
 
 
 
 

PROCEDIMENTOS h, p E hp ADAPTATIVOS EM ELEMENTOS FINITOS 
GENERALIZADOS NA ANÁLISE DE PLACAS E CASCAS DE REISSNER-

MINDLIN 
 
 

 
Oscar Alfredo Garcia, Dr.Eng. 
oscar@grante.ufsc.br 
 
Eduardo Alberto Fancello, Dr.Eng. 
fancello@grante.ufsc.br 
 
Paulo de Tarso Rocha Mendonça, Ph.D. 
mendonca@grante.ufsc.br 
Departamento de Engenharia Mecânica,  
Universidade Federal de Santa Catarina - UFSC,  
CP. 476, CEP 88.040-900 Florianópolis SC 

 
 
Resumo: O método de Elementos Finitos Generalizados (MEFG) constitui hoje uma alternativa 
valiosa no campo da mecânica computacional. O espaço de aproximação, obtido segundo esta técnica, 
reúne as características do método de Elementos Finitos de Deslocamento convencional e dos métodos 
sem malha. A imposição de condições de contorno essenciais de forma simples (quase direta), a baixa 
sensibilidade à distorção da malha e a versatilidade de construção dos espaços locais evidenciam o 
potencial desta técnica na abordagem de problemas complexos de mecânica computacional. A 
capacidade de realizar enriquecimentos p direcionados em coordenadas globais.e a possibilidade de 
incorporar espaços locais ótimos reduz a necessidade de refinos h adaptativos para capturar soluções 
com altos gradientes. Neste trabalho é mostrada a capacidade do espaço de aproximação construído 
segundo a filosofia do método dos Elementos Finitos Generalizados (MEFG) na abordagem de 
problemas de camada limite em flexão de placas e em cascas de material homogêneo elástico linear 
isotrópico. São analisados os desempenhos das técnicas de adatatividade h, p e hp na captura de 
fenômenos de camada limite em placas e cascas modeladas por teorias de primeira ordem. 
 
Palavras chaves: Elementos Finitos Generalizados, estratégias h, p e hp adaptativas, camada limite 
em placas. 
 
1. INTRODUÇÃO 
 
          O método de elementos finitos generalizados (GFEM), que adquiriu esta denominação no fim da 
década de noventa com o trabalho de Duarte, Oden e Babuska (2000), constitui hoje uma alternativa 
valiosa na construção de espaços p, h, e hp adaptativos. Esta técnica, oriunda dos métodos sem malha 
que utilizam a partição de unidade, e tem sua origem atribuída ao Partition of Unity Finite Element 
Method (PUFEM) de Melenk e Babuska (1996) e ao hp-Clouds de Duarte e Oden (1996, 1997). A 
versatilidade dos espaços construídos permitem enriquecimentos p anisotrópicos e a inclusão de modos 



  

da solução nos espaços locais. Somando-se as características supracitadas a um baixo custo 
computacional, decorrente da conectividade fixa e da imposição direta das condições de contorno 
essenciais, resulta uma proposta atraente na abordagem do fenômeno de locking e problemas com 
características locais. Dentre estes últimos podem ser citados os altos gradientes decorrentes de 
fenômenos de singularidades e de camada limite. Neste artigo são mostradas as potencialidades desta 
metodologia através da análise de problemas de locking e de camada limite em  placas e cascas de 
material elástico linear homogêneo modeladas com teoria de primeira ordem. O escopo do trabalho 
constitui-se de três seções. A primeira consta de uma abordagem sucinta do espaço de aproximação e 
do procedimento dos planos pseudo-tangentes utilizados para aproximar os campos em superfícies com 
curvaturas não nulas. A segunda e terceira seções correspondem às análises de resultados numéricos e 
conclusões.  
 
2. CONSTRUÇÃO DO ESPAÇO DE APROXIMAÇÃO 
 

          Seja um domínio aberto Ω  limitado por um contorno ∂Ω , e seja { } 1

N

α α =
Ω  um conjunto de 

suportes chamados aqui de nuvens, com centros nas coordenadas αX , constituindo uma cobertura de 

Ω , isto é 1 1
N
α α= =Ω ⊂ ΩU  onde Ω  corresponde ao fechamento de Ω . 
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Figura 1: Suporte  local da nuvem  αΩ , sistema de coordenadas locais ( ),x y  e  domínio circular wα , de  radio 

hα , das funções de enriquecimento. 

 
          Seja igualmente um sistema local de coordenadas  associado a cada nuvem definido por 

( )T= - / hα α αx R X X  onde  αR é a matriz de rotação, referida ao sistema global de coordenadas, e hα o 

radio do domínio circular wα das funções de enriquecimento,  conforme Fig.1.  

          Seja ( ){ }
1

N

α α α
ϕ

=
Ω uma partição de unidade associada à cobertura aberta { } 1

N

α α =
Ω . Em cada 

subdomínio  αΩ o espaço local Qα  representa a aproximação local, de forma que a  aproximação global 

é obtida pela expressão  
1
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Q Qα α
α

ϕ
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=∑ . 



  

       O espaço global Q herda as propriedades de convergência dos espaços locais Qα e a regularidade 

da partição da unidade (Teorema 1 Melenk e Babuska, (1996)). As funções de enriquecimento locais 
Qα  podem ser construídas  por produto de funções polinomiais ou utilizando modos conhecidos da 

solução do problema de valores no contorno em questão. No primeiro caso se tem os conjuntos pQα  e 
ˆ pQα  obtidos por produto tensorial e produto completo respectivamente. Em problemas bidimensionais 

estes conjuntos são definidos como: 
 
     ( ){ }: 0 , ,  , 0, 0p

ijQ L i j p i j pα = ≤ ≤ ≥ ≥x               (1) 

     ( ){ }ˆ : 0 , ,  0p
ijQ L i j p i j pα = ≤ ≤ ≤ + ≤x               (2) 

 
          Para o caso de enriquecimentos ortotrópicos o conjunto fica definido por ( ) ( )x, y x, yˆp p p ppmQ Q Q=% I  

onde { }max x, ymp p p= , e xp  e yp  correspondem às ordens polinomiais das bases locais ( ),x y .  

          As limitações do espaço não permitem um detalhamento maior dos aspectos matemáticos 
pertinentes. Estes podem ser vistos em Duarte em Babuska (1996, 1997). 
          Os espaços  especiais apresentados neste artigo tem como finalidade observar o comportamento 
dos fenômenos de camada limite em placas de Mindlin. Isto é levado a cabo pela construção de espaços 
locais diferenciados sobre as fronteiras analisadas que representam, melhor que as funções polinomiais,  
o decaimento exponencial dos campos primais e duais. O espaço global construído desta forma pode 

ser definido como ( )
1

  
N

Q V
αα α

α
ϕ Ω Ω

=

=∑ I onde ( ) ( )
1V H

α αα Ω Ω Ω Ω∈I I . O espaço ( ){ }V Q Vα α αχ= U , onde Qα  

pode  ser obtido pelas expressões (1) e (2) , o operador χ  tem valor unitário sobre a fronteira analisada 

e zero fora dela. Finalmente o espaço Vα  responsável pelas características na proximidades das bordas 

é definido por: 

     ( ){ }/ ,r tV e F r rβ
α

−= ∈℘             (3) 

          Na expressão (3) t é a espessura da placa e { }2 11, , ,..., n
nr r r −℘=  é uma base polinomial cuja 

coordenada e medida na direção normal à fronteira analisada. A Fig. 2, mostra o comportamento da 
função local F∈ Vα associada à nuvem  de coordenadas (-1,1). 

 
Figura 2: Função de forma associada à nuvem com coordenadas (-1,1) 



  

2.1 Espaço de aproximação em superfícies curvas 
 
          Um dos desafios dos métodos sem malha é a construção dos espaços de enriquecimento em 
superfícies curvas. A estratégia proposta fundamenta-se na definição de uma base para cada suporte de 
nuvem. Para um nuvem de coordenadas αX  é estabelecido um plano pseudo tangente  απ , através da 

base pseudo normal associada à nuvem, como mostrado na Fig.3.  
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Figura 3: Elementos da base local da nuvem α  , , v1 2 3θ θ   , plano pseudo tangente απ coordenada local x do 

ponto analisado, suporte αΩ da nuvem e domínio wα das funções de enriquecimento. 

 
          O suporte local das funções de enriquecimento é um círculo de raio hα definido sobre o plano 

απ , de forma que ( ){ }2, R :x y hα αω = ∈ ≤x x  onde, ( )T
α αx = PQ X - X e αQ é a matriz de rotação 

correspondente à base da nuvem α , e P um operador de  projeção da superfície sobre o plano, isto é 
2R R→3P : . O processo de construção das funções de enriquecimento sobre os planos pseudo 

tangentes é levado a cabo pelas expressões (1), (2) e (3). Como o produto pela parição da unidade é 
feito no domínio paramétrico do elemento, as funções não se alteram. Os gradientes, porem, sofrem 
uma transformação do tipo ( ) ( ), xξ αψ ξ η ψ∇ = ∇  PJ Q x . A montagem da matriz de rigidez e do vetor 

de carga consistente é realizada da forma usual  utilizada em processos p adaptativos.  
 
 
3. RESULTADOS NUMÉRICOS 
 
          São apresentados dois conjuntos de resultados numéricos. O primeiro corresponde à análise de 
locking em placas e cascas. O segundo corresponde a alguns resultados de problemas de camada limite. 
Em todos os casos, a geometria é modelada com elementos quadrilaterais de oito nos, com partição de 
unidade bilinear definida pelos nós dos vértices. 
 
 
 



  

3.1. Locking. 
 
          A análise de locking é feita mediante dois exemplos. O primeiro consiste numa placa quadrada 
simplesmente apoiada (hard) de 16 mm de lado e 0,1 mm de espessura. A mesma esta sujeita a um 
carregamento uniformemente distribuído no domínio de –0,1 MPa. Devido à simetria da geometria e do 
carregamento, é analisado apenas um quadrante da mesma.  
                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 4: (a) Deslocamento transversal normalizado do ponto central da placa com relação a razão L/t, (b) 
deslocamento transversal normalizado do ponto C da casca cilíndrica puncionada com relação à razão R / t. 

 
          Este exemplo é discretizado com uma malha distorcida de 2 x 2 elementos quadrangulares para 
os quais é utilizada uma regra de integração completa de 6 x 6 pontos de Gauss. O segundo exemplo 
consiste numa casca cilíndrica com carregamento auto-equilibrado obtido pela aplicação de duas cargas 
diametralmente opostas. O cilindro tem 600 mm de comprimento, 300 mm de radio e espessura e 
carregamentos variáveis de forma a obter o mesmo deslocamento na direção de aplicação da carga. 
Devido à simetria de geometria e carregamento, é analisado apenas um octante do cilindro. O octante 
analisado é discretizado com 8 x 8 elementos quadrangulares sob os quais utiliza-se integração 
completa de 6 x 6 pontos de Gauss. Ambos os exemplos são constituídos de material elástico linear e 
isotrópico com E = 2,1 105  MPa para a placa e E = 3,0 106  Mpa para a casca, sendo 0.3ν = para 
ambos exemplos. Os resultados são mostrados na Fig. 4(a) e 4(b).  A Fig. 4(a) mostra ausência de 
locking, mesmo para a malha distorcida, para uma razão largura espessura inferior a 410  e espaço de 
aproximação de quarta ordem. No caso do cilindro puncionado mostrado na Fig. 4(b) observa-se a forte 
ocorrência de locking de membrana a partir de uma relação R / t > 31 10×  mesmo para espaços 
construídos com base polinomial de quarta ordem.  
 
3.2 Camada Limite 
 
          Os resultados de camada limite são observados para o esforço cortante através de dois exemplos. 
O primeiro consiste numa placa simplesmente apoiada (soft) sobre a linha 0X =  e (hard) nas 
fronteiras de coordenadas 0Y =  e Y L π= = . A placa tem 0.01mm de espessura e esta sujeita a uma 
carga uniformemente distribuída de –0,1 MPa. A placa de dimensão infinita na direção X , é, por 
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conveniência, truncada em X L π= = . Neste exemplo são utilizadas duas estratégias de 
enriquecimento adaptativo sobre os nuvens associadas aos nós 1, 2 e 3 da Fig.5(a). A primeira, “1”, 
consiste num refino local ortotrópico (px, py) = (8, 4), isto é, com polinômios de grau px = 8  e py = 4 
em x e y . A segunda estratégia “2”, consiste num espaço local do tipo ( )-x / t , pye  com  

py = 4. As nuvens restantes foram enriquecidas isotropicamente com px = py = 4.  
 
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
Figura 5: (a) Variação do esforço cortante Qy nos dois primeiros elementos ao longo da linha AD; (b) variação 

dos últimos 5 elementos, sobre a linha 8-4, adjacentes à borda livre BC. 
 
          O segundo exemplo é constituído de uma casca cilíndrica de 1m de diâmetro, 2m de 
comprimento e espessura de 0,01 m com a borda BC (Fig.5(b)) livre. A casca é sujeita a uma carga 
auto equilibrada variando senoidalmente no sentido radial da forma ( )cos 2oP P θ= com 1PaoP = . As 

propriedades materiais neste exemplo são 71 10  PaE = × e 1/ 3ν = . Neste caso é analisado um octante 
sob condições de contorno de simetria com a malha indicada na Fig. 5(b). Para este exemplo foram 
utilizadas duas estratégias de enriquecimento local das nuvens associadas aos nós 1,..,7. A primeira 
estratégia, “A”, consiste num enriquecimento local isotrópico do tipo (px, py) = (7, 7). A segunda, “B”, 
é feita por um enriquecimento ortotrópico do tipo (px, py) = (4, 7). As nuvens restantes, em ambos os 
casos, são enriquecidas isotrópicamente com px = py = 4. 
          Os resultados do exemplo da Fig. 5(a) mostra um melhor comportamento dos espaços locais Vα  

comparado com aqueles obtidos com bases polinomiais. Alem de apresentar valores mais próximos da 
solução de referência, (Marguerre & Woernie, 1969) os resultados não apresentam oscilações 
significativas da solução no último elemento, como ocorre com bases polinomiais. Para o esforço 
cortante na casca mostrado na Fig. 5(b) observa-se, como esperado, que os resultados dos refinos locais 
p ortotrópicos são mais próximos da solução de referência (overkiling) do que aquela obtida com 
enriquecimento local p isotrópico.  
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4. CONCLUSÕES 
 
                    Os resultados da análise de locking mostram-se satisfatórios para placas, ratificando 
resultados obtidos previamente por procedimentos p adaptativos, de forma que nos espaços construídos 
com base polinomial de quarta ordem não se observa a sua ocorrência. O mesmo não pode ser afirmado 
para a casca cilíndrica puncionada a qual constitui um exemplo crítico de locking de membrana. 
Entretanto consegue-se atingir a solução analítica com uma razão de R / t = 31 10× , o que normalmente 
não é possível com o procedimento clássico de usar bases polinomiais de baixa ordem com sub-
integração. Os resultados de camada limite evidenciam a potencialidade da metodologia,  permitindo 
que a otimização local do espaço de aproximação seja feita por meio de refino p direcionados ou pela 
utilização de espaços locais construídos com modos conhecidos da solução do problema como o espaço  
Vα . De forma geral observou-se um bom desempenho da metodologia nos problemas analisados. 
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Abstract: The Generalized Finite Element method (MEFG) constitutes today a valuable alternative in 
computational mechanics. The approximation space, obtained by this technique, include 
characteristics of both, the conventional displacement finite element method and the meshless methods. 
The imposition of essential boundary conditions in an almost direct form, a low sensitivity to mesh 
distortion and the versatility in the construction of local spaces points to a great potential in this 
technique to deal with complex problems in computational mechanics. The capability to perform 
orthotropic p-enrichment in global coordinates and also incorporate optimum local spaces reduces the 
necessity of h-adaptive refinements to capture high gradient solutions.  
This paper shows the capabilities of approximation spaces built by the Generalized Finite Element 
Method to deal with boundary layer in plate and shell bending problems. The behavior of the h, p and 
hp-adaptive techniques are observed when applied to model boundary layers in first order plates and 
shells models. 
 
Key words: Generalized Finite Elements, h, p and hp adaptivities, boundary layer in plates and shells 
 


