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Resumo

Este trabalho faz uma releitura da formulação de constitutiva de contato com atrito, incluindo
efeitos de aderência e deslizamento, desenvolvida por Anand. São utilizadas medidas corotacionais,
e as suas condições de modelagem abrangem altas pressões de contato. O modelo permite adotar
diferentes possibilidades para as rigidezes na interface, através da abordagem da evolução de
variáveis de estado, incluindo o encruamento isotrópico. Uma nova forma de solução bi-
dimensional para o problema é proposta e implementada. São realizados estudos de natureza
qualitativa e comparações com resultados experimentais no âmbito das aplicações para comprovar
a eficácia das propostas.
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1. INTRODUÇÃO

 Contato com atrito entre superfícies é uma área de extensa aplicação em mecânica, abrangendo
desde problemas de conformação até a modelagem de implantes cirúrgicos. Embora os avanços
sejam significativos na área, persistem várias oportunidades de pesquisa na área de implementação,
através do método dos elementos finitos. Neste segmento, em um número significativo de
aplicativos, o atrito na interface ainda é baseado na lei de Coulomb, e há necessidade de modelos
mais flexíveis para representar a complexidade de fenômenos presentes na interface.

Baseado nos avanços teóricos e na metodologia de solução dos problemas numéricos da
elastoplasticidade, este trabalho avança em vários aspectos da modelagem das condições de
deslizamento na interface.

Ao nível teórico, as leis constitutivas são formalizadas através da termodinâmica das variáveis
internas para caracterizar o comportamento da interface com deslizamento relativo. As variáveis
escolhidas são o coeficiente de atrito e o limite de resistência ao deslizamento, ambas dependentes
da distância deslizada.

Alguns dos seus principais subsídios são decorrentes do  modelo de Anand (1993), que propõe,
com base no trabalho de Cheng;Kikuchi (1985), uma lei constitutiva de atrito, isotrópica, isotérmica
e independente da velocidade de deslizamento, e implementada para uma dimensão.

Seguindo esta proposta, o presente trabalho fez uma releitura da lei constitutiva de Anand para a
situação bi-dimensional, de forma incremental, com a incorporação precisa dos incrementos de
deslizamento e nova forma de cômputo do Jacobiano constitutivo.
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Os experimentos numéricos foram realizados em duas etapas: estudos qualitativos para verificar
a concordância das leis implementadas com as hipóteses de formulação e a execução de aplicações
para as quais comprovações experimentais fossem disponíveis.

Os resultados demonstram uma ampla concordância qualitativa dos resultados com as  leis
propostas. Por outro lado, as aplicações, ainda que em número restrito, demonstram a viabilidade de
operacionalizar as leis constitutivas em casos práticos com eficiência e precisão.

2. ANALOGIA COM ELASTOPLASTICIDADE

Curnier (1984) realizou um esforço para sistematizar algumas idéias em torno da analogia entre
os conhecimentos da elastoplasticidade e do atrito, sob os seguintes tópicos:

2.1 Decomposição Aditiva

Courtney-Pratt;Eisner (1957)  estudaram o movimento relativo de duas superfícies, uma delas
móvel (disco) e outra fixa, ambas em platina polida, e sujeitas a forças tangenciais. Os resultados
apresentados na figura 1,  demonstram a  relação aproximadamente linear entre a tração tangencial,
afetada da normal, suposta constante, e o deslocamento tangencial relativo durante as operações de
carregamento e descarregamento. Embora ocorra um efeito de histerese, é importante apontar que a
curva de carregamento / descarregamento é reversível. Esta característica é um do fundamentos para
a analogia com a plasticidade.

                                         Figura 1.  Experimento de Courtney – Pratt ; Eisner

Neste trabalho são adotados os termos aderência - para o deslocamento relativo de caráter reversível
ou elástico - e deslizamento - para o deslocamento irreversível ou “plástico”. Na forma incremental os
deslizamentos podem ser representados através da decomposição aditiva

a s
n i iu u i 1 2∆ = ∆ + ∆ ∆ = ∆ + ∆ =u u u u n e; ,         (1)

onde ∆u  é o incremento de deslocamento relativo total, a∆u é a parte do incremento de
deslocamento em aderência nas direções i = 1,2  e s∆u é a parte desse deslocamento que representa
o deslizamento nessas mesmas direções, ligada a uma base local 1 2, ,< >n e e .

Seguindo uma lei elástica linear, pode ser estabelecida uma relação entre as trações tangenciais e
os deslocamentos. Na forma incremental,

a
n i i n n n n i t it t t t k u t k u∇ ∇∆ = ∆ + ∆ ∆ = ∆ ∆ = − ∆ ∆ = − ∆t n e ; t n;�

(2)

onde  n tk 0;k 0> >  são parâmetros de rigidez em aderência da interface. Os experimentos de
Courtney-Pratt e Eisner sugerem a interpretação física de parâmetro constitutivo que descreve,
respectivamente, o módulo volumétrico e o módulo de cisalhamento na interface.



2.2 Critério de Deslizamento

O deslizamento se inicia apenas quando a magnitude da tensão tangencial iguala-se à resistência
ao deslizamento. O critério que determina o início do deslizamento é formalizado através da função

( ) 0r, ≤tfc . O vetor t  representa as trações atuantes no ponto de contato e r , é um escalar com
dimensões de tensão, chamado de resistência ao deslizamento. A evolução de r  é regida por
variáveis internas - para caracterizar a modificação das condições de atrito no processo.

A função cf ,  segue a forma geral:

rtf ec −= ;                    2 2 s
e 1 2 et t t r r(p, u )= + ∧ = (3)

onde et  é a tração tangencial equivalente. A imagem da função de carregamento/descarregamento

cf  supõe duas possibilidades: 0fc <  quando o par de pontos em contato está na condição de
aderência e 0fc =  quando o estado é neutro. Se o carregamento for mantido, as superfícies estarão
em aderência, mas se ocorrer um aumento em sua magnitude, haverá um deslizamento relativo,
medido pelo deslizamento relativo equivalente s

eu .

2.3 Leis de Fluxo de Deslizamento e Encruamento

Uma vez que se supõe ocorrencia de deslizamento somente no plano tangencial, normalidade no
plano deviatórico pode ser postulada, o que permite escrever os incrementos de deslocamento como

s c
i c i i n

i

fu ; t t ; i 1, 2
t

∂∆ = ∆λ = − =
∂

e t n
(4)

A figura 1 também apresenta uma outra característica fenomenológica decorrente do
deslizamento relativo entre superfícies. Há uma evolução monotônica  da curva a partir  de um
carregamento crescente, ou seja, a resistência ao deslizamento é constantemente modificada com o
aumento do deslizamento relativo. Este comportamento pode ser qualificado como uma típica
condição de “encruamento  isotrópico” das condições de deslizamento da interface.

O estado de um ponto material na interface em um instante t, é caracterizado pela variável r  e a
tração aplicada t . Essencialmente, o modelo constitutivo de atrito é um conjunto de equações
diferenciais que descrevem a evolução do par ( )r,t . As alterações nas condições de deslizamento da
interface são representadas através de variáveis internas. Como aponta Pisoni (1992), uma das
vantagens desta formulação é que “o modelo pode ser estendido para outros regimes de atrito,
escolhendo as variáveis internas e as formas de  evolução de r ”.

Um dos desafios nesta formulação está relacionado à modelagem da origem e evolução da
resistência ao deslizamento. Esta dificuldade é ligada à natureza complexa dos mecanismos que
contribuem para a sua formação como o intertravamento, deformação e fratura das rugosidades,
adesão de novas superfícies, formação de partículas causadas pelo desgaste das superfícies.

Assim, a resistência ao deslizamento r  é uma função não só da pressão p , como também do
estado α  da interface ( )α= ,pr̂r , que deve ser especificado em cada modelo de acordo com uma
variável interna adequada.

O “encruamento isotrópico” na interface pode ser modelado por apenas uma variável escalar –  é
comum a utilização do deslizamento relativo equivalente (análogo da deformação plástica
equivalente).

Por outro lado, para o caso do “encruamento cinemático”, é necessária a adição de uma variável
correspondente à translação da superfície de deslizamento no espaço de trações (o análogo na
plasticidade é a tensão de fundo (back-stress)).



Se em determinada interface, as resistências aos deslizamentos forem diferenciadas nas
diferentes direções do plano de deslizamento, elas podem ser representadas através de uma
formulação anisotrópica.

A seguir são apresentadas as formulações do modelo constitutivo para comportamento
isotrópico. O desenvolvimento do modelo isotrópico, aqui desenvolvido em detalhe, é um caso
particular de  modelos mais gerais, Vargas (2003).

3. FORMULAÇÃO DAS LEIS CONSTITUTIVAS

3.1 Decomposição do Incremento de Deslocamento

No caso de uma descrição de Lagrange incremental, com equilíbrio verificado a intervalos
discretos, se supõe que as condições na configuração n, tempo t, sejam conhecidas, i.e.,

a s s
n i i i i i eˆ; u u / u u u ,i 1, 2; r r(u )< = + = + = = >t u n e e que o incremento de deslocamento relativo

∆u seja conhecido. O problema se resume em computar as condições de interface na configuração
seguinte, n+1, t tτ = + ∆ , o que pressupõe a atualização das trações bem como dos deslocamentos e
resistência.

Uma interface com um encruamento isotrópico, conforme evidências experimentais
apresentadas por Courtney-Pratt;Eisner e Tong; Anand (1993) pode apresentar evoluções diversas.
Se este encruamento não envolver translação de superfície1, for independente da razão de
carregamento, como proposto em Cheng; Kikuchi (1985), então :

s s s s2 s 2
e e e 1 2s

e

r r ˆr p u ; r r(p, u ); u u u
p u

∂ ∂= + = = +
∂ ∂

�

� � (5)

onde s
eu  representa o deslizamento acumulado relativo equivalente. Dessa forma, considerando o

incremento entre posições sucessivas na superfície de deslizamento, Eq. (3), resulta, da condição de
consistência que

*c c c
c 1 2

1 2

f f f ˆf t t r; r r( ,s , p)
t t r

∇ ∇∂ ∂ ∂∆ = ∆ + ∆ + ∆ = µ
∂ ∂ ∂

;          cf 0∆ =
(6)

onde

c ci
i

i e

f ft m ; i 1, 2 1
t t r

∂ ∂= = = ∧ = −
∂ ∂

(7)

sendo im a normal à superfície cfsurf , e

a a s
i t i i i it k u ; u ( u u ); i 1, 2∇ ∇∆ = − ∆ ∆ = ∆ − ∆ = − =t t Ωt� .  (8)

a forma corotacional  incremental das trações tangenciais. Mais, o incremento de resistência,
derivado do encruamento superficial,  e descartado qualquer descarregamento, apresenta incremento

s
i n n ns

i

r rr p u ; i 1,2 p k u ; p t
p u

∂ ∂∆ = ∆ + ∆ = ∆ = ∆ = −
∂ ∂

  (9)

                                                
1 Equivalente ao modelo de von Mises na elastoplasticidade.



e também requer o cômputo das componentes do incremento de deslizamento, Eq. (4)

s c
i c

i

fu ; i 1, 2
t

∂∆ = ∆λ =
∂

. (10)

Portanto, substituindo as expressões acima na Eq. (6), resulta, na forma vetorial que

c
c cs

fr rf ( ) ( p )
p

∇ ∇ ∂∂ ∂∆ = ⋅ ∆ + ∆ − ∆ + ⋅∆λ
∂ ∂ ∂

m t t
u t

Ω (11)

logo, uma vez resolvida a equação, o multiplicador relativo de contato resulta

s s
t 1 1 t 2 2 p 1 2

c 1 2 p ts s s
t t e e e

k m u k m u h p u u r r; m m ; h ; h
k h u u p u

∆ + ∆ + ∆ ∂ ∂∆λ = − ξ = + = =
+ ξ ∂ ∂

(12)

A avaliação desta relação fica, no entanto, prejudicada pelo fato de não conhecermos as componentes
do vetor unitário tangencial m .Contudo para as trações podemos escrever que

p
i i i i t i c i i t i ct ( ) t (t) t t (t) k [ u m ( )] t ( ) k m ( )∇τ = + ∆ = − ∆ − ∆λ τ = τ + τ ∆λ (13)

onde o preditor  p
i i t it t k u= − ∆  foi utilizado. Ao definir o vetor pm segundo

p
p p p2 p2i
i e 1 2p

e

t ( )m ; t ( ) t t
t

τ= τ = +
(14)

substituição na Eq. (13) mostra que

p p
e e t ct t k= + ∆λm m m (15)

e, portanto

p
p e

e t c

t;
t k

= ω ω =
+ ∆λ

m m (16)

Dessa forma 1r =ω , uma vez que ambos vetores na expressão acima são unitários. E, com isso,
substituição das componentes de pm na Eq. (12) permite o cálculo do incremento do multiplicador de
contato cλ .

3.2 Atualização das Variáveis Internas

Uma vez feita a decomposição acima, as diversas variáveis podem ser atualizadas.
Atualizado o incremento de deslocamento tangencial relativo, Eq. (10), a Eq. (13) pode ser usada
para atualizar as trações, bem como o deslizamento relativo equivalente,

s s s s
e e e e cu ( ) u (t) u ; uτ = + ∆ ∆ = ξ∆λ (17)



Atualização da resistência, em cada forma particular de equação de apresentação, envolve
atualizar umas quantas variáveis. No caso em que se adota a forma proposta por BAY et. al(1987),

s
s e
e s

e

u p
r s u tanh

s u
� �µ

= � �
� �

*
*

( )
( )

( )
(18)

que depende de um coeficiente de atrito,

s s
0 s 0 e eˆ( )[1 exp( u / u ); (u )µµ = µ + µ − µ − − µ = µ (19)

função de três variáveis experimentais 0 s; ; uµ< µ µ > ; de uma resistência de saturação,

*
* * * * s * * s

0 s 0 e es
ˆs s (s s )[1 exp( u / u )]; s s (u )= + − − − = (20)

novamente função do conjunto de constantes *
* *

0 s s
s ;s ; u< > ; além da pressão p , a atualização pode

ser expressa como,

0 0

s s
e

S

µ( ) µ(t) ∆µ

µ(τ)∆µ h ∆u ; h h 1 ; h
µ uµ µ µ µ

µ

τ = +

� � µ= = − =� �
� �

  (21)

de forma que

0

0

s
e

S s
S e

µ(t) h ∆u
µ( ) µ

µ h ∆u
µ

µ

+
τ =

+

 (22)

De forma idêntica, a atualização de *s , feita nos mesmos moldes, conduz a

* * *s ( ) s (t) ∆sτ = +

( )
* * * *

0
*

* *
* s s

e *s s s s
s s

s τ s∆s h ∆u ; h h 1 ; h
s u

� �
= = − =� �

� �
(23)

de maneira que,

*
0

*
0

* s
es* *

s * s
s es

s (t) h ∆u
s ( ) s

s h ∆u

+
τ =

+

(24)

Evidentemente,

p( ) p(t) ∆pτ = + (25)

Algoritmo do Modelo

Atualização das trações normais



n n n n nt ( ) t (t) k u ; uτ = − ∆ ∆ = ∆ ⋅u n
Cálculo do preditor elástico:

( )p
Tt k∇ ∇τ = + ∆t ( ) t u

Verificação da condição de deslizamento:
    Se
                      ( ) ( )p

et r tτ <    processo está em aderência
     Senão
                       ( ) ( )p

et r tτ ≥   e o processo está em deslizamento.

Calcular  c∆λ    e    atualizar s s
1 2u u∆ ∆;

Calcular  s
eu∆  e atualizar

            µ τ( )   e    s∗ τ( )
                       Calcular r τ( )
          Calcular o fator de fator de retorno radial   p

e

rrrf t=

          Calcular
                                               p

1 1t rrf t= ∗    e  p
2 2t rrf t= ∗

      Calcular o Jacobiano.
 Retornar para o solucionador  no principal do programa.

3.3 Módulo de Linearização

O modelo constitutivo apresentado acima requer, para sua implementação, que o módulo de
linearização, definido por

n i i n i iM ; t t ; u u ; i 1,2∆= ∂ = + ∆ = ∆ + ∆ =ut t n e u n e (26)

seja computado. Para tanto podemos começar pela Eq. (8) acima,

p
t ck ; ( )= + ∆λ = τt t m t t (27)

onde,

p p
n n n n i i t it t k u ; t t k u ; i 1,2= + ∆ = + ∆ = (28)

representam as componentes do vetor t  no instante τ  em termos daquelas no instante t enquanto

que i
n i n i

e

tm m ; m 0, m
t

= + = =im n e  de maneira que

p
t c t ck k∆ ∆ ∆= ∂ + ∆λ ∂ + ∂ ∆λu u uM t m m . (29)

A primeira das derivadas indicada acima pode ser efetuada diretamente e resulta ser

n tk k ( )= ⊗ + − ⊗K n n I n n (30)

sendo ⊗n n o produto tensorial dos versores normais e I o tensor unitário de ordem 2. Da mesma
forma a segunda derivada acima pode ser escrita como,



p pt
p
e

k [ ]
t∆∂ = − − ⊗ + ⊗um I n n m m (31)

uma vez que p=m m como mostrado acima. Já o último termo da expressão acima requer

consideração do termo de resistência uma vez que 
p
e

c
t

t r
k
−∆λ = , sendo *r r( ,s , p)= µ . Assim,

*
p

c *
t

1 r r s r pr; r
k s p∆ ∆ ∆

∂ ∂µ ∂ ∂ ∂ ∂∂ ∆λ = − ∂ ∂ = + +
∂µ ∂∆ ∂ ∂∆ ∂ ∂∆u u um

u u u
(32)

Novamente ao efetuarmos as derivações, encontramos,

i

s
u e

s
e

h
h u ;i 1, 2 h h

[1 u ]

µ
∆ µ ∆ µ

µ
∂ µ = ∂ ∆ = = ∂

− ∆
∂µ

u ie (33)

*

* *
i

*

* s s
u e is s

ss
e*

h
s h u ;i 1,2 h h

[1 u ]
s

∆ ∆∂ = ∂ ∆ = = ∂
− ∆

∂

u e (34)

np k∆∂ = −u n (35)

Ao combinarmos os resultados acima, obtemos para a primeira direção local,

p
1 1 c s p s p

c t 1 1 2 2
1 s s

1 e 1 e 1

t

1m
k u m u m;1u u u u u1
k

− β ζ∆λ
∂∆λ ∂ ∂= β = +
∂∆ ∂∆ ∂∆+ αζ

(36)

sendo,

*

s s
p p1 2
1 2s s * s

e e

u u r rm m ; h h
u u sµ

∂ ∂α = + ζ = +
∂µ ∂

(37)

enquanto que para a segunda direção, se obtém de forma semelhante que,

p
2 2 c s p s p

c t 1 1 2 2
2 s s

2 e 2 e 2

t

1m
k u m u m;1u u u u u1
k

− β ζ∆λ
∂∆λ ∂ ∂= β = +
∂∆ ∂∆ ∂∆+ αζ

(38)

de forma que com o simples adicionar dos resultados acima se obtém a expressão necessária de M .

4. RESULTADOS

4. 1 Verificação
Considerando que a magnitude do deslizamento determina a evolução da resistência, foi

realizado um experimento submetendo um bloco a deslocamentos diferentes nas direções  1 e 2. Ao
bloco, quadrado, com dimensões unitárias, é aplicado deslocamento de forma quasi-estática, no



primeiro passo desde (0;0) até a posição de coordenadas (2,0; 1,0) e, no segundo passo, retornado à
posição de origem. É esperado que as trações em 1 e 2 sejam diferentes, uma vez que os
deslocamentos foram diferentes. Como o deslizamento na direção 1 é superior ao da direção 2, a
interface deve sofrer um encruamento superior nesta direção e, portanto, desenvolver trações
maiores em 1.

Os resultados apresentados nas figuras 2 e 3 demonstram estas hipóteses. Podem ser observadas
as magnitudes superiores de tração desenvolvidas na direção 1, com relação a 2 (aproximadamente
o dobro). Também pode ser verificado o efeito Bauschinger nas duas direções.
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Figura 2. Trações na direção 1                                  Figura 3. Trações na direção 2

4.2 Aplicação
A extrusão, figura 4, é apropriada à simulação de uma lei constitutiva de interface porque o

atrito é o principal mecanismo de dissipação de energia no processo. Nesse caso um deslocamento
de 6 mm, axial, é aplicado a um cilindro extrusor. Resultados das simulações da lei de encruamento
isotrópica utilizando 240 elementos axisimétricos de 4 nós para grandes deslocamentos e
deformações são apresentados. Eles se referem à evolução força de reação no sentido axial da
extrusão (eixo 2 negativo) em relação ao deslocamento da peça e utilizaram

* *
0 s 0 s0,33; 0,577;s 108;s 220< µ = µ = = = > , com *

0 0s
h 0,418;h 44µ = = .

Foram simuladas quatro situações identificadas pela cor no gráfico: com os coeficientes de atrito

µ  = 0.33 (verde)  e  µ = 0.577 (azul), limites da lei de encruamento ( 0 seµ µ ). A  simulação

considerou também parâmetros diferentes para a resposta normal; em laranja é considerada uma
rigidez normal menor.   Modelo 1 = amarelo ; Modelo 2 = laranja

Os resultados experimentais são apresentados em vermelho.

      Figura 4. Modelo de Extrusão         Figura 5. Reações com diferentes leis de Atrito



O encruamento isotrópico modelado através da lei constitutiva tem o efeito de aproximar o
modelo numérico do experimental, comparativamente ao modelo de Coulomb.

5. CONCLUSÕES

As soluções qualitativas obtidas pelo modelo estão em acordo com o esperado. Com a lei de atrito
isotrópica  é possível captar os efeitos de encruamento com o deslizamento, e estes são insensíveis a
movimentos cíclicos. O surgimento de um efeito Bauschinger na transição do sentido do movimento,
efeito este verificado através de resultados experimentais disponíveis na literatura, não aparece aqui.

Nesta linha de pesquisa surgem várias oportunidades de continuidade, entre outras: consideração
dos efeitos de temperatura e velocidade nas leis constitutivas; adoção de funções lineares e / ou não
lineares para a rigidez tangencial; o efeito de encruamento cinemático  poderia ser representado por
uma função não linear.

Uma necessidade imediata para a continuidade destas pesquisas se refere à realização de
experimentos mais adequados, com o objetivo específico de estudar os efeitos modelados pelas
formulações constitutivas desenvolvidas e implementadas neste trabalho.
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Abstract: A contact constitutive formulation embodying adherence/slip in a isotropic fashion developed by Anand, is
revisited. Corotational measures are used, and conditions standing from low to high pressure considered. The model
allows for different degrees of interface rigidity, and state variable evolution under isotropic contact hardening. A
new form of two-dimensional implicit solution is derived and implemented. Several verification cases are run and
metal-working applications simulated. Results are compared with the ones obtained with other models.
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