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Resumo. O estudo de simulagdo de problemas complexos pelo método do elemento finito emprega
uma quantidade muito grande de métodos auxiliares, tais como gerag¢do de malha, integragdo no
tempo, resolvedores para equagoes elipticas, parabolicas e hiperbdlicas, resolvedores de sistemas
algébricos lineares e ndo lineares (com diferentes pré-condicionadores), dentre outros. Neste
sentido, qualquer investigagdo numérica do problema passa pela andlise de varias combinagoes de
métodos, em busca de formas mais eficazes e eficientes de resolvé-lo. Os métodos convencionais de
programagdo consideram (quando chegam a fazé-lo) somente niveis mais baixos de abstrag¢do, que
ndo chegam ao nivel da programacgdo e configuracdo do simulador em si (como articulador de
métodos, seguindo um algoritmo de solu¢do pré-determinado). O resultado disto para problemas
complexos é que a troca de métodos acarreta invariavelmente uma re-programagdo radical. Neste
trabalho uma representacgdo de algoritmos na forma de grafos orientados aciclicos (o padrdao GIG)
¢ aplicada a um problema medianamente complexo permitindo que seu desempenho possa ser
melhorado que concerne a sua perfomancee computacional e re-usabilidade.
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1. INTRODUCAO

Devido ao avango computacional dos ultimos anos, a utilizagdo de modelagens mais completas
e sofisticadas para simular e prever o comportamento dos materiais usados em Engenharia de uma
forma mais realista e precisa, vem se tornando cada vez mais freqiiente. Dado o grande nimero de
variaveis utilizadas, a obten¢do das equag¢des do modelo ¢ uma tarefa complexa sendo necessario
um procedimento sistematico para atingi-la. Foi desenvolvido um modelo baseado na Mecanica do
Dano Continuo para estudar o comportamento termomecanico de uma barra metalica cilindrica
solicitada axialmente. Uma varidvel interna de dano D (Barbosa, 1998; Chaboche, 1990), associada
ao grau de degradacdo do material, foi introduzida para modelar a vida util da barra. Foi utilizado o
M¢étodo de Decomposi¢do do Operador —-MDO abordado em Barbosa,1998, com o qual pode-se
tratar um problema complexo altamente acoplado, decompondo-o em vérios sub-problemas



desacoplados, onde métodos numéricos disponiveis e testados podem ser aplicados (Barbosa, 2001).
P problema proposto foi decomposto em dois: Um preditor Elastico, resolvido pelo MEF, e um
Corretor Termoplastico. A partir da aplicacao do

Dada a complexidade do modelo empregado, foi utilizada algumas combinac¢des de métodos,
tais combinacdes poderiam levar, no caso da substituicdo de algum desses métodos, a uma re-
programacdo de praticamente tudo. Visando evitar esse problema, utiliza-se neste trabalho a
representacdo de algoritmos na forma de grafos orientados aciclicos (GIG-Pattern), esta
representacdo, permite organizar os codigos de um modo mais facil e permite adapta-lo a novas
estratégias ¢ também facilita a reutilizacdo dos mesmos (Santos et al, 2003).

2. GEOMETRIA

A geometria utilizada neste trabalho consistiu em um modelo unidimensional. Consideramos o
problema de uma barra cilindrica solicitada axialmente. A barra possui comprimento L e area
seccional A sendo definido entdo o seu dominio Q = (0,L) e o contorno I' = {0,L}. A barra ¢
engastada em uma das extremidades e submetida a diferentes solicitacdes na extremidade livre, tais
solicitagdes podem ser em deslocamento prescrito ou forca prescrita.
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Figura 1. Geometria do problema

A geometria da barra ¢ definida com relagdo a um segmento de reta, isto quer dizer que para
cada ponto deste segmento uma regido plana finita ¢ definida. Definimos um sistema de referéncia
colocando-se sua origem em um dos extremos € o eixo “x” colinear com o segmento de referéncia
(s6 consideraremos as barras com segmento de referéncia como centrdide de todas as suas se¢des
transversais). Chamaremos de L o comprimento do segmento de referéncia e A(x) a area da segdo
transversal no ponto x do segmento de referéncia.

As equagdes que regem o modelo sao descrita pela relagdo cinematica,

o= du(x)
dx

(1)

Partindo de um balango de forgas em um modelo infinitesimal, obtemos a seguinte equagdo de
equilibrio:

- a(agx(—x)) +k(Xu(x) = £(x); emQ=(0,L) ¢T = {0,L} @

onde o corresponde a tensdo, k(x) ¢ a matriz de rigidez u(x) ¢ o deslocamento e f{x) corresponde a
forgas por unidade de comprimento ao longo da barra.



3. MODELO ELASTO-VISCOPLASTICO COM DANO E COM ACOPLAMENTO
TERMICO

Estruturas submetidas a condi¢des adversas de solicitagdo mecanica e/ou térmica, podem vir a
ter sua resisténcia mecanica diminuida devido a processos de degradagdo do material como fluéncia
e fadiga. Utilizando o enfoque da Termomecéanica dos Processos Irreversiveis, € possivel
desenvolver modelos mais adequados, onde o processo de degradagdo do material é caracterizada
através de uma variavel interna chamada de dano. Os efeitos da degradagdo do material serdo
considerados neste modelo, por uma variavel interna chamada dano (D). A varidvel D (0< D < 1)
pode ser interpretada como uma medida local da degradacao (dano) do material, quando D = 0 o
material esta virgem e D = 1 o material estd completamente danificado.

3.1. Equacdes de Estado

As equagdes de estado do modelo proposto serdo apresentadas. Estas equagdes sdo apropriadas
para a simulagdo do comportamento de agos inoxidaveis. O conjunto de varidveis internas
responsavel pela caracterizagdo do comportamento de materiais elasto-viscoplasticos ¢ composto
por duas variaveis: p (deformagdo plastica acumulada) e ¢ (variavel associada ao endurecimento
isotropico). As variaveis Y e X s@o variaveis auxiliares diretamente associadas ao endurecimento
isotropico e cinematico. A variavel B” representa a forca termodindmica associada a variavel do
dano, D. Para o caso uniaxial tem-se as seguintes equagdes de estado:

o=(1-D)E[(s—¢")-a(0-6))] 3)
B ==Y =—(1-D)(b[1-e¥]+0,) 4)
B"=—§X:—(I—D)(ac);X=X1-i-Xz;c:cl-i-c2 (5)
B® =E.[%.(e—gp)—a.(@—@o)](e—gp)er-(p+$.e_d‘p)+0'p.p+%.[a1.(cl)2 +a,.(c,)] (6)

3.2. Leis de Evolucao

As leis de evolugdo do material formam um conjunto completo de equagdes constitutivas para
um solido elasto-viscoplastico. Estas sdo apresentadas a seguir :

&b :<M> sgn(c —X) (7)
K
b=le] ®)
¢ =& ~P)x,p ©)
3" q
¢y = &7 - (%)(ﬁ)xzp (10)
a,
p=3", (11)
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3.3. Equacao da Energia:

A equacdo da energia para os materiais estudados envolve o acoplamento entre as respostas
mecanica e térmica, tendo sido identificado dois termos de acoplamento: o acoplamento interno e o
térmico. Através desses dois termos os processos mecanicos afetam a resposta térmica, € uma vez
que os pardmetros do material dependem da temperatura, a resposta mecéanica ¢ afetada pela
evolucdo da temperatura. Para a geometria considerada, tem-se a seguinte equacao de energia:

pc, 0= d, +acpT (12)
onde,
d, =0é" —Yp—Xé+B"D (13)

(14)
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Os termos d; e acpT representam respectivamente o acoplamento interno e o acoplamento

térmico. O termo o&” é o que mais contribui para a elevagdo da temperatura do material. Os termos
associados aos endurecimentos isotropicos e cinematico (Yp e X¢ ), contribuem retirando calor do

. oo ,. . , , . L
material. O termo de acoplamento 0.[%(5—51’ )} ¢ responsavel pelo efeito termoelastico e

praticamente s6 se manifesta na regido eldstica. Os termos de acoplamento térmico associados aos

. o oY . o . i
endurecimentos isotrépico (6. 30 P | ) contribui para o aumento da temperatura e o cinematico

20X o ) )
(9{52—06’}) contribui para o decréscimo da temperatura. Os termos de acoplamento associados a

D

: : B” . :
variavel dano (B”D e 6’{8 D}) contribuem para a elevagdo da temperatura.

4. SOLUCAO DO PROBLEMA ELASTICO PELO METODO DOS ELEMENTOS
FINITOS

A forma forte do problema ¢ dada por:

_9%4) | kou(x) = £(x). em Q= (0.L) (15)

no problema considera-se a area constante, logo pode-se escrever a equacao da forma:

—%—i—k(x)u(x) 7(x), emQ=(0,L) (16)

Multiplicando a equacdo acima por uma funcdo de teste e integrando por partes obtém-se a
forma fraca do problema:

L L
J.[O'A@ + Kuv}dx = J-fvdx + O'AV|§ (17)
0 ox

0



Substituindo o =(1-D)E[(e —&”)—a(0—-06,)] na equacdo acima e reorganizando os termos

tem-se:
L L L L L
—(l—D)EAva—u +j(l—D)EAa—”@+jkuv=jfv—v(1—D)EAgP\L +j(1—D)EAgP@—
ox|, ox ox 0 ° 9 ox

) (18)
~(1-D)EAva(0-6,), +j(1—D)EAa(9—9O)?
0 X

Os termos —v(l—D)EAgP‘g e —(I—D)EAva(H—HO)|§ sdo considerados nulos, pois esta

integracao ¢ resolvida a nivel de elemento estas equagdes sdo no contorno, entao tem-se:

_a-pEa
ax

L L Bu &y L L L P&) L o
0 + ! (-D)EA_—"+ ! fuv= ! fo— ! (-D)EA" -+ ! (l—D)EAa(é?—&O)& (19)

Da equacgao acima tem-se que no dominio

ou Ov

L L L L Pa\/' L 8\/
{ (I=D)EA_~ + ! Fuv= { fo— ! (I-D)EAs" "+ ! (I-D)EAc(0-6,)— em (O.L) (20)

e o termo do contorno ¢ dado por:

L

ou

~(-D)Edv_ 21)

0

A nocao basica introduzida pelo Método dos Elementos Finitos foi a constru¢do de funcgdes de
forma baseadas em uma aproximacgao linear da geometria e do deslocamento. Para um elemento
finito qualquer, mostrado na figura, ficamos com as Fung¢des de Forma:

X.—X

v, (x) = (22)
xj —xi

v, (x) = —2 (23)
’ x.—xi

J

Figura 2. Fungdes de forma para um elemento finito



Aplicando as fun¢des de forma acima definidas na forma fraca obtemos um sistema de equagdes
algébricas da forma:

KB=F (24)

Onde as contribui¢des de um elemento sdo definidas pela matriz de rigidez do elemento:

1 -1
gm—m%ﬂ?llJ 25)

e as contribui¢des devido a plastificagdo e a temperatura dada pelos vetores:

™=

q7='{1—[DEA8P(;}J 6)

F=( —D)EAa(&—&O)(_llj (27)

onde /i corresponde o comprimento do elemento.
5. METODO DA DECOMPOSICAO DO OPERADOR

Apesar das generalidades e sofisticagdes das equagdes constitutivas consideradas neste trabalho,
técnicas numéricas realmente simples podem ser utilizadas para se obter uma solucdo aproximada
do problema descrito, conseguindo-se uma boa estabilidade e precisdo nos resultados obtidos.

Para a aproximacao da solu¢do dos problemas de evolucido quase-estatica propde-se uma técnica
numérica simples baseada nos Métodos de Decomposi¢do do Operador (van der Houwen, Messina,
1998; Zohdi, 2004). A idéia basica do método consiste numa decomposi¢ao aditiva do problema
original numa seqiiéncia de outros mais simples do tipo preditor/elastico e corretor/termoplastico de
forma que possam ser aplicados métodos numéricos cldssicos dos quais se conheca bem o
comportamento de estabilidade e convergéncia. Abaixo, tem-se um fluxograma mostrando a técnica
para solucao do problema unidimensional:

Preditor Elastico N Método dos
(Linear) Elementos Finitos

Problema Nao Linear Decomposigao
Acoplado do Operador

Runge-Kutta

Corretor Plastico

Euler Explicito

Figura 3. Decomposi¢ao do operador



6. GRAFO DE INTERFACE GENERICA

O uso da tecnologia workflow (Santos ef al, 2003) ajuda no desenvolvimento de estratégias
computacionais mais flexiveis e versateis. Com a finalidade de implementar diferentes processos de
maneira flexivel e automatica, o GIG-Pattern (Generic Interface Graph for processes control) foi
desenvolvido. A implementagdo do GIG surgiu da necessidade que os pesquisadores do
Departamento de Engenharia Mecanica da UFPE tinham de organizar os seus codigos de um modo
mais facil para adapta-lo a novas estratégias e também permitir a reutilizacdo dos mesmos.

A estrutura do GIG ¢ mostrada a seguir:

<<absdract>>
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father GraphNode

. I |
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+oot
partial access
0* 0.*
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Figura 4. Estrutura do GIG

6.1 Grafo para o Modelo Proposto

Sera apresentado nesta secdo, o grafo do modelo proposto. O problema foi dividido em varios
algoritmos, estes algoritmos foram divididos em fendmenos, os quais possuem uma menor
hierarquia no grafo. Cada fendmeno foi organizado em grupos, obedecendo as variaveis utilizadas
por cada fenomeno e os seu métodos de solugdo. Por fim os grupos foram reunidos em um bloco
unico. O grafo ¢ mostrado abaixo:



Figura 5. Grafo para o modelo

O fenomeno 1 corresponde aos deslocamentos nodais, o 2 esta relacionado com a deformagao total,
0 3 corresponde a temperatura, o 4 diz respeito a tensdo, o 5 ¢ a deformagdo plastica, o 6 a
deformagdo pléstica acumulada, o 7 é o dano, 0 8 e o 9 sdo variaveis internas associada ao
endurecimento cinematico, o 10 corresponde ao endurecimento cinematico, o 11 o endurecimento
isotropico e o 12 corresponde a fungdo de plastificagao.

7. CONCLUSOES

Foi apresentado um esquema computacional para simular um problema nao linear acoplado
aplicando uma representagado algoritimica dentro do padrdo do Grafo de Interface Genérica-GIG.

O modelo unidimensional que foi utilizado ¢ o de uma barra metélica inelastica submetida a
carregamentos em forga ou deslocamentos. O desenvolvimento das equacdes do modelo ¢ baseado
numa teoria constitutiva com varidveis internas onde sdo inseridos efeitos de viscoplasticidade,
endurecimento material, acoplamento termomecanico, e de degradacdo material. Apesar de se tratar
de um problema de dificil solugdo, mostrou-se que solu¢des numéricas podem ser facilmente
obtidas, a partir de métodos cléssicos, se a técnica de decomposicao do operador for aplicada.

Foi aplicado um algoritimo baseado no MEF solucao do preditor elastico e sugere-se esquemas
de Euler ou Runge-Kutta na solu¢do do preditor termoplastico. Uma representacdo algoritimica na
forma de grafos orientados aciclicos (o padrido GIG) foi aplicada ao problema e seu desempenho
pode entdo ser analisado no que concerne ao desempenho e re-usabilidade. Pode-se notar também a
facilidade que o GIG trouxe no ponto que diz respeito a modificagdo do modelo. Novas varidveis
agora podem ser acrescentadas sem ser necessario uma re-programagao radical.
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Abstract: Computer simulation systems for complex problems using the finite element method
usually needs a large number of auxiliary methods such as mesh generation methods, time
integration schemes, solution schemes for elliptic, parabolic and hyperbolic equations, solvers for
linear and nonlinear algebraic systems, error estimation and adaptation schemes and so on..
Therefore, any numerical investigation of such a problem needs the performance analysis of
various combinations of methods, in the search for more efficient and accurate solution procedures.
The conventional programming methods consider only lower levels of abstraction, instead of
extending the abstraction consideration as far as the level of the simulator programming and
configuration — considering the simulator as a methods articulator or as a reconfigurable and
reprogrammable workflow. One of the consequences of this practice for complex problems is that
the exchange of methods invariably implies in a radical and extensive reprogramming. In this work
an algorithm computer representation in the form of directed acyclic graphs — following the pattern
GIG — is applied to a reasonably complex problem and its quality can be improved in what
concerns performance and reusability.

Keywords: Finite Element, Damage, Thermal Effects.



