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Abstract

This article presents a numerical study of Green’s and Influence functions for three-dimensional
viscoelastic anisotropic solids in frequency domain. The equations of motion in a cylindrical set of
coordinates are transformed using both Fourier and Hankel integral transforms. The time domain is
transformed to the frequency domain by means of a conventional Fourier transform and the space
coordinates are transformed to the wave number domain by means of a coupled Hankel transform
and Fourier series in angular coordinate. A numerical study concerning the importance of the
anisotropy in the behavior of such functions is also considered. The ability of the scheme to
reproduce several boundary conditions is also considered.
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1. INTRODUCTION

The dynamic behavior of the unlimited continuous media is fundamental to modeling
several types of problems in structural mechanics where contact between the structure and the
underlying supporting soil exists. The dynamic response of the underlying soil is needed to quantify
the so-called geometric damping (Wolf, 1985). Such a response is frequently obtained considering
the soil as an unlimited domain. Refined models for studying the dynamic soil-structure interaction
(DSSI) often require the inclusion of the energy which is taken away from the source as stress
waves originated mainly in soil-foundation interface travel throughout the medium (Gazetas, 1979).

DSSI problems arise in a variety of practical situations involving foundation dynamics of
machines and structures such as the study of vibrations of heavy machinery, rail and subway lines,
roads, etc. The vibrations coming from the source are transmitted throughout the soil towards the
immediate vicinity (Wolf, 1985) and dissipated through the several types of damping (hysteretic,
geometric, etc). In present days innumerous industries have been obligated to transfer the location
of their machines for environmental causes since vibrations emanating from such equipments affect
directly the security and well been of the installations nearby. An adequate modeling of the
phenomena arising from DSSI is, therefore, a starting point for looking to isolate or, at best, reduce
to a minimum, vibration problems in such industrial plants.



The dynamic behavior of such unlimited media is modeled through the so-called
Sommerfeld’s radiation condition also known as geometric damping (Sommerfeld, 1949; Richart et
alii, 1970; Mesquita, 1989). The numerical methods based on domain discreteness such as Finite
Differences (FDM) and the Finite Element Method (FEM) have a fundamental problem when
modeling such unlimited domains since their meshes cannot extend to the infinite (Beskos, 1987;
Barros, 2001). The resulting meshes in these methods must be truncated, originating an artificial
boundary which causes wave reflection and spurious eigenvalues in dynamic analysis because such
reflected waves violate the Sommerfeld’s condition. An efficient alternative for modeling such
unlimited domains is the Boundary Element Method (BEM) in its direct and indirect versions
(Dominguez, 1993).

The most adopted version of the BEM uses the so-called full-space solutions witch are
obtained via solution of the differential operator governing the problem together with certain
boundary conditions. In fact, the name full-space solutions applies if only radiation condition is
required for the solution and no other boundary exists. The usage of the full-space solutions in BEM
allows the fulfillment of the radiation condition in an automatic way but requires that any other
boundary should be discretized. This need tend to cause numerical problems in situations where a
frontier extends toward infinite, which is a common situation in DSSI problems (Gazetas, 1979).

Another efficient alternative is the usage of Green’s and Influence functions directly in BEM
integral formulation. Such Green’s functions are obtained in a similar way as the full-space
solutions but are more specific since these functions also fulfill specific boundary conditions in
certain critical boundaries such as traction-free surfaces ou interfaces where the load distribution is
known or estimated. The main advantage in the usage of Green’s functions is that these specific
boundary conditions are also fulfilled automatically in addition to the radiation condition. This
implies that only the surfaces having boundary conditions witch differ from those originally
imposed in the Green’s functions need to be discretized. This characteristic of the formulation of the
BEM using Green’s functions greatly reduces the size of the [G] and [H] matrices in BEM.

The dynamic response of the anisotropic media in frequency domain received a considerate
attention between 1940 and 1950. Stoneley (1949) and Synge (1956) studied the problem of elastic
wave propagation in transversally anisotropic media. An interesting result in Singe’s analysis is that
surface (or Rayleigh) waves exists in the medium only if one of the material principal axes is
normal or is contained in a plane parallel to the surface. Latter, Achenbach (1973) obtained an
integral representation for the displacement field in an elastic half-space via double Fourier
transform in a rectangular set of coordinates. Wang and Rajapakse (1992) presented some results
concerning Green’s and Influence functions in static and dynamic problems in transversely isotropic
materials. Latter, these authors applied this set of results in the analysis of certain boundary value
problems of structures resting on the surface of an anisotropic half-space.

2. GREEN’S FUNCTIONS IN CYLINDRICAL COORDINATES

The equations of motion for a viscoelastic, transversely isotropic medium in terms of
displacement potentials ¢(r,0,z), y(r,0,z) e %(r,0,z) are (Achenbach, 1973):
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where coefficients c;; represent the elements of the elastic properties. These potentials are related to
the displacement fields in cylindrical coordinates as:

0= e S w0 and =S B

The constitutive law for a transversely isotropic medium tensor in a cylindrical set of
coordinates can be found in Lekhnitskii (1963):
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where 6;; and g; are the stress and the strain tensors admitting both harmonic excitation and
response with angular frequency ® in such a way that total displacements can be represented as
Ui(r,t) = ui(r) exp(iot + @) for i=r,z,0.

The solution for the set of equations (1) in terms of the displacement potentials can be
obtained following the steps:

1. The displacement potentials ¢, W e  are given in terms of a discrete Fourier series in angular
coordinate 6 as (Wolf, 1985):

O(r,0,z) = i ¢, (r,z) cos(m0) + ¢, sen(mb)

y(r,0,z) = i V_(r,z) sen(mB) — ' cos(m8) 4)

m=0

x(r,0,2) = i X, (1,2)cos(mB) + ., sen(m8)

m=0

2. Usage of Hankel transform (H-transform) in radial coordinate as defined in Sneddon (1972) as:

f(k)sz(r)Jm(Xr)rdr & f(r)z]if(k)Jm(kr)kdk (5)

where J,(Ar) represents a Bessel function of the first kind and m'-order. Thus, for the potentials:
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After substituting equations (4) and (6) in (1) one gives the equations of motion in the
transformed domain A:
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where parameters o, B, k¥ ,¢ ¢ 0 are defined by:
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It is also useful to define an admentionalized frequency in terms of material property c44 and
external frequency m as:
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where a is a characteristic dimensional constant. It is also important to note that the choice for such
potential functions does not uncouple the original equations of motions (7) as would expect, due to
the anisotropic behavior of the solution. If, on the other hand, a isotropic behavior was considered,
the formulations due to Wolf (1985), Ron Pak (1987) and Romanini (1996) would be sufficient to
find such potentials directly.

The solutions of the equations set (7) is, therefore, obtained using the same separation
process used by Almeida Barros (1995). It should be noted, however, that the usage of the H-
transform allows the second equation to be solved promptly and in such a way that this solution is
independent of the remaining ones. Therefore, following the steps (1) and (2) outlined above, one
can obtain the solution for the potential harmonics in A-domain as:
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and Z= (1+ o — 'yCz)z — 40((1+ BC* —PBC* - Cz) . In addition, factors m; and , are given by:
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In the equations (10), terms A1...B1 represent arbitrary functions to be solved accordingly to

a prescribed boundary condition set. Taking terms &; , i=1,2,3 in such a way that Re(§) > 0,

functions A; stands for wave amplitudes moving towards +z (away from the source) and B; stands
for wave amplitudes moving towards -z (closing the source

0,= (13)

2.1 Displacement fields in Hankel domain:

Displacement fields u;, ug e u, are given in A-domain as a combination of integration
constants A; and B;, i=1,2,3 and the harmonics of the transformed potentials. Applying the Fourier

series expansion of such potentials for azimuth angle 6 it is possible to obtain formulae for
displacement fields as:
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where aj,...,a; are functions obtained as combination of Bessel functions and admentionalized
elastic characteristics given in (8).



2.2 Stress fields in Hankel domain:

In a similar way as treated above, one can obtain expressions for stresses fields in A-domain
using (14) and considering the expansions of the potentials using the Fourier harmonic expansion.
In this paper only expressions of G, , Gg, € G,, Wwill be present, since this expressions will be
sufficient for the solving process of the integration constants when one of the material principal
direction is parallel to the z-axis.

a) constants for 6,,(r,0,z):

Assuming material linear behavior and expressing strain tensor &; using the displacement
fields as given above, it is possible to obtain the displacement fields as combination of the potential
functions given in (15). Therefore:
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b) constants for Gg,(r,0,z):

Using again the displacement fields in terms of Fourier harmonics series one can write:
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and, in a similar way, the harmonics o are given by:

3
Lo =3 b, (Ae ™ ~Be™) (20)
Cuy i1
where:
b, =(1+®,)8, 2T () =(1+0,)8&,(,_, +73,,,) fori=1,2 (1)
T
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In the same way as before, one can write:
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where:
b = (1 + wi)sgi %(qu - Jm+l) for i=1,2 (23)

b, = 8&3 %(qu + Jm+1)

The general formulation described above can be used for determination of any integration
constant set (A;, B;} accordingly to the prescribed boundary condition functions if, and only if, the
H-transform of these prescribed conditions exists. As an example of such precess, one will obtain
the components of the Green’s tensor Gy for a vertical axi-symmetric loading acting on the surface
of an anisotropic half-space. The loading and displacement/stress representation through harmonic
analysis requires only the fundamental (m=0) harmonic, as described in figure 1.
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Figure 1: Geometry of the axi-symmetric case with vertical loading
The boundary value problem in stress (PVCT) can be described mathematically as:
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Applying radiation condition directly in the displacement fields in A-domain one can have
immediately B; = 0 for i = 1,...,n since no wave will travel toward the source. The solution of the
PVCT for the remaining integration constants A, is:
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and, for displacement fields:
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3. NUMERICAL EVALUATION OF THE GREEN’S TENSOR

The Green’s tensor for vertical, axi-symmetric loading case described above was evaluated
numerically using both the Clenshaw-Curtiss method for finite range [0,Apn] and Wynn
extrapolation method for the infinite range [ApN , o] where Apn is defined as 1.2 times the
maximum pole Ayvax in the integration kernels in equations (25) and (26). The results were also
evaluated in three different frequencies ap=0.50, ap=1.00 e a;=3.00. All presented results correspond
to a maximum absolute error of 1.0e-6. The number of integration points for ag=1.0 was about 500
points for the finite interval and 200 points for the infinite part although this number have suffered
some variation due to the distance taken to the loading ring radius sy. Materials with different
degrees of anisotropy were analysed and their elastic constants were summarised in table 1,
normalised with c44. Table 2 presents anisotropy indices as defined in Lekhnitskii (1963).

The analysis of the results indicates that the degree of anisotropy plays a significant role in
both real and imaginary part of the Green’s tensor. The part Re(G;j;) suffer an abrupt variation in the
point of loading ring sp=1 due mainly the discontinuous stress field which is expected to exist in this
region. This change in solution profile is more gradual for composite materials results since these
materials are much more rigid in transversal (3) direction than the others as indicated by the cs3
constant in table 1. All three sets of results correspond to a hysteretic damping coefficient N=0.01
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Figure 2: Vertical normalized displacement Gzz due to a vertical
concentrated ring with radius sO=1. Results for a0=0.50 and n=0.01.
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Figure 3: Vertical normalized displacement Gzz due to a vertical
concentrated ring with radius sO=1. Results for a0=1.00 and n=0.01.
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concentrated ring with radius sO=1. Results for a0=3.00 and n=0.01.

Isotropic case in table 1 corresponds to Lame constants k:u:0.50x104 N/mm? (v=0.25). The
first layered soil corresponds to alternate and compacted layers of chalk (CaCOs;) and silicates.
Second type stands for the same alternated chalk/silicates but is non-compacted. Composite
materials represent epoxy/fibreglass (e-composite) and graphite/epoxy (g-composite) groups.

Table 1: mechanical characteristics of the materials used in Figures 2,3,and 4

Material C, 612 613 633 Cy (1(2)4

N/mm”)
isotropic 3.00 1.00 1.00 3.00 1.00
layered' 4.46 1.56 1.24 3.26 1.40
layered” 2.11 0.43 2.58 0.47 1.40
rock (beryllium) 4.13 1.47 1.01 3.62 1.00
e-composite 3.17 1.40 1.11 10.04 0.47
g-composite 2.02 0.68 0.07 21.17 0.41

Table 2: anisotropy indices for materials in table 1

Material n, n, n,
isotropic 1.00 1.00 1.00
layered' 0.7309 1.45 1.987
layered” 0.818 0.60 1.755
rock (beryllium) 0.876 1.33 1.12
e-composite 3.167 0.885 1.054
g-composite 10.473 0.671 0.307

4. CONCLUSIONS

Green’s functions usage in the boundary element method is a well-known alternative for
treatment of several PVCT’s in which boundary conditions are too complex to be treated with the
conventional full-space fundamental solutions. Such situations arise, for instance, when dealing
with several common problems of the dynamic soil-structure interaction. However, a cumbersome
theoretical formulation and very special numerical procedures not always trivial in engineering
practice must be used, particularly when anisotropic materials are considered. However many cases



of practical interest can be analyzed with simple axi-symmetric functions which can be represented
with only the fundamental harmonic in Fourier series. The results presented in figures 2,3 and 4
show a good agreement with available literature.
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