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Resumo. Este trabalho apresenta uma formulacdo para identificagdo de falhas estruturais em
cascas, na qual a localizacdo e a extensdo da falha estrutural podem ser determinadas
corretamente usando apenas um numero limitado de freqiiéncias naturais. O conhecimento dos
modos de vibrar da estrutura danificada ndo é necessario. O elemento quadrilateral quadréatico
hierarquico para analise de cascas é utilizado para calcular as equacbes caracteristicas da
estrutura original e da estrutura danificada. Com base nestas equacdes caracteristicas é gerado
um conjunto de equagdes ndo-lineares, que analisados através do método de Minimos Quadrados
de Gauss-Newton ou do método de Iteracdo Direta, determinam a falha estrutural. Um exemplo
numérico é usado para demonstrar a eficiéncia da formulagé@o e comparar estes dois métodos.

Palavras-chave: Método dos elementos finitos, Identificacdo de falhas estruturais, Cascas,
Método de Minimos Quadrados de Gauss-Newton, Método de Iteragdo Direta.

1. INTRODUCAO

Falhas estruturais podem ser identificadas por vérias técnicas ndo-destrutivas, como emissao
acustica, ultra-sbnica, termografica e analise modal. Como qualquer alteracdo de rigidez, local ou
distribuida, resulta em alteracdo dos parametros modais, como fregiiéncias naturais e modos de
vibrar, a localizacdo e a extensao da falha estrutural podem ser determinadas através do estudo desta
alteracdo das caracteristicas modais. Além disso, desde que as frequéncias naturais podem ser
determinadas efetivamente medindo-as em um ponto da estrutura e podem ser independente da
posicdo escolhida, o método baseado na medida de frequéncias naturais é potencialmente muito
atraente. Em varios estudos (Chenetal., 1996, Natke et al., 1988 e 1995, Pandey et al., 1995,
Topole et al., 1995, Rytter, 1993, Yin et al., 1992 e Tsai et al., 1991) pardmetros modais s&o usados
como a base para a identificacdo de falhas estruturais. Porém, uma caracteristica comum destes
estudos € que o modo de vibrar da estrutura danificada é necessario. Conseqlientemente, a utilizacéo
destes métodos sdo limitados a estruturas nas quais os modos de vibrar sdo relativamente faceis de
medir, por exemplo trelicas. Para evitar a dificuldade de identificar os modos de vibrar, foram
propostos varios métodos que sé usam frequéncias naturais. Cawley & Adams (1979) apresentaram
um método para calcular a localizacdo de falhas em estruturas através das alterac6es nas freqliéncias



naturais. Este método pode ser usado para descobrir e bedizar fahas em aguns tipos de estruturas,
porém ndo pode identificar corretamente em casos gerais. Lalement (1988) propls técnicas para
moddar e locdizar a fdha edrutural baseedo na andise de senshilidade dos autovalores.
Link (1990) utilizou a matriz de senshilidade dos autovalores para cacular os parametros de guse
inicas que sf0 usados para corrigir 0 moddo inicid. To & Ewins (1991) apresentaram um
procedimento para determinar 0s paréametros modais revisados por uma andise de sensbilidade
néo-linear. O procedimento emprega a propriedade estacionaria do quociente de Rayleigh para
determinar os autovalores e autovetores modificados.

Bicanic et al. (1997) apresentou uma formulacéo para identificacéo de fadha que usa somente as
dteraches das fregiéncias naturais da estrutura O método desenvolvido pode identificar a
locdizacdo da fdha e também determinar a quantidade da faha com um nimero limitado de
freqiéncias naturais. Inicidmente, € desenvolvida uma equacdo caracterisica que relaciona a
dteracdo relaiva da rigidez, depois, sio deduzidas duas equagOes generdizadas relacionadas com
os indicadores de faha e as dteragbes dos modos de vibrar. Findmente, a técnica dos minimos
quadrados de Gauss-Newton é desenvolvida para cdcular os indicadores de fdha por serem
incognitas priméarias. A eficiéncia destatécnicafoi demongtrada para diferentes estruturas de vigas.

Paschodini (2001) apresentou um eemento finito com refinamento  hierarquico baseado na
versio p para a andise de placas e cascas. O primero nivel de agproximacdo € obtido através do
elemento finito isoparamétrico quadrilatera quadréico de nove nds, baseado na degeneracdo do
demento olido tridimensona e na formulagdo de Reisner-Mindlin, com integracdo numérica
consgente. Para outros nivels de gproximacdo sucessvos refinamentos hierdrquicos sfo  usados
com O objetivo de remover a caracteristica de rigidez excessva do eemento isoparamétrico na
andlise de placas e cascas.

O objetivo deste trabadho € a identificacdo de fahas estruturais em cascas Utilizando somente as
dteragbes das fregléncias naturas condderando a formulacdo  desenvolvida  por
Bicanic et d. (1997) e o demento finito gpresentado por Paschodini (2001). Um exemplo numérico
€ usado para demonstrar a eficiéncia da formulacdo e comparar 0 método de Minimos Quadrados de
Gauss-Newton e o0 méodo de Iteracdo Direta na resolucdo do conjunto de equacdes ndo-lineares.

2. FORMULACAO: ELEMENTO FINITO COM REFINAMENTO HIERARQUICO

O campo de dedocamento do elemento de casca € interpolado a partir das funcbes de forma
Ni(x,h) quadrilaterais quadréticas, e € dado por:

D(x ,h z ):5 N, (x,h)d, +z xé Ni(x,h)xtz—i\”/n A, -z ><§ Ni(x,h)xt7‘\72i b, (1)

O refinamento da expansdo quadrdtica especificada pela EQ. (1) pode ser conseguido
adicionando-se a ea fungdes de forma hierarquicas My(x,h) de ordem superior a dois (Babuska et
al., 1981). As fungdes Mpk(x,h) sbo polindmios de grau p associados a cada um dos lados do
demento (k = 1, 2, 3 e 4) ou sfo polindbmios de grau p, do tipo bolha, associados a0 elemento
(k=5,6,7, ..). Neste trabdho o refinamento da expansio quadréica foi feito adicionando-se
fungdes de forma hierérquicas de 3° ,4° e 5° graus. As fungdes de forma utilizadas foram definidas
em termos das integrais dos Polindmios de Legendre (Szabo et al., 1991).

Desta forma o dedocamento D dado pela Eq. (1) para o caso do elemento isoparamétrico,
torna-se:

B(xhz )= & N(xh)E, +2 58 N, () s, 0, - 258 N(Ch )it o0, + 8 8 ML (ch)d, ()

p=3 k=1

para 0 caso de elemento paramétrico do tipo hierdrquico. Nesta expressdo d,, , de componentes ax,
bk € Cok Segundo os eixos X, Y e Z do sstema de referéncia globa, € o vetor condtituido dos



parametros hierarquicos. As fungdes Mpi(x,h) quando inseridas na Eq. (1) néo modificam o nivel de
goroximagéo do elemento, no entanto, a incognita d, deixa de ter o significado fisico de vaiavel

nodal. Na redlidade, as componentes de d, S0 par8metros dependentes das incognitas nodais d,,
a. e b, . Deumamaneracompacta, a Eqg. (2) pode, ainda, ser dada por:

fu} =[N]{a} 3)

na qua {u} € uma matriz condituida dos dedocamentos u(x,h,z), v(x,h,z) e w(x,h,z), [N] € uma
matriz condituida das fungbes de forma Ni(x,h) e Mp(x,h), e {a} € uma matriz condtituida dos
ded ocamentos nodais u;, Vi, Wi, a; e b; e dos parametros hierarquicos apk, bpk € Cok.

De acordo com as hip6teses basicas da teoria de placa e casca (Timoshenko et al., 1959) e em
funcdo da solicitacdo do e€lemento, um ponto genérico va agpresentar, segundo o sSsema de
referéncialoca (X', Y, Z ), aele associado, o seguinte estado de deformacdo especifica
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ou ainda,
{ed = [L]A{ud (5)

na qud, {u} corresponde aos dedocamentos segundo o sistema de referéncia loca e [L] € o
operador linear. Os dedocamentos {u’} podem ser dados em fungdo dos dedocamentos globais {u}
de acordo com a seguinte expressao:

{u$ =[a]" Au} (6)

sendo que [q] é uma matriz condtituida dos cossenos diretores do sistema de referéncia local com
relacdo ao sstema de referéncia global. Pode-se reescrever a Eq. (6) como:

{ed=[Llal" Hu} = [L]al" {n]4a) )

na qual {€'} é uma matriz coluna, congtituida das deformactes especificas e distorcbes em um ponto
genérico do edemento segundo o Sstema de referéncia locd, [B] uma matriz condituida das
derivadas das fungbes de forma e {a} uma matriz coluna condituida dos dedocamentos nodais e
dos par&metros hierérquicos.

Aplicando o Principio do Trabalho Virtual e o Principio de D’Alembert, chega-se a
determinacdo das matrizes de rigidez e de massa do € emento:

[<*]= ¢ ¢ ¢[B]" fo]4B]4ax.n ) e dh oz 8)
o= ¢ ¢ ¢r ANT AN b h ) e oh 2 9)

na qud, [D'] é uma matriz quadrada, Smétrica, condituida das congtantes eédticas do materid,
éJ(x,h)g, o deerminante da matriz jacobiano da trandformacdo globa-loca. A equacéo
caracterigtica para um sstema estrutural com n graus de liberdade pode ser expressa da forma:

[<{F]=[M]HF AL ] (10)



na qua [K] e [M] sfo respectivamente as matrizes (" n) de rigidez e massa, [L] a matriz diagond
(n" n) que contém os n autovaores | i e [F]=[{f 1},...{f i},...{f n}] @a matriz (0" n) que contém os n
autovetores{f i}.

Inicialmente, para se obter os autovalores e autovetores 0 Sistema isoparamétrico é resolvido:

(K HF =M HF ML) (11)

Sendo ni, 0 Nimero de graus de liberdade da andlise isoparamétrica, [Kis], [Miso], [Fiso] € [Liso]
20 submatrizes (Nip X Ni). A solucdo obtida através da primeira andise do sSstema pode ser
refinada introduzindo funcdes de forma hierarquicas de terceiro grau:

e[K.so] [Klsth]ue[Fuso] [Flsoh3]u e[K,SO] [Klsth]ue[Fuso] [Flsuhs]u e[L,SO] [Llsohs]
Kol [0 8 ] Fll ] (K18 ] Ful§ e [l

na qua as submatrizes correspondentes a0 Sistema isoparamétrico ja foram obtidas anteriormente na
andise inicid. Sendo np3 0 nimero totd de variavels hierarquicas introduzidas na primeira
reandise, [Kisons], [Misonal, [Fisons] € [Lisons] S8 submatrizes (ni X Np3) correspondentes ao
acoplamento entre 0 Sistema isoparamétrico e 0 Sstema hierdrquico relacionado com a primeira
reandise, [Kna], [Mna], [Fns] e [Lns] SB0 submatrizes (nh3 X Nh3) correspondentes ao sistema
hierarquico para a primeira reandise. Da mesma maneira, pode-se fazer o refinamento da solugéo
obtida através da segunda reandise do sstema introduzindo fungdes de forma hierdrquicas de
quarto grau, e assm por diante. Portanto, para a i-ésima andlise pode-se escreve:
L] L .?Dh]u

[me] [K hi ]lil [F ] [F iso,hi]l;l é[M iso] [M 0 ,h |] [F \m] [FI ]lil
: ; 3 : : H:? : : : E E : : u(l'?’)
H g hHso [|: h‘] H ngm] [M ] F H g hHso m]ﬂ

na qua as submatrizes correspondentes a i-ésima andise foram obtidas anteriormente na andise
anterior (i-1). Veificase que para cada reandise é necessario apenas cdcular as submatrizes
relacionadas com as novas vaiaveis hier&rquicas introduzidas. As submatrizes cadculadas nes
andises anteriores permanecem indteradas 0 que diminui 0 esforgo computeciond de maneira
apreciavel.

(12)

)('D)('D
)(D)('D

P

u
U
U
0
u

o 0

3. FORMULACAO: IDENTIFICACAO DE FALHAS

Sao consderadas as equacies caracteristicas da estrutura origina e da estrutura danificada:
(K-1,M)f, =0 (14)
(K -1;Mm" )i =0 (15)

nas quas K e M sdo, respectivamente, as matrizes de rigidez e massa globa para a estrutura
origind, | ; e f; sdo, respectivamente, os i-éSmos autovalores e os correspondentes autovetores
paraaesruturaorigina. Asincognitas com um sobrescrito * se referem a estrutura danificada.

A fdha edtruturd € consderada somente como uma dteracdo na matriz de rigidez, portanto
né h& nenhuma dteracdo namatriz de massa

K" =K +CK (16)
M =M (17)

naqua DK € a dteracdo da matriz de rigidez globd. A dteracdo de rigidez leva a uma dteracdo nas

caracteristicas modais. Entdo, as dteragbes em um autovalor DI j e um autovetor Df; podem ser
expressas naforma



DI, =I;-1, (18)
Df, =f, -f, (19)
Além disso, € assumido que a dteracdo de rigidez devido a fdha estruturd néo levard a

quaquer dteracdo dos autovalores. Usando as Egs. (16), (17) (18) e (19), a dteracdo nos
autovetores pode ser expressa a partir da Eg. (15):

Df, =-f,- (K- 1'M) 'DK(f, +Df,) (20)
Da decomposicdo espectra, e assumindo que o0 autovetores originais séo normalizados, o termo

(K - I’;M)'1 pode ser expresso como

(k- 1m)* -4

(21)

Nesta equagdo somente os autovalores que diferem entre a edtrutura origind e a estrutura
com falha sdo considerados para evitar que o denominador da Eq. (21) desapareca.
Levando em contaa Eq. (21), a Eq. (20) pode ser reescrita como

o = +LIDKE#DEY, | & DK, +f [DKDF,
DK, k=l -1

fy (22)

Pré-multiplicando a Eq. (15) por f ", temos

fTDK(f, +OF,)=D , +D f TMDX, (23)
Desprezando o termo de dta ordem,

fTDK(f,+Df,)=0, (29)
Subgtituindo na Eq. (24), aEq. (22) setorna

o = & f , DKf i*+f|IDKD‘i

k=1k?i | i | Kk

fy (25)

Pode ser visto da Eq. (25) que a ateracdo de um autovetor pode ser expressa como uma
combinacdo linear do autovetor origind. Quando k é bastante grande, os termos com subscritos
maior que k podem ser desconsiderados. Entdo, N pode ser substituido adequadamente por NC,
denotando o nimero de modos de vibrar originais disponive's, e aEq. (25) pode ser reescrita como

NC

Df, = é.cikf K (26)

k=1kti
naqud o fator de participacéo modal Cix é definido como:
_f [ DKf, +f | DKDf

Ii'lk

C:ik

(27)

Reorganizando a Eq. (27), temos que



NC
fIIDKfi-'-é.cilfl-(r[](fl-'-lkcik_l?cikzo (28)
=i

Usando as Egs. (26) e (27), aEq. (23) pode ser reescritacomo

NC
fTDKf, + § C,f'DKf, - DI, =0 (29)
1=1]1i

na qua o temo de dta ordem desgparece exatamente devido a ortogondidade do autovetor
origind.

Além disso, é assumido um moddo escdar de fadha portanto a dteracd na matriz de
rigidez pode ser expressa naforma

l(\:l’E
DK =ga K, (30)

=1

naqua a; é o indicador escalar de faha para o j-ésmo demento, K € a contribuicdo do elemento |
naameatriz de rigidez globa e NE é o nimero de e ementos estruturais.
Ento, as Egs. (29) e (28) podem ser rescritas naforma

i X *
aaa; +ta aakncnaj'(li'li):o (31)
=1 j=L =10t

g, findmente, como
3 o :
aakjiaj +a. aaijCilaj_ (li - Ii)Cik:0 (32)
=1 IERENEY

naqua aiji, aij, axi € ag S 0s coeficientes de sensbilidade de rigidez, que podem ser definidos
de umaformagerd como

ag =f JKjf i (33)

Combinando os conjuntos de Egs. (31) e (32) pode-s= escrever um Sistema de equacOes
néo-lineares com um tota de NEQ=NL*NC equagdes, relacionadas aos indicadores escdar de fadha
a;j e aos fatores de participagdo moda Cik . NL € o nimero de freqliéncias naturais disponiveis.
Neste trabaho foram utilizados 0 mé&odo de Minimos Quadrados de Gauss-Newton (Chen, 1997) e
0 método de Iteracdo Direta (Chen, 1997) para resolver este conjunto de equacdes e encontrar as
incognitas a ; e Ci.

A convergéncia Da pode ser calculada a partir do indicador escalar de falha de cada € emento:

gE
Da = al|l3aj| (34)
J:

Uma vez encontrados os fatores de participacd moda Cik, usando as Egs. (19) e (26) os
autovetores para a estrutura danificada podem ser calculados como

NC
f' =f + §CJf, (35

k=1 kti



na qua a correlacéo dos autovaores para a edrutura origind e para a estrutura danificada pode ser
comparada utilizando o Coeficiente Modd de Corrdacéd (Modal Assurance Criterion — MAC),
definido como:

2

fefi

ot f |

Vaores do coeficiente MAC(k,i) iguais a unidade indicam uma pefeta corrdacdo entre o
modo origind k e o modo danificado i, e vaores do coeficiente MAC(k,i) iguas a zero indicam totd
auséncia de correlacdo entre 0S mesmos.

MAC(k,i)= (36)

4. EXEMPLO NUMERICO

A seguir sBo agpresentados os resultados obtidos com o0 demento finito hierarquico na
identificacéo de fdhas edtruturais em cascas, condderando a andise isoparamétrica do eemento
quadrilateral quadrético p=2) e as andlises hierarquicas de terceiro grau (©=3), quarto grau (=4) e
quinto grau (p=5). A formulagcdo hierdrquica posshilita utilizar diferentes expansdes polinomiais
em diferentes lados do demento e nos proprios eementos, mas neste trabaho o refinamento
adaptativo ndo é explorado. O refinamento hierdrquico foi feto utilizando expansdes polinomiais de
mesmo grau ao longo dos lados e dos eementos.

Uma casca cilindrica modelada com 16 elementos e 81 nés € usada para demondtrar a eficiéncia
da formulagdo e comparar 0 méodo de Minimos Quadrados de Gauss-Newton (GNLS) e 0 método
de Iteracéo Direta (DI) na resolucdo do conjunto de equacbes ndo-lineares. Nesse exemplo €
assumido que todas freqliéncias naturais s20 livres de ruido e que existe uma perfeita corrdacéo
entre os modos da edtrutura origina e os modos da estrutura com faha Um dos lados curvos da
caxa cilindrica é condderado engastado e os demais sfo livress A casca tem as seguintes
propriedades. dimensdes S=L=0.3048m, rao de curvaura R=0.6096m, espessura
t = 3.048 x 10 m, médulo de dasticidade E = 2.068 x 10'! N/n?, densidade r = 7.80 x 10° Kg/n?
e modulo de Poisson n =0.3. A geometria da casca cilindrica € mostrada na Fig. (1) e os elementos
numerados naFg. (1b).
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Figura 1. Casca cilindrica engastada, geometria (a) e e ementos numerados (b).

Dois cendrios hipotéticos de faha sdo induzidos através da reducdo do médulo de eadticidade
em diferentes elementos com diferentes magnitudes, como mogtra a Tab. (1). Fixando o nimero de
freqiéncias naturais da edtrutura com faha iguad a0 nimero de dementos (NL=NE=16), dois
nimeros de autovetores da estrutura origind (NC=18 e NC=24) sd0 sdlecionados para 0 processo de
identificacéo de falha



Tabela 1. Cenérios hipoteéticos de falha induzidos atraves da redugdo do moédulo de elasticidade
em diferentes elementos com diferentes magnitudes.

Elemento | 1 2 3 4 5 6 7 8 9 |10 11|12 |13 |14 |15 ]| 16
Cenariol |-5% | 0% |-3% | 0% |-5% |-3% | 0% |-5% | 0% |-2% |-5% | 0% | 0% |-3% | 0% |-2%
Cenério2 | -2% | 0% | 0% |[-5% | 0% | 0% |-3% | 0% |-2% |-5% | 0% | 0% |-3% | 0% | -2% | 0%

Os métodos de Minimos Quadrados de Gauss-Newton (GNLS) e de Iteracdo Direta (DI) s&o
utilizados para comparar a convergéncia do indicador escalar de falha (Aa) para 0s cenarios
hipotéticos de falha, como mostra a Tab. (2).

Tabela 2. Convergéncia Aa do método de Minimos Quadrados de Gauss-Newton (GNLS) e do
método de Iteracdo Direta (DI) para os cendrios hipotéticos de falha.

~ > CENARIO 1 CENARIO 2

ITERACAO METODO NC=18 | NC=24 | NC=18 | NC=24
1 DI 8.20e-001 | 9.50e-001 | 8.40e-001 | 9.80e-001
GNLS 7.10e-001 | 7.50e-001 | 8.10e-001 | 8.40e-001

9 DI 2.29e-001 | 2.75e-001 | 2.37e-001 | 2.79e-001
GNLS 6.39e-002 | 9.86e-002 | 7.06e-002 | 1.12e-001

3 DI 6.42e-002 | 7.94e-002 | 6.69e-002 | 7.97e-002
GNLS 5.75e-003 | 1.30e-002 | 6.16e-003 | 1.49e-002

4 DI 1.80e-002 | 2.29¢e-002 | 1.89e-002 | 2.27e-002
GNLS 5.18e-004 | 1.71e-003 | 5.37e-004 | 1.98e-003

5 DI 5.02e-003 | 6.63e-003 | 5.33e-003 | 6.47e-003
GNLS 4.66e-005 | 2.24e-004 | 4.68e-005 | 2.63e-004

5 DI 1.41e-003 | 1.92e-003 | 1.51e-003 | 1.85e-003
GNLS 4.20e-006 | 2.95e-005 | 4.08e-006 | 3.50e-005

7 DI 3.93e-004 | 5.54e-004 | 4.25e-004 | 5.26e-004
GNLS 3.78e-007 | 3.88e-006 | 3.56e-007 | 4.66e-006

8 DI 1.10e-004 | 1.60e-004 | 1.20e-004 | 1.50e-004
GNLS 3.40e-008 | 5.10e-007 | 3.10e-008 | 6.20e-007

Pode-se verificar que os métodos utilizados convergem em poucas itera¢des (Aa<1.0e-3 é um
resultado aceitavel), entretanto a convergéncia do método de Minimos Quadrados de Gauss-Newton
(GNLS) é encontrada mais rapidamente. Os valores do indicador escalar de falha calculados por
ambos 0s métodos sdo praticamente idénticos. Os resultados sdo mostrados nas Fig. (2), (3), (4) e
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Identificacdo da falha estrutural para o cenario 1 (NL=16 e NC=18).
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Figura 3. Identificaco da falha estrutural para o cenério 1 (NL=16 e NC=24).
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Figura 4. Identificacdo da falha estrutural para o cenario 2 (NL=16 e NC=18).
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Figura 5. Identificacdo da falha estrutural para o cenério 2 (NL=16 e NC=24).

5. CONCLUSOES

Considerando o exemplo numérico utilizado para identificacdo de falhas estruturais em cascas,
pode-se verificar que a analise hierdrquica de terceiro grau (p=3), quarto grau (p=4) e quinto grau
(p=5) apresentaram excelentes resultados em comparacdo com a analise isoparamétrica quadratica
(p=2). Estes resultados indicam que a localizacéo e a quantidade de falha podem ser determinadas
corretamente usando apenas um numero limitado de frequéncias naturais. Pode-se verificar que os
métodos utilizados convergem em poucas iteracdes, entretanto a convergéncia do método de
Minimos Quadrados de Gauss-Newton (GNLS) é encontrada mais rapidamente do que o método de
Iteracdo Direta. Os valores do indicador escalar de falha calculados por ambos os métodos séo
praticamente idénticos para Aa<1.0e-3.
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Abstract. This paper discusses a structural damage identification in shell structures, where both
the location and the extend of structural damage in shell structures can be correctly determined
using only a limited number of measured and no knowledge of the modal shapes of the damaged
structure is required. The hierarchical finite element based on the p-version concept for the
analysis of shells is used to calculation of the characteristic equations for the original and
damaged structure, a set of equations is generated. The Gauss—Newton Least Squares technique
and Direct Iteration technique are utilized to determine structural damage from the derived
equations. Finally, numerical example is used to demonstrate the effectiveness of the method.

Keywords: Finite element method, Structural damage identification, Shell, Gauss—Newton Least
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