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Resumo: O método de Elementos Finitos Generalizados (MEFG) constitui hoje uma alternativa
valiosa no campo da mecanica computacional. O espago de aproximacado, obtido segundo esta técnica,
redine as caracteristicas do método de Elementos Finitos de Deslocamento convencional e dos métodos
sem malha. A imposicéo de condicdes de contorno essenciais de forma simples (quase direta), a baixa
sensibilidade a distor¢éo da malha e a versatilidade de construcéo dos espacos locais evidenciam o
potencial desta técnica na abordagem de problemas complexos de mecanica computacional. A
capacidade de realizar enriquecimentos p direcionados em coordenadas globais.e a possibilidade de
incorporar espacos locais 6timos reduz a necessidade de refinos h adaptativos para capturar soluces
com altos gradientes. Neste trabalho € mostrada a capacidade do espaco de aproximacao construido
segundo a filosofia do método dos Elementos Finitos Generalizados (MEFG) na abordagem de
problemas de camada limite em flexdo de placas e em cascas de material homogéneo elastico linear
isotrépico. S8o analisados os desempenhos das técnicas de adatatividade h, p e hp na captura de
fenémenos de camada limite em placas e cascas modeladas por teorias de primeira ordem.

Palavras chaves: Elementos Finitos Generalizados, estratégias h, p e hp adaptativas, camada limite
em placas.

1. INTRODUCAO

O método de elementos finitos generalizados (GFEM), que adquiriu esta denominacdo no fim da
década de noventa com o trabalho de Duarte, Oden e Babuska (2000), constitui hoje uma aternativa
valiosa na construcéo de espacos p, h, e hp adaptativos. Esta técnica, oriunda dos métodos sem maha
gue utilizam a particdo de unidade, e tem sua origem atribuida ao Partition of Unity Finite Element
Method (PUFEM) de Melenk e Babuska (1996) e ao hp-Clouds de Duarte e Oden (1996, 1997). A
versatilidade dos espacos construidos permitem enriquecimentos p anisotropicos e ainclusdo de modos



da solucdo nos espacos locais. Somando-se as caracteristicas supracitadas a um baixo custo
computacional, decorrente da conectividade fixa e da imposicdo direta das condigdes de contorno
essenciais, resulta uma proposta atraente na abordagem do fendbmeno de locking e problemas com
caracteristicas locais. Dentre estes Ultimos podem ser citados os atos gradientes decorrentes de
fenbmenos de singularidades e de camada limite. Neste artigo so mostradas as potencialidades desta
metodologia através da anadlise de problemas de locking e de camada limite em placas e cascas de
material elastico linear homogéneo modeladas com teoria de primeira ordem. O escopo do trabaho
constitui-se de trés secdes. A primeira consta de uma abordagem sucinta do espaco de aproximacéo e
do procedimento dos planos pseudo-tangentes utilizados para aproximar 0s campos em superficies com
curvaturas ndo nulas. A segunda e terceira secfes correspondem as analises de resultados numéricos e
conclusoes.

2. CONSTRUGCAO DO ESPACO DE APROXIMACAO

Seja um dominio aberto Q limitado por um contorno JQ, e sga {Q,}  um conjunto de

N
a=1
suportes chamados aqui de nuvens, com centros nas coordenadas X, , constituindo uma cobertura de

Q,istoé Qc U Q__ onde Q corresponde ao fechamento de Q .
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Figura 1: Suporte local danuvem €, sistema de coordenadas locais (X,Y) e dominio circular w,,, de radio

h, , das fungdes de enriquecimento.

Seja iguamente um sistema local de coordenadas associado a cada nuvem definido por
X=R] (X -)_(a)/ h, onde R, € amatriz de rotacéo, referida ao sistema global de coordenadas, e h, o

radio do dominio circular w, das funcdes de enriquecimento, conforme Fig.1.
Seia {(p&(QO,)}::1 uma particéo de unidade associada & cobertura aberta {Q,} . Em cada

subdominio €20 espaco local Q, representa a aproximagdo local, de forma que a aproximagéo global

N
é obtidapelaexpressido Q=>¢,Q,.
a=1



O espaco global Q herda as propriedades de convergéncia dos espagos locais Q, e a regularidade

da particdo da unidade (Teorema 1 Melenk e Babuska, (1996)). As funcbes de enriquecimento locais
Q, podem ser construidas por produto de fungdes polinomiais ou utilizando modos conhecidos da

solugéo do problema de valores no contorno em questdo. No primeiro caso se tem os conjuntos QP e

Qf obtidos por produto tensorial e produto completo respectivamente. Em problemas bidimensionais
estes conjuntos s&o definidos como:

={L;(X):0<i,j<p,i,j=0,p=0} (1)
{L,(X):0<i,j<p, 0<i+j<p} 2)
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Para o caso de enriquecimentos ortotrépicos o conjunto fica definido por & =gem| Q™)
onde mp=max{pX, py}, e px e py correspondem as ordens polinomiais das bases locais (X,y).

As limitacBes do espaco ndo permitem um detalhamento maior dos aspectos matematicos
pertinentes. Estes podem ser vistos em Duarte em Babuska (1996, 1997).

Os espacos especiais apresentados neste artigo tem como finalidade observar 0 comportamento
dos fenémenos de camada limite em placas de Mindlin. Isto é levado a cabo pela construcéo de espacos
locais diferenciados sobre as fronteiras analisadas que representam, melhor que as fungdes polinomiais,
0 decaimento exponencial dos campos primais e duais. O espaco globa construido desta forma pode

N
ser definido como Q=)"¢,V,, |, ondeV,, ,eH', . OeypagoV,={Q, U(xV,)}, onde Q,
o=1

pode ser obtido pelas expressdes (1) e (2) , o operador y tem valor unitario sobre a fronteira analisada

e zero fora dela. Finalmente o espago V,, responsavel pelas caracteristicas na proximidades das bordas
€ definido por:

V,={e”"'F(r).re p} ©)

n-1
!

Na expressao (3) t é a espessura da placa e go:{Lr,rz, } € uma base polinomia cuja

coordenada e medida na direcdo normal a fronteira analisada. A Fig. 2, mostra o comportamento da
funcéo local Fe V, associadaanuvem de coordenadas (-1,1).
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Figura 2: Funcéo de forma associada a nuvem com coordenadas (-1,1)



2.1 Espaco de apr oximacao em superficies curvas

Um dos desafios dos métodos sem maha € a construcdo dos espacos de enriquecimento em
superficies curvas. A estratégia proposta fundamenta-se na definicdo de uma base para cada suporte de
nuvem. Para um nuvem de coordenadas X, € estabelecido um plano pseudo tangente 7, , atraves da

base pseudo normal associada a nuvem, como mostrado na Fig.3.

G

Figura 3: Elementos da base local danuvem o [491,492, v3] , plano pseudo tangente 7z, coordenada local X do

ponto analisado, suporte €2, danuvem e dominio W, das funcdes de enriqueci mento.

O suporte local das fungdes de enriquecimento € um circulo de raio h, definido sobre o plano
7, de forma que w, ={X(X,y)e R*:|x|<h,} onde, x=PQ] (X-X,)e Q,& a matriz de rotagio
correspondente a base da nuvem « , e P um operador de projecéo da superficie sobre o plano, isto €

P:R®>— R?. O processo de construgdo das fungdes de enriquecimento sobre os planos pseudo
tangentes € levado a cabo pelas expressdes (1), (2) e (3). Como o produto pela paricdo da unidade é
feito no dominio paramétrico do elemento, as fungbes ndo se alteram. Os gradientes, porem, sofrem

uma transformagao do tipo V. (&,7)=PJ[Q,V,w(X)]. A montagem damatriz de rigidez e do vetor
de carga consistente é realizada daformausual utilizada em processos p adaptativos.

3. RESULTADOSNUMERICOS

S80 apresentados dois conjuntos de resultados numeéricos. O primeiro corresponde a andise de
locking em placas e cascas. O segundo corresponde a alguns resultados de problemas de camada limite.
Em todos os casos, a geometria € modelada com elementos quadrilaterais de oito nos, com particdo de
unidade bilinear definida pelos nés dos vértices.



3.1. Locking.

A andlise de locking é feita mediante dois exemplos. O primeiro consiste numa placa quadrada
simplesmente apoiada (hard) de 16 mm de lado e 0,1 mm de espessura. A mesma esta sujeita a um
carregamento uniformemente distribuido no dominio de —0,1 MPa. Devido a simetria da geometria e do
carregamento, € analisado apenas um quadrante da mesma.
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Figura4: (a) Deslocamento transversal normalizado do ponto central da placa com relagdo arazdo L/t, (b)
deslocamento transversal normalizado do ponto C da casca cilindrica puncionada com relacdo arazédo R/ t.

Este exemplo € discretizado com uma maha distorcida de 2 x 2 elementos quadrangulares para
0s quais € utilizada uma regra de integracdo completa de 6 x 6 pontos de Gauss. O segundo exemplo
consiste numa casca cilindrica com carregamento auto-equilibrado obtido pela aplicacdo de duas cargas
diametralmente opostas. O cilindro tem 600 mm de comprimento, 300 mm de radio e espessura e
carregamentos variaveis de forma a obter 0 mesmo deslocamento na direcdo de aplicagdo da carga.
Devido a simetria de geometria e carregamento, € analisado apenas um octante do cilindro. O octante
analisado é discretizado com 8 x 8 elementos quadrangulares sob os quais utiliza-se integracdo
completa de 6 x 6 pontos de Gauss. Ambos os exemplos sdo constituidos de materia eléstico linear e
isotrépico com E = 2,1 10° MPa para a placa e E = 3,0 10° Mpa para a casca, sendo v =0.3para
ambos exemplos. Os resultados sdo mostrados na Fig. 4(a) e 4(b). A Fig. 4(a) mostra auséncia de
locking, mesmo para a malha distorcida, para uma raz&o largura espessura inferior a 10° e espaco de
aproximacao de quarta ordem. No caso do cilindro puncionado mostrado na Fig. 4(b) observa-se aforte
ocorréncia de locking de membrana a partir de uma relagdio R / t > 1x10° mesmo para espagos
construidos com base polinomia de quarta ordem.

3.2 Camada Limite

Os resultados de camada limite s8o observados para o esforco cortante através de dois exemplos.
O primeiro consiste numa placa simplesmente apoiada (soft) sobre a linha X =0 e (hard) nas
fronteiras de coordenadas Y =0 e Y =L =7x. A placa tem 0.01lmm de espessura e esta sujeita a uma
carga uniformemente distribuida de —-0,1 MPa. A placa de dimensdo infinita na diregdo X, é, por



conveniéncia, truncada em X=L=7x. Neste exemplo sdo utilizadas duas estratégias de
enriquecimento adaptativo sobre os nuvens associadas aos nés 1, 2 e 3 da Fig.5(a). A primeira, “1”,
consiste num refino local ortotropico (px, py) = (8, 4), isto € com polinémiosdegraupx =8 epy =4

emx ey . A segunda estratégia“2”, consiste num espaco local do tipo (e‘” Y py) com
py = 4. As nuvens restantes foram enriquecidas i sotropi camente com px = py = 4.
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Figura5: (a) Variagao do esforgo cortante Qy nos dois primeiros elementos ao longo dalinha AD; (b) variacdo
dos Ultimos 5 elementos, sobre alinha 8-4, adjacentes a borda livre BC.

O segundo exemplo é constituido de uma casca cilindrica de 1m de diametro, 2m de
comprimento e espessura de 0,01 m com a borda BC (Fig.5(b)) livre. A casca € sujeita a uma carga

auto equilibrada variando senoidalmente no sentido radial daforma P =P, cos(20) com P =1Pa. As

propriedades materiais neste exemplo si0 E =1x10" Pae v =1/3. Neste caso € analisado um octante
sob condicdes de contorno de simetria com a malha indicada na Fig. 5(b). Para este exemplo foram
utilizadas duas estratégias de enriquecimento local das nuvens associadas aos nés 1,..,7. A primeira
estratégia, “A”, consiste num enriquecimento local isotropico do tipo (px, py) = (7, 7). A segunda, “B”,
é feita por um enriguecimento ortotropico do tipo (px, py) = (4, 7). As nuvens restantes, em ambos 0s
casos, sa0 enriquecidas i sotropicamente com px = py = 4.

Os resultados do exemplo da Fig. 5(a) mostra um melhor comportamento dos espagos locais V,
comparado com aqueles obtidos com bases polinomiais. Alem de apresentar valores mais proximos da
solucdo de referéncia, (Marguerre & Woernie, 1969) os resultados ndo apresentam oscilacdes
significativas da solucdo no ultimo elemento, como ocorre com bases polinomiais. Para 0 esfor¢o
cortante na casca mostrado na Fig. 5(b) observa-se, como esperado, que os resultados dos refinos locais
p ortotropicos sdo mais proximos da solucdo de referéncia (overkiling) do que aguela obtida com
enriquecimento local p isotropico.



4. CONCLUSOES

Os resultados da andlise de locking mostram-se satisfatérios para placas, ratificando
resultados obtidos previamente por procedimentos p adaptativos, de forma que nos espagos construidos
com base polinomial de quarta ordem néo se observa a sua ocorréncia. O mesmo ndo pode ser afirmado
para a casca cilindrica puncionada a qual constitui um exemplo critico de locking de membrana.
Entretanto consegue-se atingir a solucdo analitica com umarazdo de R / t = 1x10°, 0 que normalmente
ndo € possivel com o procedimento classico de usar bases polinomiais de baixa ordem com sub-
integracdo. Os resultados de camada limite evidenciam a potencialidade da metodologia, permitindo
gue a otimizac&o local do espaco de aproximacdo seja feita por meio de refino p direcionados ou pela
utilizacd@o de espacos locais construidos com modos conhecidos da solucéo do problema como o espaco
V, . Deformageral observou-se um bom desempenho da metodologia nos problemas analisados.
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Abstract: The Generalized Finite Element method (MEFG) constitutes today a valuable alternative in
computational mechanics. The approximation space, obtained by this technique, include
characteristics of both, the conventional displacement finite element method and the meshless methods.
The imposition of essential boundary conditions in an almost direct form, a low sensitivity to mesh
distortion and the versatility in the construction of local spaces points to a great potential in this
technique to deal with complex problems in computational mechanics. The capability to perform
orthotropic p-enrichment in global coordinates and also incor porate optimum local spaces reduces the
necessity of h-adaptive refinements to capture high gradient solutions.

This paper shows the capabilities of approximation spaces built by the Generalized Finite Element
Method to deal with boundary layer in plate and shell bending problems. The behavior of the h, p and
hp-adaptive techniques are observed when applied to model boundary layersin first order plates and
shells models.
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