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Resumo. Este trabalho apresenta a modelagem de um giroscopio de suspensdo cardanica com dois
graus de liberdade. Para tal sera utilizada uma formulagdo com o nimero maximo de coordenadas
onde as equacdes de movimento ficam sobre a forma diferencial e algébrica (DAE). Nestas
equacdes serdo utilizados os parametros de Euler como coordenadas de orientacdo dos corpos que
compdem o giroscopio, entretanto, como ¢ dificil interpretar fisicamente os resultados com estas
coordenadas, serd apresentado um método para a obtengdo dos angulos relativos de rotagao entre
dois corpos consecutivos.

No modelo desenvolvido serdo incluidos desalinhamentos entre os corpos do giroscopio, que
sdao imperfeicdes construtivas. Por ltimo ¢ apresentada uma simulacao de um giroscopio sujeito a
aceleracdo da gravidade e cujo rotor possui desalinhamento. Os resultados desta simula¢do sdo
comparados com resultados encontrados na literatura.
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1. INTRODUCAO

A modelagem do giroscopio ¢ feita utilizando o nimero maximo de coordenadas para
determinagdo da cinematica dos corpos (Haug e Deyo, 1991; Brisola, 2002 e Blajer 2002), como
alternativa as extensas manipulacdes algébricas para a obten¢do das equagdes diferenciais de
movimento com nimero minimo de coordenadas. Em contrapartida, as referidas equagdes ficam
sobre a forma diferencial e algébrica (DAE) ao invés da forma diferencial ordinaria e podem
apresentar dificuldades na solu¢do numérica, HAUG et al (1989).

Para evitar a ocorréncia de singularidades matematicas na matriz coeficiente das equagdes de
movimento, Haug et al (1992), sdo utilizados pardmetros de Euler para a orientagdo dos corpos,
entretanto, como ¢ dificil interpretar fisicamente os resultados com pardmetros de Euler, a
orientacdo de cada corpo ¢ apresentada através do angulo de rotagdo do corpo em relagdo ao corpo
anterior, em torno do eixo da junta de revolugdo (o unico deslocamento angular entre dois corpos
consecutivos se d4 em torno desta junta). Ou seja, os resultados sdo obtidos em parametros de
Euler, mas sdo apresentados com os angulos de rotacao relativos entre os corpos.

Considera-se que o giroscopio ¢ composto por quatro corpos rigidos (base do giroscopio, anel
externo, anel interno e rotor), com trés juntas de revolugdo, sendo uma entre cada par de corpos.
Com uma Unica junta de revolucao entre cada par de corpos evita-se a redundancia nas equacdes de
restricdo cinematica (causada pela ocorréncia de duas equacdes de restrigdo cinematica idénticas),
que resultaria em uma singularidade da matriz jacobiana das restri¢des cinematicas. Como nao se
deseja obter o valor das reagcdes nas juntas, mas apenas o comportamento dindmico do giroscopio,
tal hipdtese simplificadora ndo traz nenhum prejuizo aos resultados, pois, ao se trabalhar com
giroscopios compostos por corpos rigidos, obtém-se o mesmo comportamento dindmico, utilizando-
se uma ou duas junta de revolu¢do (que sejam colineares) entre cada par de corpos.



2. ORIENTACAO DE UM CORPO COM PARAMETROS DE EULER

Segundo o Teorema de Euler, mencionado por Haug et al (1989), qualquer orientagdo de um
corpo no espaco tridimensional pode ser obtida por uma unica rotacdo y em torno de um vetor
unitario U a partir de uma orientacdo de referéncia (referencial global), que neste trabalho serd o
referencial inercial. Os quatro parametros de Euler sdo definidos como:

€= cos (x/2), e, =U,sen (x/2), e,=Ugsen(x/2), e;=U,sen (x/2)
onde Uy, Uy e U, sdo as componentes do vetor U nos eixos X Y Z do referencial global.

Como existem quatro parametros para representar trés graus de liberdade de rotagdo eles ndo
sdo independentes e relacionam-se através da seguinte equagao:

pp=1 (1)

) T
onde:p=1[ey e e e3]
Com isso tem-se que:

602 + 612 + 622 + 632 =1 (2)

A matriz de transformacdo de coordenadas do referencial local (x y z) para o referencial global
(XY Z) ¢ dada por Haug et al (1989):

e2+e?-05 ee,—ee, €,6,+€,8,
A=2 |ee,+ee, e2+e2-05 e,e,—e.e, 3)
e, —€,e, €,e,+ee, e>+ei-05

A matriz de transformagao entre dois referenciais locais (matriz de transformagao do referencial
local fixo no corpo j para o fixo no corpo i) ¢ dada por:

iA j = AiTAj (4)

onde:

A; — Matriz de transformag¢do de coordenadas, do referencial fixo no corpo i para o referencial
global.

A;j — Matriz de transformagdo de coordenadas, do referencial fixo no corpo j para o referencial
global.

3. ANGULO DE ROTACAO RELATIVO ENTRE DOIS CORPOS

Quando dois corpos i e j tem dois eixos em comum (z; € z;), onde o corpo j gira em torno do
eixo z;j (eixo da junta de revolugdo), conforme ilustrado na Fig. (1), pode-se obter o angulo de
rotagdo entre estes corpos em torno dos referidos eixos projetando-se um vetor unitario fixo no
corpo j (fj, por exemplo) no referencial local que ¢ fixo no corpo 1.

Na Fig. (2) ¢ apresentado o vetor fj na base formada pelos eixos x; yi z; ( (fj)i ), vetor esse que €
dado por: (fj))i =iA; f}
onde f;’ é o vetor fixo no corpo j, paralelo a x;, em coordenadas do sistema local Xjy;z;.

- Se o vetor unitério (fj); estiver no primeiro quadrante, ¢ ¢ dado por:

¢ =acos ((fxi /|| fj || ) = acos ((f)xi / 1) = acos ((£))x)

- Se o vetor unitario (fj); estiver no segundo quadrante: ¢ = acos ((fj)yi) + n/2

- Se o vetor unitario (fj); estiver no terceiro quadrante: ¢ = acos (- (f)xi) +

- Se o vetor unitario (f;); estiver no quarto quadrante: ¢ = acos (-(fj)yi) + 31/2



Figura 2. (f;)i : Projeg&o do vetor fj no referencial x;y; z;
4. RESTRICOES CINEMATICAS NO GIROSCOPIO

Neste trabalho a base do giroscopio, o anel externo, o anel interno e o rotor serdo chamados,
respectivamente, de corpo 0, corpo 1, corpo 2 e corpo 3. Como o corpo 0 nao possui nenhum grau
de liberdade (¢ fixo em relacdo ao referencial global) e, considerando que os eixos do seu
referencial local coincidem com os eixos do referencial global, tem-se seis equagdes de restricdes
cinematicas absolutas sobre este corpo, inclusas nos seguintes vetores:

- vetor das restrigdes cinemadticas absolutas sobre as coordenadas X, y, z (no referencial global)
da origem do referencial local do corpo 0:

D°=ry=0 (5)

que corresponde a trés equagdes escalares:®*=x=0, ®*°=y,=0 ¢ O*=z,=0;
- vetor das restri¢des cinematicas absolutas sobre os parametros de Euler e, €,, €3 do corpo 0
(€1.0, €2.0, €3 0):

(I)Po =0 (6)

que corresponde a trés equagdes escalares:D'-"=¢; (=0, D“*’=e, (=0 e O=-"=¢; (=0.

A junta de revolucdo apresentada na Fig. (3), que restringe cinco graus de liberdade relativos de
um corpo (trés de translacdo e dois de rotacdo), ¢ representada por cinco equacdes de restricdo
cinematica: trés vém da restricdo cinematica esférica e as outras duas da restri¢do decorrente do
paralelismo entre os eixos z; € z;. A restricdo cinematica esférica, dada pela Eq. (7), estabelece uma
relagdo analitica que representa dois pontos P; e Pj, fixos respectivamente nos corpos i e j,



coincidentes no espaco tridimensional. A restrigdo de paralelismo, dada pela Eq. (8), ¢ composta
por duas equacdes escalares, dadas pela Eq. (9) e Eq. (10), que estabelecem que os vetores h; e g;
permanecem sempre ortogonais a h;.

Figura 3. Dois corpos unidos por uma junta de revolugao

q)s(Pi, P)=r;+ Ajs; —ri—Aisi’ =0 (7)
; @Y (f.,h))
O (hphy) =| " 'T(=0 (8)
" (g:.h))
di T, T ’
s TH T ’
o%(g, hy) =g’ A; Ajh’;=0 (10)

onde:

i , g’i , h’; - Vetores unitarios paralelos, respectivamente, aos eixos X; yi z; em coordenadas
deste sistema local.

f; , g’j , h’j - Vetores unitarios paralelos, respectivamente, aos €ixos Xj y; z; em coordenadas
deste sistema local.

r; — Vetor de posi¢cdo do centro de massa (e origem do referencial local) do corpo i em relagao
ao referencial global em coordenadas do sistema global.

rj — Vetor de posi¢do do centro de massa (e origem do referencial local) do corpo j em relagdo
ao referencial global em coordenadas do sistema global.

si” — Vetor da origem do referencial x;y;z; a P; em coordenadas do sistema X;yizi.

s;” — Vetor da origem do referencial Xjy;z; a P; em coordenadas do sistema X;y;z;.

O sistema possui trés juntas de revolug¢do, que sdo representadas por quinze equacgdes de
restricdes cinematicas. As restricdes cinematicas absolutas sobre a base do giroscopio sdo
representadas por seis equagoes, totalizando vinte € uma equagdes de restricao cinematica (Eq.(11)).

O=[0" ®° ®F o) o OF ®F ®5']'=0 (11)

As restricdes dos parametros de Euler (uma equagdo para cada corpo) fornecem as quatro
equacoes restantes:

@ =[pyp,-1 p;p,-1 p,p,-1 p3p,-11" (12)

onde, po, p1, P2 € P3 sdo, respectivamente, os vetores dos pardmetros de Euler dos corpos 0,1,2 e 3.



5. EQUACOES DE MOVIMENTO DE SISTEMAS COMPOSTOS POR CORPOS RIGIDOS
COM RESTRICOES

O sistema de equagdes diferenciais e algébricas de movimento, na forma matricial, para um
sistema composto por corpos rigidos com restricdes € com os sistemas locais de coordenadas de
cada corpo com origem nos centros de massas dos mesmos, ¢ dado por:

M 0 o |F fA
0 J o.L|w/|=|n*-wJw (13)
o O, 0 || A Y

onde:

M - Matriz de massa do sistema.

J’ - Tensor de inércia do sistema, em coordenadas dos sistemas locais.

fA - Vetor de forgas aplicadas no sistema, em coordenadas do sistema global.

n’® — Vetor de torques aplicados no sistema, em coordenadas dos sistemas locais.

w’ — Vetor das velocidades angulares do sistema, em coordenadas dos sistemas locais.

A - Vetor dos multiplicadores de Lagrange do sistema.

@, ¢ @,y - Matrizes Jacobianas do vetor das restri¢des cinematicas do sistema.

Y - Vetor que corresponde ao lado direito da equag@o cinematica para célculo das aceleracdes
do sistema.

Na Eq. (13) encontram-se a derivada segunda do vetor r ¢ a derivada primeira do vetor W’ em
relacdo ao tempo. Deseja-se conhecer as coordenadas de posicdo e orientagcdo (e suas derivadas
primeiras) do sistema. Para tal deve-se reduzir a ordem do sistema, entretanto W’ ndo ¢ integravel.
Existe, porém, uma relagdo entre velocidade angular e derivada primeira do vetor dos parametros de
Euler:

p=%G'wW (14)

onde a matriz G para um corpo i ¢ dada por Haug et al (1989):

—C i g i 6y
Gi= =€ —C3; € € (15)
=€ € TC ;€

c, G= diag(G1, Gz, G3, G4).
De posse da Eq. (14) e realizando a seguinte substitui¢ao de variaveis:

r=s (16)

Pode-se montar um sistema DAE de primeira ordem:

M 0 &5 £
0 J oL|w/|=[n"-WJWw (17)
o, O, 0| A Y

O sistema pode ser resolvido numericamente para $ e w e em seguida integrado para a obtengao
das posi¢des e velocidades, (Haug, 1989; Fox e Zomaya 2000; Haug e Deyo, 1991 e Brisola 2002).



Este algoritmo ¢ conhecido como integracdo direta, que ¢ facil de ser implementado e
computacionalmente rapido, porém podem ocorrer violagdes nas restricdes cinematicas do sistema,
uma vez que nas equacgdes de movimento consideram-se apenas as restricdes nas aceleragdes e ndo
as equagdes das restrigdes nas posi¢oes, velocidades e parametros de Euler. Um algoritmo que
também considera tais equagdes ¢ o de particdo de coordenadas, onde apds cada passo de integragao
(ou seqiiéncia de passos compreendidos dentro de um pequeno intervalo de integracdo), interrompe-
se 0 processo e corrige-se os resultados da integracao, de modo que as equagdes de restricdes nas
posicdes, velocidades e dos parametros de Euler sejam satisfeitas.

Para se verificar a satisfagdo das equagdes de restricdes nas posicoes ¢ dos pardmetros de Euler,
utiliza-se os resultados de p e r obtidos na integragdo numérica das equagdes de movimento como
estimativas iniciais para o método de Newton-Raphson, cujo objetivo € a resolugdo numérica do
sistema de equacdes algébricas ndo lineares das restrigdes cinematicas e restricdes nos parametros
de Euler. Entretanto, como existem mais coordenadas do que equacdes de restri¢ao (pois o sistema
possui trés graus de liberdade), é necessario decompo-las em dependentes (u) e independentes (V),
sendo a quantidade destas Ultimas igual a quantidade de graus de liberdade do sistema e supde-se
que os seus valores, obtidos na integragdo numérica da equagdes de movimento, sdo corretos. O
método de Newton-Raphson €, entdo, utilizado para corrigir as coordenadas dependentes (u). O
proximo passo € verificar se a equagao de restricdes nas velocidades ¢ satisfeita:

O vetor q é composto por todas as coordenadas do sistema e q por todas as velocidades do
sistema. Como existem mais varidveis do que equagdes de restri¢do, a matriz jacobiana ®q nio sera
uma matriz quadrada, ndo podendo ser invertida para se obter ¢. Decompde-se, entdo, os vetores q
e q em coordenadas dependentes e independentes e velocidades independentes (V) e dependentes
(u), para que estas ultimas sejam corrigidas. As velocidades independentes s3o obtidas da
integragdo numérica das equagdes de movimento. Com a decomposigdo de gem u e v (e de g em
u e v)aEq. (18) fica sendo:

O U+D V=-O, (19)

A matriz @, que ¢ quadrada pode ser invertida para a obtengdo de u. No caso do giroscopio
montado em um referencial inercial ndo ha restri¢des diretoras, com isso ®,=0, e u fica:

u=-o; ® v (20)

6. DESALINHAMENTOS ENTRE OS CENTROS GEOMETRICOS DOS CORPOS

Considera-se que o centros de massa de cada corpo coincidem com seus centros geométricos,
que por sua vez podem estar desalinhados devido a imprecisdes de montagens, conforme se observa
nas figuras 4, 5 e 6, onde o problema ¢ ilustrado utilizando-se como exemplo o desalinhamento do
centro geométrico do corpo 3 em relagdo ao centro geométrico do corpo 2.

i) Caso 1 - Centro geométrico do corpo 3 desalinhado com o centro geométrico do corpo 2
devido a um desalinhamento da junta de revolug¢do em relagdo ao corpo 2. Neste caso s3> =0 ¢ a
restri¢do cinematica esférica fica: d)s(Pg, Py)=r3-1-Az8,’=0
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Figura 4. Desalinhamento da junta de revolugdo em relag@o ao corpo 2

i1) Caso 2 - Centro geométrico do corpo 3 desalinhado com centro geométrico do corpo 2
devido a um desalinhamento do corpo 3 em relagdo a junta de revolucdo. Neste caso a restri¢ao

cinematica esférica fica: d)S(Pg, Py)=r3-r;+A383°=0

deszalinhamento

Figura 5. Desalinhamento do corpo 3 em relagdo a junta de revolugao

ii1) Caso 3 — Combinacao das imperfei¢des apresentadas nos itens i) e ii). Neste caso a restricao

cinematica ¢ a mesma da Eq. (7).
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Figura 6. Combinagdo dos dois desalinhamentos



7. RESULTADOS DA SIMULACAO NUMERICA

Sera apresentada neste item apenas uma simulacdo numérica, relativa ao desalinhamento

apresentado na Fig. (4b). Considera-se que os corpos do giroscOpio possuem as seguintes massas €
tensores de inércia:

Mo=1x10"kg, M;=10x10"kg, M, =10x10"kg e M3=80 x10” kg

1 0 0 (20 0 0

Jo=10 1 0|x10"kg.m’ Ji=[0 10 0 |x10"kgm’
0 0 1 0 0 10
(10 0 0 [100 0 0

=10 20 0]|x10"kgm’ 3= 0 50 0 |x10"kgm’
0 0 10 0 0 50

e que o centro geométrico do rotor encontra-se com um desalinhamento de 0.000125m em relacao
ao centro geométrico do anel interno, na dire¢ao do eixo x,. Considera-se, ainda, que o centro de
massa dos corpos coincidem com seus centros geométricos € que a aceleracdo da gravidade ¢ de
-10 m/s” na diregdo do eixo Y. Para se incluir os efeitos da aceleragio da gravidade no sistema basta
utilizar o vetor f* da Eq. (13), igual a:

=M a, 21)
onde aq € o vetor da acelerag¢do da gravidade do sistema que é dado por:
ag=[0 -10 0 0 10 O O 10 O O -10 0]" m/s? (22)

No instante inicial o rotor possui velocidade angular absoluta de 100 rad/s em torno do eixo x3 €
os anéis interno e externo encontram-se parados e perpendiculares entre si. O tempo de simulacdo
foi de 1s. A resolucao das equagdes diferenciais e algébricas de movimento do sistema foi feita com
o algoritmo de parti¢cdo de coordenadas, com corre¢@o de varidveis a cada 0.0005s e passo maximo
de integracao de 0.0001s.
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onde:
o - angulo relativo entre o anel externo e a base do giroscopio.
[ - angulo relativo entre o anel interno e o anel externo.



A inclinagdo da reta em torno da qual ocorre a oscilagdo do angulo o, bem como o periodo de
oscilagdo e a amplitude do angulo [ obtidos na simulagdo encontram-se coerentes com os
resultados previstos por Cannon et al (1967).

8. CONCLUSAO

A utilizagdo do nimero maximo de coordenadas mostra-se bastante conveniente para a
modelagem de um giroscopio de suspensdo cardanica com dois graus de liberdade, que possui
desalinhamentos entre os centros geométricos dos corpos. Tal formulagdo ¢ conveniente, pois
evitam-se as extensas manipulagdes algébricas necessarias para a obtencdo das equagodes
diferenciais de movimento com numero minimo de coordenadas. Com a utilizagdo do ntimero
maximo de coordenadas tem-se, em contrapartida, mais equacdes para serem resolvidas
numericamente, implicando em maiores tempos de processamento. Um outro fator que contribui
para o aumento no tempo de processamento sdo as etapas de corre¢do dos resultados da integragao.
Entretanto, deve-se enfatizar que, com o surgimento de computadores cada vez mais velozes, tal
desvantagem da modelagem com o numero maximo de coordenadas em relagdo a modelagem com
o nimero minimo de coordenadas torna-se cada vez menos relevante.
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Abstract. This work presents the modelling of a gyroscope with cardan suspension and two
degrees of freedom. For the modelling, a formulation with a maximal number of coordinates
will be used, where the equations of motion appear as differential-algebraic equations (DAE).
In those equations Euler parameters will be used as orientation coordinates for the gyroscope
bodies, but, as it is difficult to have a physical understanding of the results shown by those
coordinates, a method to obtain the relative angle of rotation between two consecutive bodies
will be presented.

It will be included in the model misalignments between the bodies, which are constructive
imperfections. At last will be presented a simulation of a giroscope under the gravity
acceleration and with a misaligned rotor. The results of the simulation are compared to
results found in the literature.

Keywords: gyroscope, simulation.



