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Abstract. This article describes the modeling of beams and plates through spatial lattice models by 
using a proper arrangement of trusses which take into account large displacements, rotations and 
strains. The use of truss elements to represent a non-linear solid behavior have the benefit of 
allowing complex matters, like the kinematics, to be approached in a simpler way, since these 
elements admit only extension, contraction and rigid body motion. The analysis shown here uses an 
in house finite element program capable to take into account the major features of a solid behavior. 
The studied cases comprise the representation of a cantilever beam, a simply supported beam and a 
plate with the developed non-linear truss finite element. The results are compared with numeric 
solutions given by a commercial finite element program. The validity of the discretization of beams 
and plates via the non-linear truss elements is here demonstrated. 
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1. INTRODUCTION 

 
Structures composed by interlinked groups of trusses have been much explored in both old and 

recent works. Due to the low cost and light weight, lattice structures may be employed in dayly 
applications, e.g., truss panels used in civil engineering and in future aerospace structures (Burgardt 
and Cartraud, 1999).  

Of course that it is necessary to measure the material mechanical properties of these trusses 
made by a repetition of a given pattern cell. Accordingly, Chiras et al (2002) verified that the core 
panel of a tri-dimensional tetragonal beryllium-cooper alloy pattern cell is capable of supporting 
bending and compression loads at lower weight than competing structures. In this octet topology, in 
regions where the core experiences shear, the trusses experience only compression or tension. The 
authors highlighted the substantial differences that arise in the responses of trusses undergoing 
tension or compression. The trusses in tension continue to strain harden beyond yield, while trusses 
in compression exhibit buckling after a small plastic strain, limiting their load capacity.  

Wallach and Gibson (2001) implemented an experimental protocol with pentagonal aluminum 
cells. The authors measured the mechanical properties of a “solid-like” truss panel. By compressing 



a panel made from beam and truss elements, they concluded that the error in the maximum 
displacement associated with neglecting bending moments was 1.4%, approximately.  

Wicks and Hutchinson (2001) designed truss core panels by optimizing/minimizing its weight. 
The optimized plates were compared with similarly optimized honeycomb core plates fashioned 
from the same material, with the truss lattice presenting a rather greater global stiffness. 

Another aspect of the use of lattice is in the modeling of real solids structures. It is possible to 
represent a solid by a certain pattern comprising truss members. This is only feasible nowadays if 
the trusses are analyzed using a computer program and even more attractive if the finite element 
technique is chosen. The advantages are manifold, like the possibility of representing complex non-
linear solid behaviour and the analysis of brittle fracture, like in concrete. 

Indeed, the lattice model has been used to represent straightforwardly the material heterogeneity 
in concrete at the meso-level (Lilliu and van Mier, 2003). Bolander and Le (1999) used a spring 
network model to study crack propagation in reinforced concrete structures, concluding that their 
lattice model was an effective framework for a crack propagation criterion. Van Mier and van Vliet 
(1999), utilizing a triangular pattern cell of beams elements, explored the influence of the mesh 
refinement and concluded that the results could be improved by decreasing element length.  

Many others researchers (Raghuprasad et. al., 1998; Psakhie et. al., 2000; Mohamed and 
Hansen, 1999; Ibrahimbegovic and Delaplace, 2003 and Iturrioz et. al., 2000) worked in the 
modeling of concrete by lattice structures utilizing different pattern cells. 

Chen et. al. (1998) develop a generalized continuum model for cellular materials based on the 
equivalence of macroscopic strain energy to the microscale tensile and bending energy in cell walls. 
By postulating a maximum-tensile stress failure criterion for cell walls, they predicted analytically 
the fracture toughness of cellular materials with hexagonal, triangular and square lattice. The results 
indicated that square lattice provided a rather small fracture toughness. 

Damage in composite materials caused by solid-particle erosion was simulated using a 
computational model by Chen and Li (2003). The material system was discretized and mapped onto 
a discrete lattice with each cell representing a solid particle. During erosion, a lattice cell might 
move under the influence of the solid particles moving through the target material. It was 
demonstrated that the model was effective for investigating the mechanism responsible for material 
erosion, as well as helpful for establishing the relationship between the microstructure of a material 
and its wear behavior. 

Ignatovich et al. (2000) used a lattice model to represent, in a crashworthiness analysis, vehicle 
and passenger. An optimization was proposed to determine the geometrical parameters of the 
pattern cell by minimizing the acceleration of the passenger. The analysis suggested that lattice 
models can be tuned to match at least some aspects of the behavior of more complex structural 
system.  

Riera and Iturrioz (1995) determined the dynamic response of elastoplastic plates and shells 
subjected to impulsive loading, employing a discrete representation of the continuum associated 
with an explicit integration scheme in time domain. 

Lattice structure can be replaced by a continuum model like a beam or plate, mainly for analysis 
of large repetitive lattices (Burgardt and Cartraud, 1999 and Moreau and Caillerie, 1998). However, 
the approach followed here is based on the substitution of a solid by truss like lattice. It is necessary 
to establish an analytical method to evaluate the parameters of the chosen pattern cell which will 
form the structure (Fraternali et. al., 2002; Ostoja-Starzewski, 2002 and Hrennikoff, 1941). 

In this present work, we seek to use a cell pattern to reproduce the same volume and stiffness as 
in the original solid structure, under conditions of static load and large displacements. The cell 
pattern is based on Hrennikoff (1941).  

The next section presents the chosen pattern cell and the evaluation of its geometrical 
parameters. It follows the simulation of three structures, two beam-like trusses and one plate-like 
truss, which are submitted to static load. The displacements obtained via the lattice model and a 
finite element analysis using beam and plates finite elements are compared. 

 



2. MODELS 
 
The motivation which impelled Hernnikoff (1941) to develop a method named by himself the 

Framework Method, was the mathematical difficulties which made the solution of differential 
equations of the theory of elasticity impossible in many cases. The method may be applied, for 
example, to problems of two-dimensional stress, bending of plates, bending of cylindrical shells and 
the general case of three-dimensional stress.  

The framework, formed by bars arranged according to a definite pattern, have the same external 
outline and boundary restraints, and is subjected to the same loads as the solid body, the loads being 
all applied at the joints. He demonstrated that if the length of bars is made infinitesimal, the 
framework will represent a complete similar mechanical model of the solid prototype, with identical 
displacements, strains, and cell stress (which is different from stress in individual bars). 

According to Hernnikoff (1941), the necessary and sufficient condition for the equivalence of 
the infinitesimal framework and the solid material is the deformability of the two to be equal.  

Here, we replace a beam and a plate by a lattice built by Hernnikoff’s method.  
Two pattern cells were chosen to represent bi and tri-dimensional solids, i.e. the beam and the 

plate, respectively.  
The first cell is present in Fig. (1) and it has two parameters, the areas of the side and of the 

diagonal truss bars, which can be found from the length of the cells, a, and the thickness of the 
beam, t.  

 

 
Figure 1. Bi-dimensional pattern cell for beam representation 

 
The framework method point out that, for the square pattern cell presented above and for 

Poisson’s ratio equal to 1/3, the areas of the orthogonal and of the diagonal truss bars were, 
respectively 
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It is important to note that the bars lying on the boundary of the framework, in order to satisfy 

conditions of deformability, must have one half of the greatest area. 
As for the plate representation, it requires a tri-dimensional truss lattice composed by tri-

dimensional cells, Fig. (2). This is due to the out of plane bending resistance. 
 



 
Figure 2. Tri-dimensional pattern cell for plate representation. 

 
For the tri-dimensional cells, the two parameters presented still were the ones necessary to build 

the lattice. For a cubic cell of Poisson’s ratio equal to ¼, edge a and plate thickness t, the areas are 
given by 
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Again, we note that the bars belonging to faces of the lattice, i.e. the boundaries, have one half 

of the internal area of the members presented above and the bars in the lattice edges should have 
one quarter of the internal bars area. 

 
3. SIMULATIONS 

 
A beam with length of 1m, thickness of 5mm, height of 100mm, Young’s modulus of 210GPa 

and Poisson’s ratio of 1/3, was simulated considering two different boundary conditions: a cantilever 
and simple supported beam. The truss lattice model representing the beam has 250 bi-dimensional 
pattern cells, Fig. (3). 

 

 
Figure 3. Bi-dimensional truss lattice model representation of the beam 

 
The truss lattice model representing the plate was built by arranging 400 tri-dimensional pattern 

cells, Fig. (4). The plate is square of 100mm side and 5mm width, Young’s modulus of 210GPa and 
Poisson’s ratio of 1/4 and had one of its side clamped. 

 



 
Figure 4. Tri-dimensional truss lattice model representation of the plate 

 
The results of the simulations and comparisons between the solids and the lattice models are 

presented in the next sections. 
 

4. RESULTS 
 
The beams and the plate were also simulated with finite beam and shell elements available in 

ABAQUS. For the cantilever beam, a concentrated static load of 250KN was applied. For the 
simply supported case, the load was of 2500KN, applied in the middle of the beam. A concentrated 
load of 30KN was applied to one free vertex of the plate.  

The beam lattice model was simulated using a in house non-linear truss finite element developed 
by Driemeier et al, 2004. The plate lattice model used the truss finite element available in the 
ABAQUS code.  

The final configurations for all three tests are presented in Fig. (5), Fig. (6) and Fig. (7). 
 

 
Figure 5. Final configuration for the cantilever modeled by truss lattice (left) and by beam elements 

(right) 

 



 
Figure 6. Final configuration of the beam modeled by truss lattice (upper) and beam elements 

(lower) 

 

 
Figure 7. Final configuration for the plate modeled by truss lattice (upper) and shell elements 

(lower) 

 
Table 1 presents the final displacement as obtained using the lattice model and normal structural 

finite element model. 
 

Table 1. Displacements of the loaded points for lattice model and solid structure 

 

 
Structural finite 

elements 
(mm) 

Truss Lattice 
Models 
(mm) 

Differences  
(%) 

Horizontal 0.2434 0.2531 3.9 
Cantilever 

Vertical 0.5959 0.6044 1.4 

Simple supported beam 0.1023 0.1033 1.0 

Plate 0.0249 0.0257 3.2 

 



4. CONCLUSIONS 
 
This work offers an overview in the discretization of solids by lattice models using the 

Framework Method. The aim was investigate the validity of the model when applied to a non-linear 
structural response. 

Comparisons were made between the results of lattice models and of structural finite elements 
meshes. The results found for both discretization of the beam and plate are shown to be accurate 
enough.  

Hence, to use the framework method and to represent a solid by a lattice are accurate and 
attractive. This technique can be further explored in problems related to material failure. 
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