presented a simulation of a giroscope under the gravity 
acceleration and with a misaligned rotor. The results of the simulation are compared to 
results found in the literature.     
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