
 

MÉTODOS DE MÍNIMOS QUADRADOS DE GAUSS-NEWTON E 
ITERAÇÃO DIRETA NA IDENTIFICAÇÃO DE FALHAS ESTRUTURAIS 

EM CASCAS UTILIZANDO ELEMENTO FINITO HIERÁRQUICO 
 

Amarildo Tabone Paschoalini 
UNESP Ilha Solteira – Departamento de Engenharia Mecânica 
Av. Brasil Centro, 56 – 15385-000 – Ilha Solteira – SP 
tabone@dem.feis.unesp.br 
 
Rangel Ferreira do Nascimento 
UNESP Ilha Solteira – Departamento de Engenharia Mecânica 
 
Silmara Cassola 
USP São Carlos – Departamento de Engenharia Mecânica 
 
Resumo. Este trabalho apresenta uma formulação para identificação de falhas estruturais em 
cascas, na qual a localização e a extensão da falha estrutural podem ser determinadas 
corretamente usando apenas um número limitado de freqüências naturais. O conhecimento dos 
modos de vibrar da estrutura danificada não é necessário. O elemento quadrilateral quadrático 
hierárquico para análise de cascas é utilizado para calcular as equações características da 
estrutura original e da estrutura danificada. Com base nestas equações características é gerado 
um conjunto de equações não-lineares, que analisados através do método de Mínimos Quadrados 
de Gauss-Newton ou do método de Iteração Direta, determinam a falha estrutural. Um exemplo 
numérico é usado para demonstrar a eficiência da formulação e comparar estes dois métodos. 
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Método de Mínimos Quadrados de Gauss-Newton, Método de Iteração Direta. 
 
1. INTRODUÇÃO 

 
Falhas estruturais podem ser identificadas por várias técnicas não-destrutivas, como emissão 

acústica, ultra-sônica, termográfica e análise modal. Como qualquer alteração de rigidez, local ou 
distribuída, resulta em alteração dos parâmetros modais, como freqüências naturais e modos de 
vibrar, a localização e a extensão da falha estrutural podem ser determinadas através do estudo desta 
alteração das características modais. Além disso, desde que as freqüências naturais podem ser 
determinadas efetivamente medindo-as em um ponto da estrutura e podem ser independente da 
posição escolhida, o método baseado na medida de freqüências naturais é potencialmente muito 
atraente. Em vários estudos (Chen et al., 1996, Natke et al., 1988 e 1995, Pandey et al., 1995, 
Topole et al., 1995, Rytter, 1993, Yin et al., 1992 e Tsai et al., 1991) parâmetros modais são usados 
como a base para a identificação de falhas estruturais. Porém, uma característica comum destes 
estudos é que o modo de vibrar da estrutura danificada é necessário. Conseqüentemente, a utilização 
destes métodos são limitados a estruturas nas quais os modos de vibrar são relativamente fáceis de 
medir, por exemplo treliças. Para evitar a dificuldade de identificar os modos de vibrar, foram 
propostos vários métodos que só usam freqüências naturais. Cawley & Adams (1979) apresentaram 
um método para calcular a localização de falhas em estruturas através das alterações nas freqüências 

 



 

naturais. Este método pode ser usado para descobrir e localizar falhas em alguns tipos de estruturas, 
porém não pode identificar corretamente em casos gerais. Lallement (1988) propôs técnicas para 
modelar e localizar a falha estrutural baseado na análise de sensibilidade dos autovalores. 
Link (1990) utilizou a matriz de sensibilidade dos autovalores para calcular os parâmetros de ajuste 
iniciais que são usados para corrigir o modelo inicial. To & Ewins (1991) apresentaram um 
procedimento para determinar os parâmetros modais revisados por uma análise de sensibilidade 
não-linear. O procedimento emprega a propriedade estacionária do quociente de Rayleigh para 
determinar os autovalores e autovetores modificados. 

Bicanic et al. (1997) apresentou uma formulação para identificação de falha que usa somente as 
alterações das freqüências naturais da estrutura. O método desenvolvido pode identificar a 
localização da falha e também determinar a quantidade da falha com um número limitado de 
freqüências naturais. Inicialmente, é desenvolvida uma equação característica que relaciona a 
alteração relativa da rigidez, depois, são deduzidas duas equações generalizadas relacionadas com 
os indicadores de falha e as alterações dos modos de vibrar. Finalmente, a técnica dos mínimos 
quadrados de Gauss-Newton é desenvolvida para calcular os indicadores de falha por serem 
incógnitas primárias. A eficiência desta técnica foi demonstrada para diferentes estruturas de vigas. 

Paschoalini (2001) apresentou um elemento finito com refinamento hierárquico baseado na 
versão p para a análise de placas e cascas. O primeiro nível de aproximação é obtido através do 
elemento finito isoparamétrico quadrilateral quadrático de nove nós, baseado na degeneração do 
elemento sólido tridimensional e na formulação de Reissner-Mindlin, com integração numérica 
consistente. Para outros níveis de aproximação sucessivos refinamentos hierárquicos são usados 
com o objetivo de remover a característica de rigidez excessiva do elemento isoparamétrico na 
análise de placas e cascas. 

O objetivo deste trabalho é a identificação de falhas estruturais em cascas utilizando somente as 
alterações das freqüências naturais considerando a formulação desenvolvida por 
Bicanic et al. (1997) e o elemento finito apresentado por Paschoalini (2001). Um exemplo numérico 
é usado para demonstrar a eficiência da formulação e comparar o método de Mínimos Quadrados de 
Gauss-Newton e o método de Iteração Direta na resolução do conjunto de equações não-lineares. 

 
2. FORMULAÇÃO: ELEMENTO FINITO COM REFINAMENTO HIERÁRQUICO 

 
 O campo de deslocamento do elemento de casca é interpolado a partir das funções de forma 
Ni(ξ,η) quadrilaterais quadráticas, e é dado por: 
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 O refinamento da expansão quadrática especificada pela Eq. (1) pode ser conseguido 
adicionando-se a ela funções de forma hierárquicas Mpk(ξ,η) de ordem superior a dois (Babuska et 
al., 1981). As funções Mpk(ξ,η) são polinômios de grau p associados a cada um dos lados do 
elemento ( k = 1, 2, 3 e 4) ou são polinômios de grau p, do tipo bolha, associados ao elemento 
( k = 5, 6, 7, ...). Neste trabalho o refinamento da expansão quadrática foi feito adicionando-se 
funções de forma hierárquicas de 3o ,4o e  5o graus. As funções de forma utilizadas foram definidas 
em termos das integrais dos Polinômios de Legendre (Szabo et al., 1991). 
 Desta forma o deslocamento ∆

r
 dado pela Eq. (1) para o caso do elemento isoparamétrico, 

torna-se: 
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para o caso de elemento paramétrico do tipo hierárquico. Nesta expressão p kδ
r

, de componentes apk, 
bpk e cpk segundo os eixos X, Y e Z do sistema de referência global, é o vetor constituído dos 



  

parâmetros hierárquicos. As funções Mpk(ξ,η) quando inseridas na Eq. (1) não modificam o nível de 
aproximação do elemento, no entanto, a incógnita 

pkδ
r

 deixa de ter o significado físico de variável 

nodal. Na realidade, as componentes de 
pkδ

r
 são parâmetros dependentes das incógnitas nodais iδ

r
, 

iα  e iβ . De uma maneira compacta, a Eq. (2) pode, ainda, ser dada por: 
 

 { } [ ] { }aNu ⋅=  (3) 
 

na qual {u} é uma matriz constituída dos deslocamentos u(ξ,η,ζ), v(ξ,η,ζ) e w(ξ,η,ζ), [N] é uma 
matriz constituída das funções de forma Ni(ξ,η) e Mpk(ξ,η), e {a} é uma matriz constituída dos 
deslocamentos nodais ui, vi, wi, αi e β i e dos parâmetros hierárquicos apk, bpk e cpk. 
 De acordo com as hipóteses básicas da teoria de placa e casca (Timoshenko et al., 1959) e em 
função da solicitação do elemento, um ponto genérico vai apresentar, segundo o sistema de 
referência local (x', y', z' ), a ele associado, o seguinte estado de deformação específica: 
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ou ainda, 
 

 { } [ ] { }uL ′⋅=′ε  (5) 
 

na qual, {u'} corresponde aos deslocamentos segundo o sistema de referência local e [L] é o 
operador linear. Os deslocamentos {u'} podem ser dados em função dos deslocamentos globais {u} 
de acordo com a seguinte expressão: 

 

 { } [ ] { }uu ⋅=′ Tθ  (6) 
 

sendo que [ ]θ  é uma matriz constituída dos cossenos diretores do sistema de referência local com 
relação ao sistema de referência global. Pode-se reescrever a Eq. (6) como: 

 

 { } [ ] [ ] { } [ ] [ ] [ ] { }aNLuL ⋅⋅⋅=⋅⋅=′ TT θθε  (7) 
 

na qual {ε'} é uma matriz coluna, constituída das deformações específicas e distorções em um ponto 
genérico do elemento segundo o sistema de referência local, [B] uma matriz constituída das 
derivadas das funções de forma e {a} uma matriz coluna constituída dos deslocamentos nodais e 
dos parâmetros hierárquicos. 
 Aplicando o Princípio do Trabalho Virtual e o Princípio de D’Alembert, chega-se à 
determinação das matrizes de rigidez e de massa do elemento: 
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na qual, [D'] é uma matriz quadrada, simétrica, constituída das constantes elásticas do material, 
J(ξ,η), o determinante da matriz jacobiano da transformação global-local. A equação 
característica para um sistema estrutural com n graus de liberdade pode ser expressa da forma: 

 

 [ ] [ ] [ ] [ ] [ ]Λ⋅Φ⋅=Φ⋅ MK  (10) 



 

na qual [K] e [M] são respectivamente as matrizes (n×n) de rigidez e massa, [Λ] a matriz diagonal 
(n×n) que contém os n autovalores λi e [Φ]=[{φ1},...,{φi},...,{φn}] a matriz (n×n) que contém os n 
autovetores {φi}. 

Inicialmente, para se obter os autovalores e autovetores o sistema isoparamétrico é resolvido: 
 

[ ] [ ] [ ] [ ] [ ]isoisoisoisoiso MK Λ⋅Φ⋅=Φ⋅  (11) 
 

Sendo niso o número de graus de liberdade da análise isoparamétrica, [Kiso], [Miso], [Φiso] e [Λiso] 
são submatrizes (niso x niso). A solução obtida através da primeira análise do sistema pode ser 
refinada introduzindo funções de forma hierárquicas de terceiro grau: 
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na qual as submatrizes correspondentes ao sistema isoparamétrico já foram obtidas anteriormente na 
análise inicial. Sendo nh3 o número total de variáveis hierárquicas introduzidas na primeira 
reanálise, [Kiso,h3], [Miso,h3], [Φiso,h3] e [Λiso,h3] são submatrizes (niso x nh3) correspondentes ao 
acoplamento entre o sistema isoparamétrico e o sistema hierárquico relacionado com a primeira 
reanálise, [Kh3], [Mh3], [Φh3] e [Λh3] são submatrizes (nh3 x nh3) correspondentes ao sistema 
hierárquico para a primeira reanálise. Da mesma maneira, pode-se fazer o refinamento da solução 
obtida através da segunda reanálise do sistema introduzindo funções de forma hierárquicas de 
quarto grau, e assim por diante. Portanto, para a i-ésima análise pode-se escrever: 
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na qual as submatrizes correspondentes a i-ésima análise foram obtidas anteriormente na análise 
anterior (i-1). Verifica-se que para cada reanálise é necessário apenas calcular as submatrizes 
relacionadas com as novas variáveis hierárquicas introduzidas. As submatrizes calculadas nas 
análises anteriores permanecem inalteradas o que diminui o esforço computacional de maneira 
apreciável. 

 
3. FORMULAÇÃO: IDENTIFICAÇÃO DE FALHAS 

 
São consideradas as equações características da estrutura original e da estrutura danificada: 
 

( ) 0   =− ii MK φλ  (14) 
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nas quais K e M são, respectivamente, as matrizes de rigidez e massa global para a estrutura 
original, λ i  e φ i  são, respectivamente, os i-ésimos autovalores e os correspondentes autovetores 
para a estrutura original. As incógnitas com um sobrescrito * se referem à estrutura danificada. 
 A falha estrutural é considerada somente como uma alteração na matriz de rigidez, portanto 
não há nenhuma alteração na matriz de massa 

 

KKK * ∆+=  (16) 
 

MM * =  (17) 
 

na qual ∆K é a alteração da matriz de rigidez global. A alteração de rigidez leva a uma alteração nas 
características modais. Então, as alterações em um autovalor ∆λi e um autovetor ∆φi podem ser 
expressas na forma 
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Além disso, é assumido que a alteração de rigidez devido à falha estrutural não levará a 
qualquer alteração dos autovalores. Usando as Eqs. (16), (17) (18) e (19), a alteração nos 
autovetores pode ser expressa a partir da Eq. (15): 
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Da decomposição espectral, e assumindo que o autovetores originais são normalizados, o termo 

( ) 1−
− MK *

iλ  pode ser expresso como 
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 Nesta equação somente os autovalores que diferem entre a estrutura original e a estrutura 
com falha são considerados para evitar que o denominador da Eq. (21) desapareça. 
 Levando em conta a Eq. (21), a Eq. (20) pode ser reescrita como 
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Pré-multiplicando a Eq. (15) por T
iφ , temos 
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Desprezando o termo de alta ordem, 
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Substituindo na Eq. (24), a Eq. (22) se torna 
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Pode ser visto da Eq. (25) que a alteração de um autovetor pode ser expressa como uma 
combinação linear do autovetor original. Quando k é bastante grande, os termos com subscritos 
maior que k podem ser desconsiderados. Então, N pode ser substituído adequadamente por NC, 
denotando o número de modos de vibrar originais disponíveis, e a Eq. (25) pode ser reescrita como 
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na qual o fator de participação modal Cik é definido como: 
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Reorganizando a Eq. (27), temos que 
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Usando as Eqs. (26) e (27), a Eq. (23) pode ser reescrita como 
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na qual o termo de alta ordem desaparece exatamente devido à ortogonalidade do autovetor 
original. 
 Além disso, é assumido um modelo escalar de falha, portanto a alteração na matriz de 
rigidez pode ser expressa na forma 
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na qual αj é o indicador escalar de falha para o j-ésimo elemento, Kj é a contribuição do elemento j 
na a matriz de rigidez global e NE é o número de elementos estruturais. 
 Então, as Eqs. (29) e (28) podem ser rescritas na forma 
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e, finalmente, como 
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na qual αiji, αijl, αkji e αkjl são os coeficientes de sensibilidade de rigidez, que podem ser definidos 
de uma forma geral como 
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Combinando os conjuntos de Eqs. (31) e (32) pode-se escrever um sistema de equações 
não-lineares com um total de NEQ=NL*NC equações, relacionadas aos indicadores escalar de falha 
αj e aos fatores de participação modal Cik . NL é o número de freqüências naturais disponíveis. 
Neste trabalho foram utilizados o método de Mínimos Quadrados de Gauss-Newton (Chen, 1997) e 
o método de Iteração Direta (Chen, 1997) para resolver este conjunto de equações e encontrar as 
incógnitas αj e Cik. 

A convergência ∆α pode ser calculada a partir do indicador escalar de falha de cada elemento: 
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Uma vez encontrados os fatores de participação modal Cik, usando as Eqs. (19) e (26) os 
autovetores para a estrutura danificada podem ser calculados como 
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na qual a correlação dos autovalores para a estrutura original e para a estrutura danificada pode ser 
comparada utilizando o Coeficiente Modal de Correlação (Modal Assurance Criterion – MAC), 
definido como:  
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Valores do coeficiente MAC(k,i) iguais à unidade indicam uma perfeita correlação entre o 
modo original k e o modo danificado i, e valores do coeficiente MAC(k,i) iguais a zero indicam total 
ausência de correlação entre os mesmos. 
 
4. EXEMPLO NUMÉRICO 

 
A seguir são apresentados os resultados obtidos com o elemento finito hierárquico na 

identificação de falhas estruturais em cascas, considerando a análise isoparamétrica do elemento 
quadrilateral quadrático (p=2) e as análises hierárquicas de terceiro grau (p=3), quarto grau (p=4) e 
quinto grau (p=5). A formulação hierárquica possibilita utilizar diferentes expansões polinomiais 
em diferentes lados do elemento e nos próprios elementos, mas neste trabalho o refinamento 
adaptativo não é explorado. O refinamento hierárquico foi feito utilizando expansões polinomiais de 
mesmo grau ao longo dos lados e dos elementos. 

Uma casca cilíndrica modelada com 16 elementos e 81 nós é usada para demonstrar a eficiência 
da formulação e comparar o método de Mínimos Quadrados de Gauss-Newton (GNLS) e o método 
de Iteração Direta (DI) na resolução do conjunto de equações não-lineares. Nesse exemplo é 
assumido que todas freqüências naturais são livres de ruído e que existe uma perfeita correlação 
entre os modos da estrutura original e os modos da estrutura com falha. Um dos lados curvos da 
casca cilíndrica é considerado engastado e os demais são livres. A casca tem as seguintes 
propriedades: dimensões S = L = 0.3048 m, raio de curvatura R = 0.6096 m, espessura 
t = 3.048 x 10-3 m, módulo de elasticidade E = 2.068 x 1011 N/m2, densidade ρ = 7.80 x 103 Kg/m3  
e módulo de Poisson ν = 0.3. A geometria da casca cilíndrica é mostrada na Fig. (1a) e os elementos 
numerados na Fig. (1b). 
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Figura 1. Casca cilíndrica engastada, geometria (a) e elementos numerados (b). 
 
Dois cenários hipotéticos de falha são induzidos através da redução do módulo de elasticidade 

em diferentes elementos com diferentes magnitudes, como mostra a Tab. (1). Fixando o número de 
freqüências naturais da estrutura com falha igual ao número de elementos (NL=NE=16), dois 
números de autovetores da estrutura original (NC=18 e NC=24) são selecionados para o processo de 
identificação de falha. 

 



 
Tabela 1. Cenários hipotéticos de falha induzidos através da redução do módulo de elasticidade 

em diferentes elementos com diferentes magnitudes. 
 

Elemento 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Cenário 1 -5% 0% -3% 0% -5% -3% 0% -5% 0% -2% -5% 0% 0% -3% 0% -2%
Cenário 2 -2% 0% 0% -5% 0% 0% -3% 0% -2% -5% 0% 0% -3% 0% -2% 0%

 
 
Os métodos de Mínimos Quadrados de Gauss-Newton (GNLS) e de Iteração Direta (DI) são 

utilizados para comparar a convergência do indicador escalar de falha (∆α) para os cenários 
hipotéticos de falha, como mostra a Tab. (2).  

 
 
Tabela 2. Convergência ∆α do método de Mínimos Quadrados de Gauss-Newton (GNLS) e do 

método de Iteração Direta (DI) para os cenários hipotéticos de falha. 
 

CENÁRIO 1 CENÁRIO 2 ITERAÇÃO MÉTODO NC = 18 NC = 24 NC = 18 NC = 24 
DI 8.20e-001 9.50e-001 8.40e-001 9.80e-001 1 GNLS 7.10e-001 7.50e-001 8.10e-001 8.40e-001 
DI 2.29e-001 2.75e-001 2.37e-001 2.79e-001 2 GNLS 6.39e-002 9.86e-002 7.06e-002 1.12e-001 
DI 6.42e-002 7.94e-002 6.69e-002 7.97e-002 3 GNLS 5.75e-003 1.30e-002 6.16e-003 1.49e-002 
DI 1.80e-002 2.29e-002 1.89e-002 2.27e-002 4 GNLS 5.18e-004 1.71e-003 5.37e-004 1.98e-003 
DI 5.02e-003 6.63e-003 5.33e-003 6.47e-003 5 GNLS 4.66e-005 2.24e-004 4.68e-005 2.63e-004 
DI 1.41e-003 1.92e-003 1.51e-003 1.85e-003 6 GNLS 4.20e-006 2.95e-005 4.08e-006 3.50e-005 
DI 3.93e-004 5.54e-004 4.25e-004 5.26e-004 7 GNLS 3.78e-007 3.88e-006 3.56e-007 4.66e-006 
DI 1.10e-004 1.60e-004 1.20e-004 1.50e-004 8 GNLS 3.40e-008 5.10e-007 3.10e-008 6.20e-007 

 
 
Pode-se verificar que os métodos utilizados convergem em poucas iterações (∆α<1.0e-3 é um 

resultado aceitável), entretanto a convergência do método de Mínimos Quadrados de Gauss-Newton 
(GNLS) é encontrada mais rapidamente. Os valores do indicador escalar de falha calculados por 
ambos os métodos são praticamente idênticos. Os resultados são mostrados nas Fig. (2), (3), (4) e 
(5). 
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Figura 2. Identificação da falha estrutural para o cenário 1 (NL=16 e NC=18). 
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Figura 3. Identificação da falha estrutural para o cenário 1 (NL=16 e NC=24). 
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Figura 4. Identificação da falha estrutural para o cenário 2 (NL=16 e NC=18). 
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Figura 5. Identificação da falha estrutural para o cenário 2 (NL=16 e NC=24). 

 
5. CONCLUSÕES 

 
Considerando o exemplo numérico utilizado para identificação de falhas estruturais em cascas, 

pode-se verificar que a análise hierárquica de terceiro grau (p=3), quarto grau (p=4) e quinto grau 
(p=5) apresentaram excelentes resultados em comparação com a análise isoparamétrica quadrática 
(p=2). Estes resultados indicam que a localização e a quantidade de falha podem ser determinadas 
corretamente usando apenas um número limitado de freqüências naturais. Pode-se verificar que os 
métodos utilizados convergem em poucas iterações, entretanto a convergência do método de 
Mínimos Quadrados de Gauss-Newton (GNLS) é encontrada mais rapidamente do que o método de 
Iteração Direta. Os valores do indicador escalar de falha calculados por ambos os métodos são 
praticamente idênticos para ∆α<1.0e-3. 

 
 
 



 
6. REFERÊNCIAS 
 
Babuska, I., Szabo, B.A. and Katz, I.N., 1981, “The p-version of the Finite Element Method”, 

SIAM J. Num. Anal., Vol. 21, N. 6, pp. 1180-1207. 
Bicanic, N. and Chen, H.P, 1997, “Damage Identification in Framed Structures Using Natural 

Frequencies”, Int. J. Num. Meth. Engng., Vol. 40, pp. 4451-4468. 
Cawley, P. and Adams, R.D., 1979, “The Location of Defects in Structures from Measurements of 

Natural Frequencies”, J. Strain Anal., Vol. 14, pp. 49-57. 
Chen, H.P. and Bicanic, N., 1996, “Identification of the Location and the Extended of Structural 

Damage from Modified Eigenvalues – A Two-Stage Iterative Method”, Proc. 4th ACME-UK, N. 
Bicanic and B.E. Richards (ed.), Glasgow, pp. 164-167. 

Lallement, G., 1988, “Localisation Techniques”, Structural Safety Evaluation Based on System 
Identification Approaches, Vieweg, Braunschweig, FRG, pp. 212-233. 

Link, M., 1990, “Identification and Correction of Errors in Analytical Models Using Test Data – 
Theoretical and Practical Bounds”, Proc. 8th Int. Modal Analysis Conf., Kissimmee, pp. 570-578. 

Pandey, A.K. and Biswas, M., 1995, “Damage Diagnostics of Truss Structures by Stimation of 
Flexibility Change”, Modal Anal. IJAEMA, Vol.10, pp. 104-117. 

Paschoalini, A.T., 2001, “The Hierarchical Nine-Node Shell Finite Element”, UNICAMP – 
Campinas Staty University, Brazil, Doctoral Thesis (in portuguese). 

Szabó, B.A. and Babuska, I., 1991, “Finite Element Analysis”, Wiley-Interscience, New York. 
Timoshenko, P. and Woinowsky-Krieger, S., 1959, “Theory of Plates and Shells”, 2ed., Kogakusha: 

McGraw-Hill. 
To, W.M. and Ewins, D.J., 1991, “Non-linear Sensivity Analysis of Mechanical Structures Using 

Modal Data”, J. Mech. Engng. Sci., Proc. Instn. Mech. Engrs., Vol. 205, pp. 67-75. 
Topole, K.G. and Stubbs, N., 1995, “Nondestructive Damage Evaluation in Complex Structures 

from a Minimum of Modal Parameters”, Modal Anal. IJAEMA, Vol. 10, pp. 95-103. 
 
 

GAUSS-NEWTON LEAST SQUARES AND DIRECT ITERATION 
TECHNIQUES IN DAMAGE IDENTIFICATION OF SHELL STRUCTURES 

USING HIERARCHICAL FINITE ELEMENT 
 
Amarildo Tabone Paschoalini 
UNESP Ilha Solteira – Departamento de Engenharia Mecânica 
Av. Brasil Centro, 56 – 15385-000 – Ilha Solteira – SP 
tabone@dem.feis.unesp.br 
 
Rangel Ferreira do Nascimento 
UNESP Ilha Solteira – Departamento de Engenharia Mecânica 
 

Silmara Cassola 
USP São Carlos – Departamento de Engenharia Mecânica 
 
Abstract. This paper discusses a structural damage identification in shell structures, where both 
the location and the extend of structural damage in shell structures can be correctly determined 
using only a limited number of measured and no knowledge of the modal shapes of the damaged 
structure is required. The hierarchical finite element based on the p-version concept for the 
analysis of shells is used to calculation of the characteristic equations for the original and 
damaged structure, a set of equations is generated. The Gauss–Newton Least Squares technique 
and Direct Iteration technique are utilized to determine structural damage from the derived 
equations. Finally, numerical example is used to demonstrate the effectiveness of the method. 
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