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Resumo: No projeto eficiente de máquinas rotativas o controle das vibrações de sistemas que
trabalham a grandes velocidades é um dos aspectos que merece maior atenção. Dentre as
diferentes opções para a solução destes problemas, o controle passivo usando elementos
viscoelásticos demostra ser uma das soluções mais simples e econômicas, sendo também uma
alternativa bastante versátil. Neste trabalho é desenvolvido o modelo de um sistema rotor-mancais
suportado por apoios viscoelásticos. São feitas simulações computacionais procurando evidenciar
a mudança na resposta dinâmica do rotor, com e sem o uso deste tipo de suporte.
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1. INTRODUÇÃO

Atualmente na área das máquinas rotativas é clara a tendência de se exigir parâmetros cada vez
mais restritos de desempenho, tudo isto acompanhado de uma crescente demanda na diminuição do
peso e aumento das velocidades de operação. Neste caso, o controle de vibrações em rotores
flexíveis que operam acima de sua segunda ou terceira velocidade crítica é um dos aspectos de
maior importância. Geralmente  a solução mais simples e econômica é o emprego de técnicas de
controle passivo agregando amortecimento ao sistema. Estas técnicas também apresentam a
vantagem de não precisar de nenhuma forma de energia externa, garantindo a estabilidade do
sistema. Tais técnicas adaptam-se a aplicações de grande porte (De Lima, 2003).

Os procedimentos mais comuns para o incremento do amortecimento em sistemas rotativos são
o emprego de amortecedores de filme fluido (SFD) e o uso de suportes viscoelásticos. Na atualidade
os SFD são mais usados: estes são projetados para operar em série com os mancais, como um
sistema integrado de apoio (Lund, 1974). No entanto, este tipo de amortecedor apresenta algumas
desvantagens devido à complexidade do mecanismo, alto custo, funcionamento em faixas de
freqüências limitadas e tolerâncias apertadas. Por outro lado, os materiais viscoelásticos surgem
como uma alternativa viável, dado a seu baixo custo, simplicidade e alto desempenho, quando
usados como suportes de mancais. O pouco uso deste tipo de suporte pode ser explicado pela
dificuldade do projeto destes sistemas, dado que é bastante recente o desenvolvimento de modelos
do comportamento viscoelástico adequados para aplicações estruturais (Trindade, 2000). Muitas
vezes o projeto de suportes viscoelásticos é desenvolvido a partir de ensaios experimentais sem



dispor de um modelo matemático do sistema (Bormann e Gasch, 2002), o que pode tornar o
procedimento excessivamente custoso.

O modelo apresentado neste artigo permite determinar a resposta dinâmica e a velocidade limite
de estabilidade a partir do conhecimento das características dinâmicas do material utilizado na
construção do suporte, suas dimensões, e as características do sistema rotor-mancais. Os modelos
do sistema rotor-suporte viscoelástico  até agora propostos na bibliografia (Panda e Dutt, 1999,
Shabaneh e Zu, 2000, Dutt e Toi, 2003, Bormann e Gasch, 2002, Panda e Dutt, 2003) são bastante
simples e não consideram a flexibilidade do rotor, impedindo a determinação do comportamento
dinâmico do sistema para altas velocidades de rotação. Neste trabalho foi considerado o modelo
viscoelástico dos campos de deslocamento anelasticos (ADF) que demostra ser mais confiável que
os modelos mais simples (Coronado et al, 2002), sendo que o modelo matemático do rotor flexível é
obtido usando o método dos elementos finitos. Na seqüência são apresentadas brevemente as
características dos materiais viscoelásticos, o modelo ADF, e o desenvolvimento do modelo
completo do rotor montado sobre suportes viscoelásticos.

2. MODELO VISCOELÁSTICO

O uso de materiais viscolásticos como suportes de sistemas rotativos tem provado sua eficiência
dada sua capacidade de aumentar convenientemente o amortecimento do sistema (Childs, 1993).

Nos materiais viscoelásticos a tensão não é instantaneamente proporcional à deformação,
dependendo da taxa de deformação. Neste caso, a relação entre a tensão e a deformação (rigidez) e
a taxa de deformação (amortecimento) são dependentes da freqüência de oscilação da carga.

Conforme mencionado acima, com o objeto de introduzir o comportamento dinâmico dos
suportes viscoelásticos dentro do modelo de elementos finitos, é usado o modelo ADF (Lesieutre e
Bianchini, 1995). Este modelo é baseado na separação dos deslocamentos totais do elemento
viscoelástico em uma parte elástica e outra anelástica que representa a relaxação do material
viscoelástico. As equações constitutivas deste modelo são as seguintes:
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Sendo N o número de campos de deslocamento anelásticos considerados. No caso de ser
considerado um único campo de deslocamento aneslástico, o modelo é análogo ao do sistema
mecânico mostrado na Fig (1).

Figura 1. Analogia mecânica de modelo ADF para um único campo de deslocamento anelástico
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O sistema da Fig. (1) é um modelo viscoelástico clássico composto por um elemento de Kelvin-
Voigt em série com uma mola. A tensão na mola �, é determinada pela rigidez G e pelo
deslocamento elástico (�E), sendo este dado pela diferença entre o deslocamento total (�), e o
deslocamento anelástico interno (�A). A tensão no amortecedor, �A, é a diferença entre a tensão da
mola principal e da mola secundária incluída no elemento de Kelvin-Voigt. A tensão do
amortecedor é também equivalente à constante do amortecedor multiplicada pela taxa de mudança
na deformação anelástica, de forma que a Eq. (2) representa a evolução do campo de deslocamento
anelástico.

Lesieutre (1992) define o módulo de rigidez do material viscoelástico da seguinte forma:
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Sendo Gr o módulo relaxado ou módulo de baixa freqüência, � é a freqüência de excitação, �i é
o inverso do tempo de relaxação com deformação constante correspondente ao campo anelástico i,
�i é a relação entre o módulo de rigidez relaxado e a rigidez do campo de deslocamento anelastico i,
sendo Ci o parâmetro que permite relacionar o processo físico de relaxação ao deslocamento total,
dado pela equação (4a). No modelo ADF o módulo de rigidez é simplificado como sendo o módulo
de alta freqüência (Lesieutre e Biachini, 1996), dado pela Eq. (4b).
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Os parâmetros �i, �i, e Gr podem ser determinados a partir de ensaios experimentais.

3. MODELO DO SUPORTE

O sistema de suporte é composto por uma base intermediária (que permite fazer a conexão entre
os mancais e os anéis de material viscoelástico), pelos anéis viscoelásticos e por um suporte
exterior, conforme ilustrado na Fig.(2).

Figura 2. Suporte modelado

Dutt e Toi (2003) determinaram as forças que atuam sobre a base de um suporte devidas à
elasticidade de um setor circular de material deformável, causadas pelo deslocamento do eixo na
posição do suporte, em função da rigidez do material deformável e sua geometria, como sendo:
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Considerando que Fx e Fy são os somatórios das forças nas direções x e y respectivamente,
devidas à deformação do elemento flexível, �x e �y são as deformações correspondentes do elemento
flexível. E e G são os módulos de rigidez e de cisalhamento correspondentes ao material
deformado. �1 e �2 são os ângulos que delimitam o setor circular. R, t, e w dependem da geometria
da seção conforme mostra a figura (2).

Considerando que o anel envolve uma circunferência completa (�1=0 e �2=2.�), as forças
atuando sobre a base são reduzidas a:
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Pela teoria clássica da elasticidade, a relação entre G e E é � ����� 12EG , sendo 	 é a razão de
Poisson. Considerando 	=0.5, o que razoável para a maioria dos materiais poliméricos (Nashif et al,
1985), tem-se:
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Da Eq. (12) pode-se deduzir os coeficientes de rigidez que relacionam as deformações com as
forças transmitidas à base do suporte:
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ou, escrevendo na forma matricial:
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A Fig. (3) mostra os graus de liberdade na posição do suporte.

Figura 3. Graus de liberdade do suporte.

No esquema anterior pode observar-se como as forças dos mancais, atuando sobre o eixo do
rotor, são proporcionais ao deslocamento relativo do eixo com relação ao suporte viscoelástico.
Desta forma, as forças que o mancal transmite ao eixo são:
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Sendo [Km] e [Cm] as matrizes de rigidez e amortecimento dos mancais, no caso em que estão
rigidamente apoiados.

A equação do movimento do mancal é dada por:
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sendo que [Mm] inclui em sua diagonal a massa total do mancal. Na matriz [Kv] está incluído o
efeito viscoelástico do suporte.

Aplicando as Eq. (4b) e (14) em (16), tem-se:
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Substituindo {Xv} referente ao subsistema viscoelástico da Eq. (17) pelos graus de liberdade
elásticos correspondentes, de acordo com a Eq. (1), obtem-se:
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chamando:
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obtem-se a Equação matricial na forma compacta abaixo:
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A Eq. (20) pode ser generalizada para o caso em que vários suportes viscoelásticos são introduzidos
no sistema.

4. EQUAÇÕES DE MOVIMENTO DO SISTEMA ROTATIVO

As equações de movimento do sistema rotativo com mancais apoiados sobre suportes rígidos
podem ser escritas da seguinte maneira:
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Os subíndices M correspondem aos graus de liberdade associados aos deslocamentos nas
posições dos suportes, e os subíndices L correspondem aos graus de liberdade restantes. A primeira
matriz corresponde à matriz total de massa do sistema; a segunda é a matriz giroscópica; a terceira é
a matriz total de amortecimento e a quarta é a matriz total de rigidez do sistema.

Considerando os apoios dos mancais  como sendo flexíveis, as forças das reações dos mancais
são dadas pela Eq. (15). A equação do movimento completa escreve-se:
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sendo que DM e KM são, respectivamente, as parcelas das matrizes DMM e KMM que incluem somente
a contribuição do amortecimento e rigidez dos mancais. O vetor {Xv}corresponde aos graus de
liberdade relacionados aos deslocamentos dos suportes viscoelásticos.

A Eq. (2), multiplicada por � �vK , pode ser rescrita da seguinte forma:
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correspondendo, portanto a i equações diferenciais, dependendo do número de campos de
deslocamentos anelásticos usados no modelo viscoelástico adotado.

Acoplando o sistema formado pelas Eq. (20), (22) e (23), é possível escrever um sistema de
equações de primeira ordem (formulação de estado) na forma:
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sendo que os elementos das matrizes � �A  e � �B  são determinadas facilmente.

O vetor {Q} é dado por:
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4.1.  Resposta ao Desbalanceamento

No caso de forças de desbalanceamento atuando sobre o rotor, a Eq. (24) assume a seguinte
forma:

� � � � � � � � � � � �tcosftsenfQBQA ��������� �� 21
� (26)

Sendo � a velocidade de rotação do sistema e {f1}, {f2} os momentos produzidos pelas massas
desbalanceadas nos nós correspondentes. A solução do sistema é dada como:

� � � � � � � � � �tcosqtsenqQ ������ �� 21 (27)

Identificando os termos em sen(�·t) e cos(�·t) é obtida a Eq. (28).
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Conhecendo os desbalanceamentos e suas respectivas posições angulares é possível determinar
o vetor de deslocamentos do sistema para cada valor de � (resposta ao desbalanceamento).

4.2.  Freqüências Naturais e Velocidade Limite de Estabilidade

Para determinar as freqüências naturais do sistema e a velocidade limite de estabilidade é
necessário resolver o problema de autovalores para o sistema livre. Nesse caso, trata-se da solução
não-trivial do seguinte sistema:

� � � � � �FVBVA �����       (33)

Para cada valor de � são determinadas as freqüências naturais correspondentes contidas na
matriz [F], as quais permitem traçar o chamado diagrama de Campbell e determinar as velocidade
críticas. A velocidade limite de estabilidade é determinada para o valor de � no qual a parte real
dos autovalores complexos deixam de ser todas negativas.

5. RESULTADOS E DISCUSSÃO

Com o intuito de testar o procedimento apresentado nas seções anteriores, é usado um modelo
de elementos finitos do rotor, mostrado na Fig (4). O desbalanceamento, aplicado na posição do
disco, é de 6,5·10-5 Kg·m. Para os mancais foi considerado que os coeficientes de rigidez e
amortecimento são constantes. São considerados mancais de rolamento com K=2,9·106 N/m,
desprezando o efeito do amortecimento. Sabe-se, entretanto, que em situações reais pode-se
encontrar comportamento não-linear nos mancais de rolamento. Contudo, tal efeito é minimizado
pela presença de amortecimento externo, como aquele devido aos materiais viscoelásticos (Dutt e
Toi, 2003) . As dimensões do suporte viscoelástico são R = 30 mm; t = w = 10 mm; e a massa Mm =
300 gramas. O material dos elementos de eixo e disco é o aço (E=2,067·1011N/m2 e � = 7800
kg/m3).

Figura 4. Modelo de Rotor em elementos finitos
(5 elementos de eixo de L=5 cm, D=1cm; 1 elemento de disco rígido, D=6,5 cm, e= 1,12 cm)

Para o modelo do comportamento viscoelástico do suporte são consideradas as propriedades do
material viscoelástico ISD112 produzido pela 3M®, fixando a temperatura de trabalho em 27°C. Os
parâmetros do material determinados por De Lima (2003) a partir de nomogramas fornecidos pelo
fabricante foram identificados considerando 5 campos de deslocamento anelástico (Tab. 1).

Tabela 1. Parâmetros identificados para o material ISD112

I Gr [Mpa] �i �i [rad/s]
1 0.217001 101.6223605
2 0.667236 612.3758475
3 1.955240 3197.275616
4 7.192090 17419.42246
5

0.46474

82.58700 188413.4396



Os diagramas de Campbell e de resposta ao desbalanceamento são apresentados na Fig (5).

Figura 5. Diagrama de Campbell e Resposta ao Desbalanceamento (no disco)

Os apoios viscoelásticos diminuem a rigidez do sistema em relação à situação original, o que
pode ser evidenciado no diagrama de Campbell (Fig. 5), onde as freqüências naturais do sistema
com apoios rígidos são maiores. É possível observar que no intervalo entre 0 e 15000 RPM onde se
apresentam duas velocidades críticas para o sistema com apoios rígidos, se apresentam três
velocidades críticas para o sistema com suportes viscoelásticos (devido ao aumento na
flexibilidade), entretanto, pelo uso dos apoios viscoelásticos, a amplitude de vibração na primeira
velocidade crítica é diminuída em 90%, e o aumento do amortecimento permite que não se
apresentem incrementos importantes na amplitude para as velocidades críticas superiores.

A partir destes resultados pode ser observado que os apoios viscoelásticos permitem atenuar
efetivamente as vibrações em sistemas rotativos em uma faixa de freqüência considerável.

6. CONCLUSÕES

O procedimento ilustrado neste trabalho permite analisar o comportamento dinâmico de um
sistema rotor-mancais suportado por apoios viscoelásticos, sendo excitado por forças de
desbalanceamento. Podem ser considerados outros tipos de excitação, dependendo das necessidades
do projetista, mantendo porém a metodologia apresentada.

O uso apropriado destes apoios permite melhorar a resposta dinâmica diminuindo de maneira
significativa a resposta ao desbalanceamento.

O modelo proposto é voltado para o projeto de apoios viscoelásticos, permitindo otimizar as
características do suporte para um determinado sistema rotativo,  visando a redução da resposta ao
desbalanceamento e modificando a velocidade limite de estabilidade, de forma a atender o interesse
do projetista. Alem disso, o modelo estudado adequa-se ao projeto de sistemas de controle de
máquinas rotativas.
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MODELING OF FLEXIBLE ROTOR SYSTEMS WITH
VISCOELASTICALLY SUPPORTED BEARINGS

Abstract: In the successful design of rotating machinery the vibration control of systems working at
high rotation speeds is one of the most important tasks. The passive control, obtained by using
viscoelastic materials can be the best choice in many cases because its simplicity, low cost, and
versatility. In this work, a model of a flexible rotor system with viscoelastically supported bearings
is developed. Computational simulations are performed in order to show the change in the rotor
dynamical behavior, due to the use of viscoelastically supported bearings.
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