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Resumo. A estimação de parâmetros é um problema não linear, onde a função objetivo a ser 
minimizada será a diferença entre as magnitudes da função de resposta em freqüência real e do 
modelo. O método de otimização, utilizado para se minimizar a diferença entre os dados do modelo 
e experimentais, é uma importante ferramenta na estimação dos parâmetros corretos. Neste 
sentido, o presente trabalho implementa dois métodos de estimação de parâmetros (Mínimos 
Quadrados não linear, Algoritmo Genético - AG). Ambos os métodos utilizarão a FRF na definição 
da função objetivo. Escolheu-se um método analítico e um método de busca estocástica. O método 
de mínimos quadrados não linear é um método analítico de ajuste de curvas. Faz-se necessário o 
uso de cálculo diferencial, a fim de se determinar uma direção de busca, que minimize a função 
objetivo. O AG é um método metaheurístico de busca, o qual se baseia em conceitos de genética e 
evolução. Este procedimento visa encontrar indivíduos (soluções do problema), pertencentes a uma 
população (conjunto de soluções), que melhor se adaptem a um determinado meio (função objetivo 
mais próxima do ótimo global) em cada geração (iteração). A descrição completa do modelo do 
rotor, foi feita através do método dos elementos finitos (MEF). Entretanto, é necessário estimar os 
seguintes parâmetros físicos do eixo: módulo de elasticidade do material e coeficientes de 
amortecimento proporcional estrutural viscoso. Da mesma forma, não se conhece a densidade 
específica do disco. Parâmetros que não são, necessariamente, conhecidos. 
 
Palavras-chave: Ajuste de modelos de elementos finitos, Mínimos quadrados, Algoritmos genéticos, 

Vibrações flexionais, Análise Modal. 
 
1. INTRODUÇÃO 
 

Nos rotores (eixo e disco) dos sistemas mecânicos, muitas de suas propriedades físicas têm que 
ser ajustadas, pois elas geralmente são valores estatísticos que, dependendo das circunstâncias seja 
de fabricação, operação, etc. às quais foram ou estão sujeitos os rotores, podem não ser 
representativas dos mesmos. Neste sentido, é necessário realizar um ajuste dos mesmos, utilizando 
dados experimentais obtidos através da análise modal experimental ou outros métodos. Neste 
trabalho, adequou-se o método de Mínimos Quadrados implementado no trabalho de Tapia A. e 
Cavalca K. (2003); e implementou-se o método de Algoritmos Genéticos, ambos utilizados nos 
processos de ajuste do presente trabalho. 



2. SISTEMA MECÂNICO 
 
O sistema mecânico mostrado na Fig. (1), representa uma máquina rotativa, sendo que, as 

vibrações flexionais do sistema serão consideradas. Os sistemas de referência fixo XYZ e móvel xyz 
(fixo ao eixo), são usados para descrever as equações de movimento de cada um dos componentes. 

 

 
 

Figura 1. Sistema mecânico, Modelos de Elementos Finitos: Disco rígido, Eixo flexível. 
 
2.1. Modelagem do Disco Rígido 
 

Na modelagem de máquinas rotativas, componentes tais como: engrenagens, rotores, etc., são 
geralmente modelados como discos rígidos. O modelo de elementos finitos do disco é mostrado na 
Fig. (1), sendo caracterizado por sua energia cinética. A equação de movimento do disco é obtida 
aplicando-se a equação de Lagrange: 
 

[ ]{ } [ ]{ } { } { }conexiDiD FFqGqM +=+ &&& Ω . (1)
 
Onde: { q&& i},{ q& i} são vetores de aceleração e de velocidade do disco; {Fex},{Fcon} são vetores das 
forças externas e de conexão; [MD], [GD] são as matrizes de massa e giroscópica do disco 
respectivamente, que são definidas de acordo ao trabalho de Tapia A. (2003). 
 
2.2. Modelagem do Eixo 

 
Nos elementos de eixos de máquinas, é comum dividir esses componentes num número de 

segmentos de eixo, os quais podem ser de seção transversal variável. O modelo de elementos finitos 
de massa contínua é representado na Fig. (1). O elemento de eixo, nas vibrações transversais, está 
submetido à flexão, sendo caracterizado através de sua energia cinética e potencial. Considerando o 
efeito da inércia rotatória e o efeito do cisalhamento da seção transversal do eixo, a equação de 
movimento do eixo, aplicando-se a equação de Lagrange nas energias cinética e potencial do 
mesmo, será escrita na forma matricial como: 
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onde: {  é o vetor deslocamento do nó i; [M}iq E], [GE], [KE] são as matrizes de massa, giroscópica, e 
de rigidez do elemento de eixo, que são definidas de acordo ao trabalho de Tapia A. (2003). 
 
3. FUNÇÃO DE RESPOSTA EM FREQÜÊNCIA (FRF) 
 

A equação de movimento geral para o sistema amortecido de múltiplos graus de liberdade é: 
 
[ ]{ } [ ]{ } [ ]{ } { }exgggggg FqKqCqM =++ &&& . (3)



Onde: [ ] [ ] [ ]ggg KCM ,,  são as matrizes massa, amortecimento e rigidez globais do sistema que 
contem a contribuição de todos as componentes; { } { } { }ggg qqq ,, &&&  são os vetores aceleração, 
velocidade e de deslocamento em coordenadas generalizadas do sistema. O amortecimento 
estrutural proporcional é definido como: [ ] [ ] [ ]gg Kg MC βα += , com α e β como os fatores de 
proporcionalidade. A matriz das funções de transferência, utilizando a inversa da matriz de 
impedância mecânica é definida por: 
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Utilizando o método de superposição modal, a equação que permite calcular qualquer uma das 

funções de transferência, pode ser definida por: 
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Onde: Hjk é a função de transferência no grau de liberdade j devido a uma força no grau de 
liberdade k; n é o número de modos; mr é a massa modal, ωr é o r-ésimo autovalor; ω é a freqüência 
da força de excitação;  são as componentes j e k do auto-vetor okrojr qq , { }roq . 
 
4. MATRIZ DE SENSIBILIDADE DAS FUNÇÕES DE RESPOSTA EM FREQÜÊNCIA 

 
Definiu-se a sensibilidade das funções de resposta em freqüência fazendo-se uso de diferenças 

finitas de primeira ordem, utilizando para isso as derivadas parciais da FRF em relação aos 
parâmetros estruturais pk do rotor: 
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Para uma função Hij(ω), um elemento da matriz de sensibilidade [S]ptxnp é definido por: 
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As derivadas que aparecem na Eq. (7), podem ser obtidas por diferenças finitas como: 
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5. AJUSTE DE MODELOS 

 
No presente trabalho, apresentam-se dois métodos de ajuste do modelo Rotor (Eixo e Disco) 

através da variação dos parâmetros físicos do modelo de elementos finitos do sistema. 
 
 



5.1 Método de Mínimos Quadrados Não Linear 
 
O algoritmo de Mínimos Quadrados não Linear implementado baseia-se nos trabalhos de 

Arruda, J. (1987). O mesmo ajusta as curvas das Funções de Transferência, que são denominadas de 
funções de resposta em freqüência (FRFs). 

As FRFs experimentais medidas nos nós (1,...nos) são denotadas por FRFexp, e as FRFs obtidas 
através do modelo são denominadas por FRF. O vetor de parâmetros a serem estimados é{ } 1npxp , 
com np sendo o número de parâmetros a estimar. A função objetivo escalar (Fobj) será a soma dos 
quadrados das diferenças entre as medidas experimentais e as simuladas, definida como: 
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Onde: pt é o número total de pontos de todas as FRFs; [W]ptxpt é a matriz de ponderação positiva 
definida de ordem ptxpt; ( ) ( )iiii ffe ωω ,  são as funções de resposta em freqüência experimental e 
calculada, respectivamente no nó i e na freqüência ωi; n é o número de pontos por cada FRF. 

O algoritmo implementado para a estimação de parâmetros por Mínimos Quadrados Não Linear 
consiste dos seguintes passos: 
• Calcular o Jacobiano (matriz de sensibilidade), do vetor { } 1ptxFRF , para quando os parâmetros a 
estimar { }  assumem o valor correspondente á k-ésima iteração, ou seja, { } . O Jacobiano é: 1npxp kp
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• Determinar a direção de procura do vetor { } 1npxp  ótimo para a próxima iteração, usando a 
definição de mínimo para a função objetivo, ou seja: 
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Aplicando esta condição à função objetivo, obtém-se a equação: 
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A Eq.(12) geralmente é sobre-determinada, ou seja, nppt > . Para resolvê-la, utiliza-se a definição 
de inversa generalizada ou pseudoinversa ([ ]+), definida através da decomposição em valores 
singulares. Obtendo-se a direção de procura { definida como: }kp∆
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• Calculando o próximo vetor dos parâmetros estimados { } , que será definido como: 1kp +

 
{ } { } { }kk1k ppp ∆α+=+ . (14)

 
Na Eq.(14) deve-se determinar o valor de α através de um método de procura unidimensional, 
utilizando o método de Coggin. A procura linear com sucesso tem que satisfazer . k

obj
1k
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• Se a procura linear não obtiver sucesso, a matriz de sensibilidade [S]k para k-ésima iteração é 
modificada, introduzindo-se um fator de amortecimento λ, e redefinindo-a pela relação: 
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O valor de λ é incrementado até obter uma condição na qual . O processo iterativo 
continuará até conseguir satisfazer as condições de convergência do processo de ajuste. 

k
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• Algumas características do processo de iteração, não comentadas nos parágrafos anteriores, são: 
� As FRFs podem ser trabalhadas em escala linear (FRF) e logarítmica 

; ( ) (( )FRFLog20  FRFLog 1010 *, )
� É utilizada uma função de penalização externa (w: fator de penalização) para as restrições de 

desigualdade impostas nos parâmetros a estimar ( )maxpinm i ≤≤ , definida como: 
 

( ) ( ) . minp   minpwFF   maxp   pmaxwFF i
2

iobjobji
2

iobjobj <−+=>−+= :se,;:se,  (16)
 

Fazendo uso da teoria anteriormente exposta, implementou-se o programa EST-PARAM.mdp, 
que permite estimar os parâmetros físicos desconhecidos dos componentes do sistema, cujo 
fluxograma é mostrado na Fig. (2.a). 

 
5.2 Método de Algoritmos Genéticos 
 

O espaço de busca, determinado pelas condições de restrição e a função objetivo são os únicos 
parâmetros necessários para utilização de alguns algoritmos de busca, que englobam os algoritmos 
evolutivos e o algoritmo genético. 

Diferentemente dos algoritmos clássicos de otimização, o algoritmo genético (AG) não trabalha 
com um único ponto dentro do espaço de busca, mas com um conjunto de pontos simultaneamente. 
Este número de pontos é previamente determinado por um parâmetro conhecido por tamanho da 
população. Os AGs não necessitam do uso de derivadas. Eles também podem ser considerados 
métodos robustos, pois não sofrem influência de ótimos locais, falta de continuidade ou ruído na 
função objetivo. 

Os operadores do AG são as ferramentas usadas pelo algoritmo para se atingir o ótimo da 
função. Os operadores básicos do AG são: seleção, mutação e crossover. 

A mutação é o operador do AG que altera alguns caracteres do cromossomo selecionado, 
formando um novo indivíduo. O crossover é um operador que mistura a “carga genética” de dois 
cromossomos selecionados. A Fig. (2.c), a seguir, ilustra a mutação e o crossover. Outro operador é 
a seleção, o qual seleciona os indivíduos para gerar indivíduos da próxima geração. Os indivíduos 
mais aptos (com função objetivo mais próximo do ótimo) possuem uma probabilidade maior de 
serem selecionados para a reprodução (crossover). Para se manter as melhores respostas na geração 
seguinte, insere-se uma porcentagem dos melhores indivíduos na próxima geração. Este operador 
chama-se elitismo. 

Um indivíduo no algoritmo genético, tradicionalmente, é representado por números binários. O 
que torna possível trabalhar com número inteiros e reais em uma mesma operação, pois uma 
decodificação transforma estas variáveis em números binários. Entretanto, é possível o uso de 
outras formas de codificação, como genes que são representados por números inteiros ou reais. 

A decodificação de uma cadeia binária para um número decimal (real ou inteiro) pode ser dada 
pela Eq. (17): 
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Onde: cj e dj são respectivamente os limites inferior e superior do domínio da variável decimal xj 
e bi é o i-ésimo digito de uma cadeia binária de tamanho k. Portanto, a cadeia binária de um 
indivíduo será formada pela soma de bits das variáveis a serem otimizadas. 

A precisão do parâmetro a ser otimizado irá depender do número de bits do mesmo e da 
diferença entre os limites inferior e superior. Quanto maior o número de bits maior será a precisão, 
porém o tamanho de população necessário para se obter uma boa convergência aumenta, pois a área 
de busca é maior. 

O Algoritmo Genético inicia-se a partir de uma geração aleatória de uma população inicial. Esta 
população será avaliada e seus indivíduos serão selecionados para produzir a próxima geração, até 
que o total de geração seja atingido. Este processo está detalhado na Fig. (2.b) 

 
(a) 

 
(b) 

 
 
 

 
 
 
 

(c) 

Figura 2. Fluxogramas: (a) EST-PARAM.mdp. (b) Diagrama do Algoritmo Genético. (c) Mutação e 
Crossover 

6. AJUSTE DE DADOS EXPERIMENTAIS 
 

Com a finalidade de verificar a potencialidade de cada um dos métodos de ajuste 
implementados, foram obtidas funções de transferência experimentais, fazendo uso da análise 
modal experimental. 
 
Primeiro Caso: Foram obtidas as funções de transferência para um Eixo de aço comum com 
acabamento superficial tipo H9, massa de 430.0g, e densidade especifica aproximada de 7759.255 
kg/m3. As propriedades físicas do material não conhecidas, mas que podem ser aproximadas, são o 
coeficiente de Poisson igual a 0.30 e o fator de cisalhamento igual a 0.90. A Fig. (3), mostra a 
montagem experimental do teste, as funções de transferência e as coerências experimentais, obtidos 
através da análise modal no eixo (força de excitação no grau de liberdade 6). 
 

Figura 3. Montagem livre-livre, Funções de transferência experimentais para o Eixo. 
 



Para a descrição completa do Eixo: dimensões geométricas e o modelo de elementos finitos do 
Eixo, são mostrados na Fig. (4). 

  
Figura 4. Descrição geométrica, Modelo de Elementos Finitos do Eixo. 

 
Algumas das funções de transferência, foram utilizadas no processo de ajuste, através da 

estimação dos parâmetros inexatos do Eixo (fatores de amortecimento proporcional α e β; Módulo 
de Elasticidade do eixo E; Densidade especifica ρe; Coeficiente de Poisson Poi; Fator de 
cisalhamento do eixo Ciz). A Fig. (5), apresenta o resultado gráfico do processo de ajuste das 
funções de transferência nos graus de liberdade 6 e 10, utilizando os dois métodos de ajuste. Os 
resultados do processo de estimação, são apresentados na Tab. (1). 

 
Figura 5. Resultado do processo de ajuste das Funções de Transferência para o Eixo. 

 

 
Figura 6. Montagem experimental, Funções de transferência e coerências experimentais para o 

Rotor (eixo e disco). 
Segundo Caso: Foram obtidas as funções de transferência para o Rotor (eixo e disco) sendo o eixo 
o mesmo do caso anterior, e um disco rígido de aço 1020 com massa igual a 2344.8g. A densidade 
especifica é a propriedade física do material do disco, cujo valor é inexato. A Fig. (6), mostra a 
montagem experimental do sistema, as funções de transferência e as coerências experimentais 
obtidas. 

Para a descrição completa do Rotor, dimensões geométricas e modelo de elementos finitos do 
Rotor são mostrados na Fig. (7). 



  
Figura 7. Descrição geométrica e Modelo de Elementos Finitos do Rotor (eixo e disco). 

 
Algumas das funções de transferência, foram utilizadas no processo de ajuste, através da 

estimação da densidade especifica do disco (ρd), mantendo-se os valores estimados no processo 
anterior para as propriedades do Eixo. A Fig. (8), apresenta o resultado gráfico do processo de 
ajuste das funções de transferência nos graus de liberdade 6 e 30, utilizando os dois métodos de 
ajuste. Os resultados do processo de estimação, são apresentados na Tab. (1). 

 
Figura 8. Resultado do processo de ajuste das Funções de Transferência para o Rotor. 

 
Terceiro Caso: Os dois processos anteriores realizaram ajuste das curvas das funções de 
transferência experimentais, através dos parâmetros do eixo e/ou do disco separadamente. A Fig. (9) 
apresenta os resultados obtidos quando o ajuste é realizado através de todos os parâmetros 
simultaneamente. Porém, considerou-se apenas as funções de transferência utilizadas no segundo 
processo de ajuste. Também os resultados deste processo de ajuste são apresentados na Tab. (1). 

 
Figura 9. Resultado do processo de ajuste para o Rotor, utilizando todos os parâmetros. 

 
Na Tabela (1), são apresentados os resultados dos processos de ajuste, para os três casos 

mencionados, indicando-se a escala utilizada, erro médio e o número de iterações até o ajuste final 
das curvas, com cada um dos métodos de ajuste implementados. No ajuste com Mínimos 
Quadrados, os números de iterações são acumulativos, o que não acontece com o ajuste utilizando 
Algoritmos Genéticos. 



 
Tabela 1. Resultados dos processos de ajuste para os três casos. 

 Função Objetivo (Erro médio %) Total de iterações (funções 
avaliadas) 

Casos 
Ajustados 

Escalas Algoritmo 
Genético 

Mínimos 
Quadrados 

Algoritmo Genético Mínimos Quadrados 

LOG10 23,947 32,346 30 (6000) 5 (91)  Eixo 
(Primeiro Caso) LINEAR 35,032 37,551 30 (3600) 70 (966) 

LOG10 20,813 20,803 30 (1200) 4 (82) Disco 
(Segundo Caso) LINEAR 65,474 66,115 20 (600) 7 (132) 

LOG10 12,465 15,941 30 (6000) 9 (155) Rotor 
(Terceiro Caso) LINEAR 11,916 16,873 30 (3600) 48 (708) 
 

A Tabela (2) apresenta os valores de convergência de cada um dos parâmetros utilizados, no 
processo de ajuste para cada um dos três casos, para ambos os métodos de ajuste utilizados. 
 

Tabela 2. Valores de convergência dos parâmetros estimados nos processos de ajuste. 
 

 Parâmetros do Eixo 
(Primeiro Caso) 

Parâmetros do Disco 
(Segundo Caso) 

Parâmetros do Rotor 
(Terceiro Caso) 

Parâmetro Algoritmo 
Genético 

Mínimos 
Quadrados 

Algoritmo 
Genético 

Mínimos 
Quadrados 

Algoritmo 
Genético 

Mínimos 
Quadrados 

β 18.225*10-6 18.800*10-6 - - 19.882*10-6 25.302*10-6 
α 13.580*10-6 10.000*10-7 - - 36.118*10-6 10.000*10-7 

E(N/m2) 2.282*1011 2.000*1011 - - 2.326*1011 2.000*1011 
ρe (kg/m3) 9341.110 8062.810 - - 8780.410 7516.710 

Ciz 9,333 9.000 - - 8.000 9.000 
Poi 2.000 3.000 - - 2,857 3.000 

ρd (kg/m3) - - 4173.010 4150.010 7980.410 7023.110 
 
7. CONCLUSÕES 
 

No geral, ambos os métodos conseguiram ajustar as curvas experimentais, demonstrando cada 
método uma vantagem significativa sobre o outro. A implementação do método de Mínimos 
Quadrados é muito mais dispendiosa, se comparada ao método dos Algoritmos Genéticos. 
Entretanto, o número de iterações que o método de Algoritmos Genéticos demanda para atingir um 
certo nível de ajuste é, comparativamente, maior do requerido pelo método de Mínimos Quadrados. 

A convergência para certos níveis aceitáveis de ajuste, no caso dos Algoritmos Genéticos, é 
muito influenciada pelo tamanho da faixa de procura, derivando-se desta o aumento excessivo do 
número de iterações, influencia esta que não é significativa no método de Mínimos Quadrados. 

Dos resultados nos processos de ajuste, observa-se que o método dos Algoritmos Genéticos 
apresenta iguais ou menores erros de ajuste, o que não implica na melhoria do método, pois esses 
resultados estão sujeitos a um número maior de iterações e faixas de procura muitos restritas em 
comparação aos utilizados no método de Mínimos Quadrados. 

Finalmente, como resultado do trabalho, pode-se concluir que, dependendo do problema de 
estimação ou ajuste de curva considerado, um ou outro método será mais adequado, em função de 
sua implementação, e das características dos parâmetros a serem utilizadas no processo de 
estimação, o que não implica que um processo misto não possa ser implementado. 
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Abstract. The parameters estimation is a non linear problem, where the objective function to be 
minimize is the difference of the real and model response function magnitude. The optimization 
method, used to minimize the difference between the model and experimental data, is an important 
tool to estimate the right parameters. So, this work implements two parameters estimation methods 
(Non Linear Minimum Square and the Genetic Algorithms-GA). Both the methods will use the FRF 
in the definition of the objective function. It was chosen an analytical method and a stochastic 
search method. The non linear minimum square is an analytical fitting method. It is necessarily the 
use of differential calculus, in order to determine a search direction that minimized the objective 
function. The GA is a metaheuristic search method, which is based on genetic and evolution 
concepts. This procedure aims at finding individuals (possible solutions of the problem), pertaining 
to a population (joint of solutions),that is better adapted to determined environment (better 
objective function) in each generation (iteractions). The complete description of rotor model was 
made through Finite Element Method (FEM). However, it is necessary to estimate the following 
physics parameters of the shaft: transversal elasticity of the material and coefficients of viscous 
structural proportional damping. The specific density of the disc is also unknown. These parameters 
are not necessary known. 
 
Keywords: Finite elements fitting, Minimum Square, Genetic Algorithm, Flexional Vibration, 
Modal Analysis. 


