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Abstract. Free vibrations of Timoshenko’s beams are analyzed by the Composite Element
Method. This method is a new technique that combines the analytical solutions of the free vibration
problem based on the Classical Theory (CT) and the shape functions of the Finite Element Method
(FEM). The analytical functions must obey special boundary conditions in such a way they do not
alter the nodal values determined by FEM. The addition of the analytical to the shape functions
enriches the solution space and the results are more accurate. There are two types of enrichments:
h-refinements, which are obtained increasing the number of elements, and c-refinements, which add
analytical functions in element displacement field. The c-refinement is a kind of hierarchical
method, and in the free vibration problem shows good accuracy and high convergence. Some
examples are presented to compare both methods and show that the CEM is better than FEM in the
case of coarse meshes and, specially, to determine higher vibrations frequencies. It is also analyzed
the influence of the shear and rotatory inertia in the precision of the method.

Keywords. Composite Elements Method, Finite Elements Method, Timoshenko’s Beam,
Vibration Analysis.

1. INTRODUCTION

Free vibration analysis of structures is an usual task on the modern engineering design and the
Finite Element Method (FEM) is one of the most important tools to carry on this objective. The
FEM is very accurate to determine lowers natural modes and frequencies of shallow beams but, in
the case of high sections or when one intends to determine higher modes, a fine mesh is necessary
and the computational effort is increased. It would be desired to obtain good precision for lowers
and higher modes on the free vibration analysis even with coarse meshes. This is the advantage of



the Composite Element Method (CEM). It can improve the accuracy without change the finite
element mesh, but only adding analytical functions to the shape functions of the displacement field
and enriching the solution space. The CEM is a method that combines the versatility of FEM and
the high accuracy of closed form solutions from classical theory. The analytical solutions, which
satisfy some special boundary conditions, are added to the shape functions of FEM forming a new
group of interpolation functions. CEM can be improved using two types of approach: h-version and
c-version. The h-version, the same of FEM, is the refinement of the element mesh increasing the
number of elements. The c-version corresponds to the increase of the number of degrees of freedom
related to the analytical solutions (c-DOF). The Composite Element Method was initially proposed
by ZENG (1998 a, 1998b, 1998c), which applied it to trusses and framed structures (C°
formulation) and to free vibration of plates. The Composite Element Method was also developed by
( Hoefel, 2002; Carvalho, 2002; Arndt ,2001; Machado, 2002 et. al), which were able to confirm
the accuracy and efficiency of the CEM in many applications. Many researchers including Huang
(1961, 1963), Horr and Schmidt (1995) and Yokoyama (1995), etc, have been studying the free
vibration of Timoshenko’s beams. Numerical methods have been used to solve these problems. In
this paper, the free vibration analysis of Timoshenko’s beams is developed using the Composite
Element Method

2. COMPOSITE ELEMENT

The Composite Element Method is an approximation method whose displacement field is
expanded by the sum of the finite element and the CT shape functions. The FEM displacement field
must satisfy the nodal boundary conditions of the element. Otherwise, the analytical functions are
obtained from the differential equation of the Classical Theory in the element domain, with
compatible boundary conditions in order to maintain the nodal values of displacements determined
by FEM. The final displacement field equation may be written as:

veeMm (&) = vrem (&) +ver(§) (D

where v,,,, and v, are the two parts of the CEM displacement field. The first one is associated to

the nodal coordinate system from the FEM, using the shape function vector N; the nodal
displacement vector v (or the nodal degrees of freedom), and the local coordinate &, as the

following equation:
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The second part is obtained by linear combination of the analytical solutions of the Classical
Theory, as the following expression:

vor(€) =TT (¢)e ®



where, I'is the analytical shape functions vector which is obtained by CT, and c is the coefficient
vector associated to the c-degrees of freedom or c-coordinates. Substituting Eq. (2) and Eq. (3) into
Eq. (1) one obtains:

voem(€) = NT(§)g+ T (€)c )

2.1. Displacement field function by Timoshenko Theory.

The main difference between the Timoshenko’s and the Euler-Bernoulli’s beam theories is that
the cross section, which is straight and perpendicular to the neutral axis before deformation,
remains straight but not necessary perpendicular after deformation. The coupled-beam equations for
the total deflection v and bending slope y are given by Timoshenko (1955):
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in which E is the elasticity modulus, G is the transversal elasticity modulus, / is the area moment of
inertia of cross section, A4 is the cross-sectional area and « is the shear coefficient. When the beam

vibrates harmonically, one can set : v=Ve” y =We” and &=x/L, where V is the normal
function of v, ¥ it is the normal function of y, p =27w® the angular frequency, L the lenght of
the beam, & the dimensionless length, and i= J-1. Omitting the factor e”', the Eq. (5) is
reduced to
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and the primes for V, ‘Y represent differentiation with respect to £and @ is natural frequency.

Note that 7> and s° describe the effects of rotatory inertia and shear deformation, respectively.
Alternatively, when the shear deformation is set equal to zero and effects of rotatory inertia are
neglected, the resulting model is identical to the classical Euler-Bernoulli beam theory. The
solutions of Eq. (6) can be found as (Boyce and Diprima, 1988):

V' = eycoshba& + cosinh ba& + c3 cosbBE 4 c4 sinbB & ®)
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where
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is assumed \/(r2 —5%)? +4/b* > (r* +s7) and c, are constants.
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The corresponding eigenfunctions, normal modes V; and ¥, can be obtained as:
V(&) = cfsen(B;§) — (; senh (A;€) + Z; [cosh(A;&) — cos(B;€)]} ( (12)
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where
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The displacement field function by Timoshenko’s theory can be found as:
vor () =T5 (§) ¢(t),  or (£8)=T5 (&) c(®) (14
where I"VT(f):[Fv1 F, ... F,] and are the displacements fields functions or element and

c=[c, ¢, ... c,] they are the constant that multiply the analytic solutions of CT.

2.2. Displacement field function of FEM.

The beam element consists of two nodes i and j, each node has degrees of freedom of lateral

displacement v° and bending rotation (or slope) v ‘as shown in Fig. (1).



Figure 1. Timoshenko beam element.
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The displacements field function of Timoshenko’s beam element can be found as:

(16)
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Here q° is the element nodal displacement vector, and N is the shape functions (or interpolation
functions):
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where ® =12EI/kGAI® is the shear deformation parameter.
2.3. Composite Element Formulation.
The displacement field of the composite element consists of two parts:
; = 19
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or
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The matrix function S(¢) is defined as the generalized shape function matrix of CEM which
consists of both the shape function N(&) of the conventional FEM and the mode shape F(cﬁ) of the

analytical solution of Timoshenko theory. The vector ¢ is called the generalized coordinates ( or
DOF) of CEM which consists of both the nodal DOF q of conventional FEM and the mode

coordinate ¢ of the analytical solution of Timoshenko theory. The flexural strain or curvature €,
and the shear angle 6 within the element are defined as:

oY oY O - Ov (21)
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where B; = { Oﬁw} and B, = {aasg } With the aid of Eq. (16) and Eq. (21), the strain energy

C

U°® and the kinetic energy T°can be expressed in terms of the element nodal displacement vetor q°

as:
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The superposed dots denote differentiation whit respect to time z. By Hamilton's principle, the
respective element matrices are given by:

(23)
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Where B, = ( [SW]— [ﬁc] ) and k., is bending stiffness matrix, k_ is shear stiffness matrix, m,

1s mass translational inertia matrix and m_ is mass rotatory inertia matrix. Note the when the shear

deformation parameter @ is set equal to zero and rotatory inertia mass matrix is neglected, the
resulting model is identical to the classical Euler-Bernoulli beam.

The Hamilton’s principle (Horr and Schmidt, 1995) leads to the matrix equation governing the
free vibrations of the Timoshenko beam as:
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where
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where [K] is assembled stiffness matrix, [M] is assembled consistent mass matrix and {q} is
assembled nodal displacement vector. If it is assumed to be harmonic in time with circular
frequency o, Eq. (24) becomes, an eigenvalues problem of the form (K - sz){Q} =0, where
{Q} is a vector of nodal displacement amplitudes of vibration (modal vector). The solution of Eq.
(24) yields the natural frequencies and the corresponding mode shape.

3. NUMERICAL EXAMPLE
Example 1.

The first example is concerned for a simple supported beam. The value of the shear coefficient
is 0,85, the Poisson coefficient is 0.3, the length of beam is 1 and the radius of gyration is
r, =0.008. The beam is subdivided into 1, 2, 4, 8 and 10 finite elements. The FEM results are

shown in Tab. (1). Considering the Composite Element Method, with just one finite element and 1,
2, 4 and 10 c-functions, the results are presented in Tab. (2). The relative errors of CEM and FEM
are showed, for some eigenvalues in the Fig. (2) and relative error of the 4 and ¢ refinaments of

CEM are showed, for 2™ eigenvalue in the Fig. (3).

Table 1. Results gotten for the MEF.

Analytical FEM (le) FEM (2¢) FEM (4e) FEM (8e) | FEM (10e)

9.857 10.951 9.898 9.860 9.858 9.857
39.278 50.191 43.762 39.461 39.323 39.287
87.823 109.802 89.697 88.307 87.923
154.794 200.663 174.381 157.313 155.330
239.274 275.209 247.864 241.213
340.189 435.287 389.894 345.616
456.355 655.027 520.088 469.036
586.534 800.987 713.507 612.245




Table 2. Results gotten for the CEM.

Analytical CEM(le I¢) CEM(le 2¢) CEM(le 4¢c) | CEM(1e 10c)
9.857 9.858 9.858 9.857 9.856
39.278 50.191 39.306 39.270 39.262
87.823 122.511 122.511 88.220 88.018
154.794 229.623 155.828 155.245
239.274 371.168 240.381
340.189 548.687 342.089
456.355 459.971
586.534 591.773
4’{) I I
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Figure 2 . Relative error — CEM and FEM.
Example 2.

To examine the influence of the height of the cross section, the same simple supported beam of
the previous example is analyzed considering now the radius of gyration equal to r, =0.04. Tab.

(3) shows the FEM and CEM solutions for models with the total number of dof equal to 12. In this

case, the computational effort of both solutions is the same.




Table 3. Results gotten for the CEM.

Analytical MEF (6e) |CEM (le 10c) |CEM (2e 4c¢) CEM (4e 1¢)
9.571 9.576 9.519 9.591 9.581
35.359 35.620 34.830 36.685 35.814
71.657 73.760 73.920 76.319 75.142
113.845 121.948 117.055 125.948 135.893
159.136 178.970 164.238 179.00 193.746
205.992 314.134 210.928 233.663 268.205
253.582 368.293 258.320 287.815 344.070
301.458 420.616 304.063 343.221 428.277

One be noted in Tab. (3) that the FEM results are very closed to the analytical solution for lower
frequencies cases, but they do not have the same accuracy for the higher ones. On the other hand,
the CEM solution with coarse mesh (le 10c) has very good approximation even for lower and
higher frequencies. This behavior is not the same for finest meshes. One observes that, as the
number of finite elements increase, the accuracy of CEM results decrease. As closer the mesh is to
the global analytical model, better will be the CEM results. This best solution e.g., the analytical
one, is “degraded” by the finite element approximation. It suggests that, the c-refinement must be
used preferably in coarse meshes and may be used to determine local vibration modes specially the
higher ones.
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Figure 3. c-refinament and h-refinament of CEM.

It must be considered that, as higher is the height of the cross section, most important is the
shear and the rotatory inertia effects. The FEM is strongly affected by this condition and its results
have less accuracy compared with shallow beams. As the CEM approximation is based on the finite
element displacement field then, if the finite element solution is not accurate, the CEM solution is



not so accurate as one would be wished. The h-refinement of CEM is affected by the bad
performance of FEM. Despite of this, for higher modes the CEM results are better than FEM ones.

The Fig. (4) shows the graph of the relative error (%) of the FEM and CEM analyses for many
eigenvalues (frequencies) and considering different meshes. The next Fig. (5) and Fig (6), shows
the relative error (%) for the 1* beam eigenvalues considering different radius of gyration.
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4. CONCLUSIONS

A numerical technique has been presented for vibration analysis of Timoshenko’s beams. The
Composite Element Method is developed by the superposition of the conventional FEM and
analytical solutions of the classical Timoshenko’s theory. The CEM is more accurate numerical
method than the FEM, with the same versatility and efficiency. Two types of refinements may be
considered. The h refinement, like the FEM, that corresponds to increase the number of elements;
and the c-refinement that corresponds to increase the number of analytical functions into the local
displacement element field. This enrichment does not alter the stiffness and mass matrices, which
were previously calculated, it just aggregates new terms without re-built the hole matrices. It can be
inferred that the c-refinement is of a hierarchical type. The interpolation functions of the CEM are
completed and consistent.

The c-refinement of CEM leads a super convergency of the results. With the same number of
dof, e.g., the same computational effort, the eigenvalues associated to the CEM are more accurate
than the FEM. Than, to obtain higher efficiency for the CEM, it must be adopted a minimum
number of finite elements to represent the geometry and choose an appropriated number of c-dof.
Considering the presented examples, one concludes hat the addition of rotational inertia and the
shear effects provokes a decrease of the accuracy of the beam frequencies. The bigger the
contribution of the rotational inertia and shear, e.g., the bigger the gyration ratio, the less accurate
will be the solution obtained by the FEM and the CEM.
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