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Abstract. This article describes the modeling of beams and plates through spatial lattice models by
using a proper arrangement of trusses which take into account large displacements, rotations and
strains. The use of truss elements to represent a non-linear solid behavior have the benefit of
allowing complex matters, like the kinematics, to be approached in a simpler way, since these
elements admit only extension, contraction and rigid body motion. The analysis shown here uses an
in house finite element program capable to take into account the major features of a solid behavior.
The studied cases comprise the representation of a cantilever beam, a simply supported beam and a
plate with the developed non-linear truss finite element. The results are compared with numeric
solutions given by a commercial finite element program. The validity of the discretization of beams
and plates via the non-linear truss el ementsis here demonstrated.
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1. INTRODUCTION

Structures composed by interlinked groups of trusses have been much explored in both old and
recent works. Due to the low cost and light weight, lattice structures may be employed in dayly
applications, e.g., truss panels used in civil engineering and in future aerospace structures (Burgardt
and Cartraud, 1999).

Of course that it is necessary to measure the material mechanical properties of these trusses
made by a repetition of a given pattern cell. Accordingly, Chiras et a (2002) verified that the core
panel of a tri-dimensional tetragona beryllium-cooper aloy pattern cell is capable of supporting
bending and compression loads at lower weight than competing structures. In this octet topology, in
regions where the core experiences shear, the trusses experience only compression or tension. The
authors highlighted the substantial differences that arise in the responses of trusses undergoing
tension or compression. The trusses in tension continue to strain harden beyond yield, while trusses
in compression exhibit buckling after asmall plastic strain, limiting their load capacity.

Wallach and Gibson (2001) implemented an experimental protocol with pentagonal aluminum
cells. The authors measured the mechanical properties of a“solid-like” truss panel. By compressing



a panel made from beam and truss elements, they concluded that the error in the maximum
displacement associated with neglecting bending moments was 1.4%, approximately.

Wicks and Hutchinson (2001) designed truss core panels by optimizing/minimizing its weight.
The optimized plates were compared with similarly optimized honeycomb core plates fashioned
from the same material, with the truss lattice presenting a rather greater global stiffness.

Another aspect of the use of lattice is in the modeling of rea solids structures. It is possible to
represent a solid by a certain pattern comprising truss members. This is only feasible nowadays if
the trusses are analyzed using a computer program and even more attractive if the finite element
technique is chosen. The advantages are manifold, like the possibility of representing complex non-
linear solid behaviour and the analysis of brittle fracture, like in concrete.

Indeed, the lattice model has been used to represent straightforwardly the material heterogeneity
in concrete at the meso-level (Lilliu and van Mier, 2003). Bolander and Le (1999) used a spring
network model to study crack propagation in reinforced concrete structures, concluding that their
lattice model was an effective framework for a crack propagation criterion. Van Mier and van Vliet
(1999), utilizing a triangular pattern cell of beams elements, explored the influence of the mesh
refinement and concluded that the results could be improved by decreasing element length.

Many others researchers (Raghuprasad et. al., 1998; Psakhie et. a., 2000; Mohamed and
Hansen, 1999; Ibrahimbegovic and Delaplace, 2003 and Iturrioz et. al., 2000) worked in the
modeling of concrete by lattice structures utilizing different pattern cells.

Chen et. al. (1998) develop a generalized continuum model for cellular materials based on the
equivalence of macroscopic strain energy to the microscale tensile and bending energy in cell walls.
By postulating a maximum-tensile stress failure criterion for cell walls, they predicted analytically
the fracture toughness of cellular materials with hexagonal, triangular and square lattice. The results
indicated that square lattice provided arather small fracture toughness.

Damage in composite materials caused by solid-particle erosion was simulated using a
computational model by Chen and Li (2003). The material system was discretized and mapped onto
a discrete lattice with each cell representing a solid particle. During erosion, a lattice cell might
move under the influence of the solid particles moving through the target material. It was
demonstrated that the model was effective for investigating the mechanism responsible for material
erosion, as well as helpful for establishing the relationship between the microstructure of a material
and its wear behavior.

Ignatovich et al. (2000) used a lattice model to represent, in a crashworthiness analysis, vehicle
and passenger. An optimization was proposed to determine the geometrical parameters of the
pattern cell by minimizing the acceleration of the passenger. The analysis suggested that lattice
models can be tuned to match at least some aspects of the behavior of more complex structural
system.

Riera and Iturrioz (1995) determined the dynamic response of elastoplastic plates and shells
subjected to impulsive loading, employing a discrete representation of the continuum associated
with an explicit integration scheme in time domain.

L attice structure can be replaced by a continuum model like a beam or plate, mainly for analysis
of large repetitive lattices (Burgardt and Cartraud, 1999 and Moreau and Caillerie, 1998). However,
the approach followed here is based on the substitution of a solid by trusslike lattice. It is necessary
to establish an analytical method to evaluate the parameters of the chosen pattern cell which will
form the structure (Fraternali et. al., 2002; Ostoja-Starzewski, 2002 and Hrennikoff, 1941).

In this present work, we seek to use a cell pattern to reproduce the same volume and stiffness as
in the original solid structure, under conditions of static load and large displacements. The cell
pattern is based on Hrennikoff (1941).

The next section presents the chosen pattern cell and the evaluation of its geometrical
parameters. It follows the ssimulation of three structures, two beam-like trusses and one plate-like
truss, which are submitted to static load. The displacements obtained via the lattice model and a
finite element analysis using beam and plates finite elements are compared.



2.MODELS

The motivation which impelled Hernnikoff (1941) to develop a method named by himself the
Framework Method, was the mathematical difficulties which made the solution of differential
equations of the theory of elasticity impossible in many cases. The method may be applied, for
example, to problems of two-dimensional stress, bending of plates, bending of cylindrical shells and
the general case of three-dimensional stress.

The framework, formed by bars arranged according to a definite pattern, have the same external
outline and boundary restraints, and is subjected to the same loads as the solid body, the loads being
al applied at the joints. He demonstrated that if the length of bars is made infinitesimal, the
framework will represent a complete similar mechanical model of the solid prototype, with identical
displacements, strains, and cell stress (which is different from stressin individua bars).

According to Hernnikoff (1941), the necessary and sufficient condition for the equivalence of
the infinitessimal framework and the solid material is the deformability of the two to be equal.

Here, we replace a beam and a plate by a lattice built by Hernnikoff’ s method.

Two pattern cells were chosen to represent bi and tri-dimensiona solids, i.e. the beam and the
plate, respectively.

The first cell is present in Fig. (1) and it has two parameters, the areas of the side and of the
diagonal truss bars, which can be found from the length of the cells, a, and the thickness of the
beam, t.

Figure 1. Bi-dimensional pattern cell for beam representation

The framework method point out that, for the square pattern cell presented above and for
Poisson’s ratio equal to /5, the areas of the orthogonal and of the diagonal truss bars were,
respectively
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It is important to note that the bars lying on the boundary of the framework, in order to satisfy
conditions of deformability, must have one half of the greatest area.

As for the plate representation, it requires a tri-dimensional truss lattice composed by tri-
dimensional cells, Fig. (2). Thisis due to the out of plane bending resistance.



Figure 2. Tri-dimensional pattern cell for plate representation.

For the tri-dimensional cells, the two parameters presented still were the ones necessary to build
the lattice. For a cubic cell of Poisson’s ratio equal to %, edge a and plate thickness t, the areas are
given by
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Again, we note that the bars belonging to faces of the lattice, i.e. the boundaries, have one half
of the internal area of the members presented above and the bars in the lattice edges should have
one quarter of the internal bars area.

3. SIMULATIONS

A beam with length of 1m, thickness of 5mm, height of 100mm, Y oung’s modulus of 210GPa
and Poisson’ s ratio of */5, was simulated considering two different boundary conditions: a cantilever
and simple supported beam. The truss lattice model representing the beam has 250 bi-dimensional
pattern cells, Fig. (3).

Figure 3. Bi-dimensional truss lattice model representation of the beam

The truss lattice model representing the plate was built by arranging 400 tri-dimensional pattern
cells, Fig. (4). The plate is square of 100mm side and 5mm width, Y oung’s modulus of 210GPa and
Poisson’ s ratio of /, and had one of its side clamped.



Figure 4. Tri-dimensional truss lattice model representation of the plate

The results of the smulations and comparisons between the solids and the lattice models are
presented in the next sections.

4. RESULTS

The beams and the plate were also simulated with finite beam and shell elements available in
ABAQUS. For the cantilever beam, a concentrated static load of 250KN was applied. For the
simply supported case, the load was of 2500KN, applied in the middle of the beam. A concentrated
load of 30KN was applied to one free vertex of the plate.

The beam lattice model was simulated using ain house non-linear truss finite element devel oped
by Driemeier et al, 2004. The plate lattice model used the truss finite element available in the
ABAQUS code.

Thefinal configurations for all three tests are presented in Fig. (5), Fig. (6) and Fig. (7).

Figure 5. Final configuration for the cantilever modeled by truss lattice (Ieft) and by beam elements
(right)



Figure 6. Final configuration of the beam modeled by truss lattice (upper) and beam elements

(lower)

Figure 7. Final configuration for the plate modeled by truss lattice (upper) and shell elements

Table 1 presents the final displacement as obtained using the lattice model and normal structural

finite el ement model.

(lower)

Table 1. Displacements of the loaded points for lattice model and solid structure

Structural finite | Truss Lattice Differences
elements Models (%)
(mm) (mm)
Horizontal 0.2434 0.2531 39
Cantilever
Vertical 0.5959 0.6044 14
Simple supported beam 0.1023 0.1033 10
Plate 0.0249 0.0257 3.2




4. CONCLUSIONS

This work offers an overview in the discretization of solids by lattice models using the
Framework Method. The aim was investigate the validity of the model when applied to a non-linear
structural response.

Comparisons were made between the results of lattice models and of structural finite elements
meshes. The results found for both discretization of the beam and plate are shown to be accurate
enough.

Hence, to use the framework method and to represent a solid by a lattice are accurate and
attractive. Thistechnique can be further explored in problems related to material failure.
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