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Resumo. A estimagdo de pardametros é um problema ndo linear, onde a fung¢do objetivo a ser
minimizada serd a diferenca entre as magnitudes da fun¢do de resposta em freqiiéncia real e do
modelo. O método de otimizagdo, utilizado para se minimizar a diferenga entre os dados do modelo
e experimentais, ¢ uma importante ferramenta na estima¢do dos pardmetros corretos. Neste
sentido, o presente trabalho implementa dois métodos de estimag¢do de parametros (Minimos
Quadrados nao linear, Algoritmo Genético - AG). Ambos os métodos utilizardo a FRF na defini¢do
da fungdo objetivo. Escolheu-se um método analitico e um método de busca estocastica. O método
de minimos quadrados nado linear é um método analitico de ajuste de curvas. Faz-se necessario o
uso de calculo diferencial, a fim de se determinar uma direg¢do de busca, que minimize a fungdo
objetivo. O AG ¢ um método metaheuristico de busca, o qual se baseia em conceitos de genética e
evolugdo. Este procedimento visa encontrar individuos (solugoes do problema), pertencentes a uma
populagdo (conjunto de solugoes), que melhor se adaptem a um determinado meio (fungdo objetivo
mais proxima do otimo global) em cada geragdo (iteragdo). A descrigdo completa do modelo do
rotor, foi feita através do método dos elementos finitos (MEF). Entretanto, é necessario estimar os
seguintes pardametros fisicos do eixo: modulo de elasticidade do material e coeficientes de
amortecimento proporcional estrutural viscoso. Da mesma forma, ndo se conhece a densidade
especifica do disco. Parametros que ndo sdo, necessariamente, conhecidos.

Palavras-chave: Ajuste de modelos de elementos finitos, Minimos quadrados, Algoritmos genéticos,
Vibragoes flexionais, Andlise Modal.

1. INTRODUGAO

Nos rotores (eixo e disco) dos sistemas mecanicos, muitas de suas propriedades fisicas tém que
ser ajustadas, pois elas geralmente sdo valores estatisticos que, dependendo das circunstincias seja
de fabricagdo, operagdo, etc. as quais foram ou estdo sujeitos os rotores, podem ndo ser
representativas dos mesmos. Neste sentido, ¢ necessdrio realizar um ajuste dos mesmos, utilizando
dados experimentais obtidos através da analise modal experimental ou outros métodos. Neste
trabalho, adequou-se o método de Minimos Quadrados implementado no trabalho de Tapia A. e
Cavalca K. (2003); e implementou-se o método de Algoritmos Genéticos, ambos utilizados nos
processos de ajuste do presente trabalho.



2. SISTEMA MECANICO

O sistema mecanico mostrado na Fig. (1), representa uma maquina rotativa, sendo que, as
vibragdes flexionais do sistema serdo consideradas. Os sistemas de referéncia fixo XYZ e movel xyz
(fixo ao eixo0), sdo usados para descrever as equagdes de movimento de cada um dos componentes.
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Figura 1. Sistema mecanico, Modelos de Elementos Finitos: Disco rigido, Eixo flexivel.
2.1. Modelagem do Disco Rigido

Na modelagem de maquinas rotativas, componentes tais como: engrenagens, rotores, etc., sao
geralmente modelados como discos rigidos. O modelo de elementos finitos do disco ¢ mostrado na
Fig. (1), sendo caracterizado por sua energia cinética. A equa¢do de movimento do disco ¢ obtida
aplicando-se a equacdo de Lagrange:

M, 16} + 26, Yd, = (F )+ (F,) 0

Onde: {g},{q¢:} sdo vetores de aceleracdo e de velocidade do disco; {F},{Fon} sdo vetores das

forgas externas e de conexdo; [Mp], [Gp] sd@o as matrizes de massa e giroscopica do disco
respectivamente, que sao definidas de acordo ao trabalho de Tapia A. (2003).

2.2. Modelagem do Eixo

Nos elementos de eixos de maquinas, ¢ comum dividir esses componentes num numero de
segmentos de eixo, os quais podem ser de se¢do transversal variavel. O modelo de elementos finitos
de massa continua ¢ representado na Fig. (1). O elemento de eixo, nas vibragdes transversais, esta
submetido a flexao, sendo caracterizado através de sua energia cinética e potencial. Considerando o
efeito da inércia rotatdria e o efeito do cisalhamento da secdo transversal do eixo, a equacdo de
movimento do eixo, aplicando-se a equagdo de Lagrange nas energias cinética e potencial do
mesmo, sera escrita na forma matricial como:
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onde: {q[} ¢ o vetor deslocamento do no i; [Mg], [GEg], [Kg] s@o as matrizes de massa, giroscopica, €
de rigidez do elemento de eixo, que sao definidas de acordo ao trabalho de Tapia A. (2003).

3. FUNCAO DE RESPOSTA EM FREQUENCIA (FRF)

A equacgao de movimento geral para o sistema amortecido de multiplos graus de liberdade ¢:

M, N, }+[c, Ba, i+ 1K, R, = (F.}. 3)



Onde: [M gHCgJ,[K gJ sd0 as matrizes massa, amortecimento e rigidez globais do sistema que

contem a contribui¢do de todos as componentes; {q }, {q }, {qg} sdo os vetores aceleracao,

velocidade e de deslocamento em coordenadas generalizadas do sistema. O amortecimento
estrutural proporcional ¢ definido como: [Cg]z a[M g]+ ,B[K g], com « ¢ f como os fatores de

proporcionalidade. A matriz das fung¢des de transferéncia, utilizando a inversa da matriz de
impedancia mecanica ¢ definida por:

[H()]=[K,]+iolc,]-o’[M,]" 4)

Utilizando o método de superposi¢ao modal, a equagdo que permite calcular qualquer uma das
funcdes de transferéncia, pode ser definida por:

Z qa'r'qwcr
H, (0)= - ; Com: q,.,q,. €1q,} . 5
(@) ,Z:;m,(a)f+ia)(a+ﬂa)f)—a)2) Do Qe €101, )

Onde: Hj, ¢ a fungdo de transferéncia no grau de liberdade j devido a uma forg¢a no grau de
liberdade k; n € o nimero de modos; m, ¢ a massa modal, @, € o r-ésimo autovalor; @ € a freqiiéncia
da forga de excitagdo; ¢,,,q,, s0 as componentesj ¢ k do auto-vetor {g,} .

”

4. MATRIZ DE SENSIBILIDADE DAS FUNCOES DE RESPOSTA EM FREQUENCIA

Definiu-se a sensibilidade das fun¢des de resposta em freqiiéncia fazendo-se uso de diferengas
finitas de primeira ordem, utilizando para isso as derivadas parciais da FRF em relacdo aos
parametros estruturais p; do rotor:

a[glpiw)] = _[[IM]J ]i %A:[][IM]I , Com: [IM((O)] =0 [Mg ]+ ia)[Cg ]+ [Kg ] . (6)

Para uma func¢do H;(w), um elemento da matriz de sensibilidade [S],.,, ¢ definido por:

_ GHU.(a),)

p;
parametros.

i ; com:l=1,..pt k=1,..,pn (pt: nimero de pontos da FRF, np: nimero de

(7)

As derivadas que aparecem na Eq. (7), podem ser obtidas por diferencgas finitas como:

Hi;(@)( _Hi/'(a)lx 107 se |p]<107°
S =— ZSEl] ' P Ap, = Pi s l=1,... :
lk(a)l) Ap, NYAVZ) {10_3|pk| s |pk|210_6 com yees NP (8)
5. AJUSTE DE MODELOS

No presente trabalho, apresentam-se dois métodos de ajuste do modelo Rotor (Eixo e Disco)
através da variagao dos parametros fisicos do modelo de elementos finitos do sistema.



5.1 Método de Minimos Quadrados Nao Linear

O algoritmo de Minimos Quadrados ndo Linear implementado baseia-se nos trabalhos de
Arruda, J. (1987). O mesmo ajusta as curvas das Fung¢des de Transferéncia, que sdo denominadas de
fungdes de resposta em freqiiéncia (FRFs).

As FRFs experimentais medidas nos nos (/,...nos) sdo denotadas por FRF,,,, € as FFRF’s obtidas
através do modelo sdo denominadas por FRF. O vetor de parametros a serem estimados ¢€{p},

pxl 9
com np sendo o numero de parametros a estimar. A fung@o objetivo escalar (F,) serd a soma dos
quadrados das diferencas entre as medidas experimentais e as simuladas, definida como:

F, ={FRE,} —{FRF},,WWFRE,}  ~{(FRF},,}, )
com: {FRF}pM = {fz (a)[ )v-s f1 (a)n )5"'9 j;ms (Cl), )""j;ms (a)n )}t > {FRFexp }W, = {fe[ (a)l )s"’ f61 (a)n )5"'9 fe,m.\- (a)l )s"’ .fem)_y (a)n )}f ‘

pixl

Onde: pt ¢ o nimero total de pontos de todas as FRFs; [W],u € a matriz de ponderacdo positiva
definida de ordem pxpt; fe,(w,), f,(w,) s@0 as fungdes de resposta em freqiiéncia experimental e
calculada, respectivamente no no i e na freqiiéncia @;; n ¢ o nimero de pontos por cada FRF'.

O algoritmo implementado para a estimagdo de parametros por Minimos Quadrados Nao Linear
consiste dos seguintes passos:
e Calcular o Jacobiano (matriz de sensibilidade), do vetor {FRF},,, para quando os parametros a

estimar {p} , assumem o valor correspondente 4 k-ésima iteragdo, ou seja, {p}. O Jacobiano é:

npx1

. [o{FrF},,
. :{ a{p}"i] Lw. (10)

e Determinar a dire¢io de procura do vetor {p}  Otimo para a proxima iteragdo, usando a

npx

definicdo de minimo para a fungdo objetivo, ou seja:

v(E,, X{p}z{p}k = 0}t (11)
Aplicando esta condi¢do a funcao objetivo, obtém-se a equagao:

1 IS {4p}' =] {FRE,, |~ (FRF}'}. (12)

A Eq.(12) geralmente ¢ sobre-determinada, ou seja, pt>np. Para resolvé-la, utiliza-se a definigao
de inversa generalizada ou pseudoinversa ([ ]"), definida através da decomposicdo em valores
singulares. Obtendo-se a dire¢do de procura {4p}" definida como:

{Ap} = [[W]k [S]. ]+ ] {{FRF[ }— {FRF}" } , {4p}" é de norma minima . (13)

k+1

e (alculando o proximo vetor dos parametros estimados {p} ", que sera definido como:

{p}" ={p} +alap}" . (14)

Na Eq.(14) deve-se determinar o valor de « através de um método de procura unidimensional,
utilizando o método de Coggin. A procura linear com sucesso tem que satisfazer F:"' < F!

obj obj *
e Se a procura linear ndo obtiver sucesso, a matriz de sensibilidade [S]* para k-ésima iteragdo ¢
modificada, introduzindo-se um fator de amortecimento A, e redefinindo-a pela relagao:



[ST =[S] +2[Q]" . Onde [Q]' é uma matriz diagonal definida como:

(o] = laiagls1 Y IsT]) " 0, = ZS i=1l..np. ()

O valor de A ¢ incrementado até obter uma condicdo na qual F!’' <F! . O processo iterativo

obj obj
continuara até conseguir satisfazer as condi¢des de convergéncia do processo de ajuste.
e Algumas caracteristicas do processo de iteracdo, ndo comentadas nos paragrafos anteriores, sao:
= As FRFs podem ser trabalhadas em escala linear (FRF) e logaritmica
(Log,,(FRF),20* Log,,(FRF));

= E utilizada uma funcio de penalizagio externa (w: fator de penalizagdo) para as restrigdes de
desigualdade impostas nos parametros a estimar (min < p, < max), definida como:

F, =F, +wmax—p,) , se:p, >max; F, =F, +w(p, —min) , se: p, <min. (16)

Fazendo uso da teoria anteriormente exposta, implementou-se o programa EST-PARAM.mdp,
que permite estimar os parametros fisicos desconhecidos dos componentes do sistema, cujo
fluxograma ¢ mostrado na Fig. (2.a).

5.2 Método de Algoritmos Genéticos

O espago de busca, determinado pelas condi¢des de restricao e a fungdo objetivo sdo os unicos
parametros necessarios para utilizacao de alguns algoritmos de busca, que englobam os algoritmos
evolutivos e o algoritmo genético.

Diferentemente dos algoritmos classicos de otimizacao, o algoritmo genético (AG) nao trabalha
com um Unico ponto dentro do espago de busca, mas com um conjunto de pontos simultaneamente.
Este numero de pontos ¢ previamente determinado por um parametro conhecido por tamanho da
populacdo. Os AGs ndo necessitam do uso de derivadas. Eles também podem ser considerados
métodos robustos, pois nao sofrem influéncia de 6timos locais, falta de continuidade ou ruido na
funcao objetivo.

Os operadores do AG sao as ferramentas usadas pelo algoritmo para se atingir o 6timo da
funcdo. Os operadores basicos do AG sdo: selecdo, mutacdo e crossover.

A mutagdo ¢ o operador do AG que altera alguns caracteres do cromossomo selecionado,
formando um novo individuo. O crossover ¢ um operador que mistura a “carga genética” de dois
cromossomos selecionados. A Fig. (2.c), a seguir, ilustra a mutacao e o crossover. Outro operador ¢
a selegdo, o qual seleciona os individuos para gerar individuos da préxima geragdo. Os individuos
mais aptos (com fungdo objetivo mais proximo do 6timo) possuem uma probabilidade maior de
serem selecionados para a reproducgdo (crossover). Para se manter as melhores respostas na geragao
seguinte, insere-se uma porcentagem dos melhores individuos na proxima geracao. Este operador
chama-se elitismo.

Um individuo no algoritmo genético, tradicionalmente, ¢ representado por numeros binarios. O
que torna possivel trabalhar com numero inteiros e reais em uma mesma operacdo, pois uma
decodificagdo transforma estas varidveis em numeros binarios. Entretanto, ¢ possivel o uso de
outras formas de codificacdo, como genes que sdo representados por nlimeros inteiros ou reais.

A decodificacdo de uma cadeia binaria para um numero decimal (real ou inteiro) pode ser dada
pela Eq. (17):

k-l d.—c.
X, =c;+ ) b2 (17)
0 2" ~1



Onde: ¢; e d; sdo respectivamente os limites inferior e superior do dominio da variavel decimal x;
e b; ¢ o i-ésimo digito de uma cadeia bindria de tamanho k. Portanto, a cadeia bindria de um
individuo sera formada pela soma de bits das variaveis a serem otimizadas.

A precisdao do parametro a ser otimizado ird depender do niimero de bits do mesmo e da
diferenga entre os limites inferior e superior. Quanto maior o numero de bits maior sera a precisao,
porém o tamanho de populacido necessario para se obter uma boa convergéncia aumenta, pois a area
de busca ¢ maior.

O Algoritmo Genético inicia-se a partir de uma geragao aleatoria de uma populacdo inicial. Esta
populacdo sera avaliada e seus individuos serdo selecionados para produzir a proxima geracao, até

que o total de geracdo seja atingido. Este processo esta detalhado na Fig. (2.b)
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Figura 2. Fluxogramas: (a) EST-PARAM.mdp. (b) Diagrama do Algoritmo Genético. (c) Mutacao e
Crossover

6. AJUSTE DE DADOS EXPERIMENTAIS

Com a finalidade de verificar a potencialidade de cada um dos métodos de ajuste
implementados, foram obtidas fungdes de transferéncia experimentais, fazendo uso da analise
modal experimental.

Primeiro Caso: Foram obtidas as fungdes de transferéncia para um Eixo de aco comum com
acabamento superficial tipo H9, massa de 430.0g, e densidade especifica aproximada de 7759.255
kg/m’. As propriedades fisicas do material ndo conhecidas, mas que podem ser aproximadas, sio o
coeficiente de Poisson igual a 0.30 e o fator de cisalhamento igual a 0.90. A Fig. (3), mostra a
montagem experimental do teste, as funcdes de transferéncia e as coeréncias experimentais, obtidos
através da andlise modal no eixo (for¢a de excitacdo no grau de liberdade 6).
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Para a descri¢do completa do Fixo: dimensdes geométricas ¢ o modelo de elementos finitos do
Eixo, sdo mostrados na Fig. (4).
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Figura 4. Descri¢ao geométrica, Modelo de Elementos Finitos do Eixo.

Algumas das fungdes de transferéncia, foram utilizadas no processo de ajuste, através da
estimagdo dos parametros inexatos do Eixo (fatores de amortecimento proporcional « e f; Modulo
de FElasticidade do eixo E; Densidade especifica p,; Coeficiente de Poisson Poi; Fator de
cisalhamento do eixo Ciz). A Fig. (5), apresenta o resultado grafico do processo de ajuste das
fungdes de transferéncia nos graus de liberdade 6 e 10, utilizando os dois métodos de ajuste. Os
resultados do processo de estimacao, sdo apresentados na Tab. (1).

FUNCAOQ de TRANSFERENCIA:HI(HS,G ; H10,6) - EIXO

1,0E+H06 1
|
| |
1,0E+05 i I
3 \\ I ‘\
: [ t -
1,0E+04 / N ——
B — ] S | = —
E -\ k T,
: Y Y
o
&
£ 1.0E+03 I
w
= 1
-
T 1
1,0E+H02 I
|
|
1,0E+01 N
1 201 401 601 801 1001 1201 1401 1601 1801

Numero de Pontos de H1 [0.0Hz a 500.00Hz]
‘ —+— Experimental —=— Ajustado-MQ Ajustado-GA |

Figura 5. Resultado do processo de ajuste das Fung¢des de Transferéncia para o Eixo.
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Figura 6. Montagem experimental, Funcdes de transferéncia e coeréncias experimentais para o
Rotor (eixo e disco).
Segundo Caso: Foram obtidas as funcdes de transferéncia para o Rotor (eixo e disco) sendo o eixo
o mesmo do caso anterior, € um disco rigido de aco 1020 com massa igual a 2344.8g. A densidade
especifica ¢ a propriedade fisica do material do disco, cujo valor ¢ inexato. A Fig. (6), mostra a
montagem experimental do sistema, as fungdes de transferéncia e as coeréncias experimentais
obtidas.
Para a descricdo completa do Rotor, dimensdes geométricas ¢ modelo de elementos finitos do
Rotor sao mostrados na Fig. (7).
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Figura 7. Descri¢do geométrica e Modelo de Elementos Finitos do Rofor (eixo e disco).

Algumas das funcdes de transferéncia, foram utilizadas no processo de ajuste, através da
estima¢ao da densidade especifica do disco (p,), mantendo-se os valores estimados no processo
anterior para as propriedades do Eixo. A Fig. (8), apresenta o resultado grafico do processo de
ajuste das funcgdes de transferéncia nos graus de liberdade 6 e 30, utilizando os dois métodos de

ajuste. Os resultados do processo de estimagao, sao apresentados na Tab. (1).
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Figura 8. Resultado do processo de ajuste das Funcdes de Transferéncia para o Rotor.

Terceiro Caso: Os dois processos anteriores realizaram ajuste das curvas das funcdes de
transferéncia experimentais, através dos parametros do eixo e/ou do disco separadamente. A Fig. (9)
apresenta os resultados obtidos quando o ajuste ¢ realizado através de todos os parametros
simultaneamente. Porém, considerou-se apenas as func¢des de transferéncia utilizadas no segundo

processo de ajuste. Também os resultados deste processo de ajuste sdo apresentados na Tab. (1).
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Figura 9. Resultado do processo de ajuste para o Rotor, utilizando todos os parametros.

Na Tabela (1), sdo apresentados os resultados dos processos de ajuste, para os trés casos
mencionados, indicando-se a escala utilizada, erro médio e o nimero de iteracdes até o ajuste final
das curvas, com cada um dos métodos de ajuste implementados. No ajuste com Minimos
Quadrados, os numeros de iteragdes sdo acumulativos, o que ndo acontece com o ajuste utilizando
Algoritmos Genéticos.



Tabela 1. Resultados dos processos de ajuste para os trés casos.

Funcio Objetivo (Erro médio %) Total de iteracoes (func¢oes
avaliadas)
Casos Escalas Algoritmo Minimos Algoritmo Genético Minimos Quadrados
Ajustados Genético Quadrados
Eixo LOG10 23,947 32,346 30 (6000) 5(91)
(Primeiro Caso) LINEAR 35,032 37,551 30 (3600) 70 (966)
Disco LOGI10 20,813 20,803 30 (1200) 4 (82)
(Segundo Caso) " INEAR 65,474 66,115 20 (600) 7(132)
Rotor LOG10 12,465 15,941 30 (6000) 9 (155)
(Terceiro Caso) LINEAR 11,916 16,873 30 (3600) 48 (708)

A Tabela (2) apresenta os valores de convergéncia de cada um dos pardmetros utilizados, no
processo de ajuste para cada um dos trés casos, para ambos os métodos de ajuste utilizados.

Tabela 2. Valores de convergéncia dos parametros estimados nos processos de ajuste.

Parametros do Eixo Parametros do Disco Parametros do Rotor
(Primeiro Caso) (Segundo Caso) (Terceiro Caso)
Parametro Algoritmo Minimos Algoritmo Minimos Algoritmo Minimos
Genético Quadrados Genético Quadrados Genético Quadrados
B 18.225%10° 18.800%10°° - - 19.882%10°  25.302*10°
a 13.580*10° 10.000*10°” - - 36.118*10° 10.000%10”
E(N/m’) 2.282*10" 2.000%10"! - - 2.326%10" 2.000%10"
o, (kg/m’) 9341.110 8062.810 - - 8780.410 7516.710
Ciz 9,333 9.000 - - 8.000 9.000
Poi 2.000 3.000 - - 2,857 3.000
0, (kg/m’) - - 4173.010 4150.010 7980.410 7023.110

7. CONCLUSOES

No geral, ambos os métodos conseguiram ajustar as curvas experimentais, demonstrando cada
método uma vantagem significativa sobre o outro. A implementacdo do método de Minimos
Quadrados ¢ muito mais dispendiosa, se comparada ao método dos Algoritmos Genéticos.
Entretanto, o nimero de iteragdes que o método de Algoritmos Genéticos demanda para atingir um
certo nivel de ajuste ¢, comparativamente, maior do requerido pelo método de Minimos Quadrados.

A convergéncia para certos niveis aceitaveis de ajuste, no caso dos Algoritmos Genéticos, ¢
muito influenciada pelo tamanho da faixa de procura, derivando-se desta o aumento excessivo do
numero de iteragdes, influencia esta que ndo ¢ significativa no método de Minimos Quadrados.

Dos resultados nos processos de ajuste, observa-se que o método dos Algoritmos Genéticos
apresenta iguais ou menores erros de ajuste, o que nao implica na melhoria do método, pois esses
resultados estdo sujeitos a um niimero maior de iteragdes e faixas de procura muitos restritas em
comparag¢ao aos utilizados no método de Minimos Quadrados.

Finalmente, como resultado do trabalho, pode-se concluir que, dependendo do problema de
estimacao ou ajuste de curva considerado, um ou outro método serd mais adequado, em funcao de
sua implementa¢do, e das caracteristicas dos pardmetros a serem utilizadas no processo de
estimacao, o que ndo implica que um processo misto nao possa ser implementado.
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Abstract. The parameters estimation is a non linear problem, where the objective function to be
minimize is the difference of the real and model response function magnitude. The optimization
method, used to minimize the difference between the model and experimental data, is an important
tool to estimate the right parameters. So, this work implements two parameters estimation methods
(Non Linear Minimum Square and the Genetic Algorithms-GA). Both the methods will use the FRF
in the definition of the objective function. It was chosen an analytical method and a stochastic
search method. The non linear minimum square is an analytical fitting method. It is necessarily the
use of differential calculus, in order to determine a search direction that minimized the objective
function. The GA is a metaheuristic search method, which is based on genetic and evolution
concepts. This procedure aims at finding individuals (possible solutions of the problem), pertaining
to a population (joint of solutions),that is better adapted to determined environment (better
objective function) in each generation (iteractions). The complete description of rotor model was
made through Finite Element Method (FEM). However, it is necessary to estimate the following
physics parameters of the shaft: transversal elasticity of the material and coefficients of viscous
structural proportional damping. The specific density of the disc is also unknown. These parameters
are not necessary known.

Keywords: Finite elements fitting, Minimum Square, Genetic Algorithm, Flexional Vibration,
Modal Analysis.



