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Abstract. Free vibrations of Timoshenko´s beams are analyzed by the Composite Element 

Method. This method is a new technique that combines the analytical solutions of the free vibration 
problem based on the Classical Theory (CT) and the shape functions of the Finite Element Method 
(FEM). The analytical functions must obey special boundary conditions in such a way they do not 
alter the nodal values determined by FEM. The addition of the analytical to the shape functions 
enriches the solution space and the results are more accurate. There are two types of enrichments: 
h-refinements, which are obtained increasing the number of elements, and c-refinements, which add 
analytical functions in element displacement field. The c-refinement is a kind of hierarchical 
method, and in the free vibration problem shows good accuracy and high convergence. Some 
examples are presented to compare both methods and show that the CEM is better than FEM in the 
case of coarse meshes and, specially, to determine higher vibrations frequencies. It is also analyzed 
the influence of the shear and rotatory inertia in the precision of the method. 
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1. INTRODUCTION 
 
Free vibration analysis of structures is an usual task on the modern engineering design and the 

Finite Element Method (FEM) is one of the most important tools to carry on this objective. The 
FEM is very accurate to determine lowers natural modes and frequencies of shallow beams but, in 
the case of high sections or when one intends to determine higher modes, a fine mesh is necessary 
and the computational effort is increased. It would be desired to obtain good precision for lowers 
and higher modes on the free vibration analysis even with coarse meshes. This is the advantage of 



  

the Composite Element Method (CEM). It can improve the accuracy without change the finite 
element mesh, but only adding analytical functions to the shape functions of the displacement field 
and enriching the solution space. The CEM is a method that combines the versatility of FEM and 
the high accuracy of closed form solutions from classical theory. The analytical solutions, which 
satisfy some special boundary conditions, are added to the shape functions of FEM forming a new 
group of interpolation functions. CEM can be improved using two types of approach: h-version and 
c-version. The h-version, the same of FEM, is the refinement of the element mesh increasing the 
number of elements. The c-version corresponds to the increase of the number of degrees of freedom 
related to the analytical solutions (c-DOF). The Composite Element Method was initially proposed 
by ZENG (1998 a, 1998b, 1998c), which applied it to trusses and framed structures (Co 
formulation) and to free vibration of plates. The Composite Element Method was also developed by  
( Hoefel, 2002; Carvalho, 2002; Arndt ,2001;  Machado, 2002 et. al), which were able to confirm 
the accuracy and efficiency of the CEM in many applications.  Many researchers including Huang 
(1961, 1963), Horr and Schmidt (1995) and Yokoyama (1995), etc, have been studying the free 
vibration of Timoshenko’s beams. Numerical methods have been used to solve these problems. In 
this paper, the free vibration analysis of Timoshenko’s beams is developed using the Composite 
Element Method 

  
2. COMPOSITE ELEMENT 
 
The Composite Element Method is an approximation method whose displacement field is 

expanded by the sum of the finite element and the CT shape functions. The FEM displacement field 
must satisfy the nodal boundary conditions of the element. Otherwise, the analytical functions are 
obtained from the differential equation of the Classical Theory in the element domain, with 
compatible boundary conditions in order to maintain the nodal values of displacements determined 
by FEM. The final displacement field equation may be written as: 

 
 (1)

 
where FEMv  and CTv  are the two parts of the CEM displacement field. The first one is associated to 
the nodal coordinate system from the FEM, using the shape function vector N; the nodal 
displacement vector v (or the nodal degrees of freedom), and the local coordinate ξ , as the 
following equation: 

 

 

(2)

 
The second part is obtained by linear combination of the analytical solutions of the Classical 

Theory, as the following expression: 
 

 
(3)

 



 

where, Γ is the analytical shape functions vector which is obtained by CT, and c is the coefficient 
vector associated to the  c-degrees of freedom or c-coordinates. Substituting Eq. (2) and Eq. (3) into 
Eq. (1) one obtains: 

 

 
(4)

     
2.1. Displacement field function by Timoshenko Theory. 
 
The main difference between the Timoshenko’s and the Euler-Bernoulli’s beam theories is that 

the cross section, which is straight and perpendicular to the neutral axis before deformation, 
remains straight but not necessary perpendicular after deformation. The coupled-beam equations for 
the total deflection  v and bending slope ψ  are given by  Timoshenko (1955): 

 
(5)

 
in which E is the elasticity modulus, G is the transversal elasticity modulus, I is the area moment of 
inertia of cross section, A is the cross-sectional area and  κ is the shear coefficient. When the beam 
vibrates harmonically, one can set : iptVev = ipteΨ=ψ  and Lx=ξ , where V is the normal 
function of v, Ψ  it is the normal function of ψ , πω2=p   the angular frequency, L the lenght of 
the beam, ξ   the dimensionless length, and  1−=i . Omitting the factor ipte , the Eq. (5)  is 
reduced to 

 

(6)

in which 

 
 

(7)

and the primes for V,  Ψ represent differentiation with respect to ξ and  ω  is natural frequency. 
Note that 2r  and 2s  describe the effects of rotatory inertia and shear deformation, respectively. 
Alternatively, when the shear deformation is set equal to zero and effects of rotatory inertia are 
neglected, the resulting model is identical to the classical Euler-Bernoulli beam theory. The 
solutions of Eq. (6) can be found as  (Boyce and Diprima, 1988): 
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where 
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is assumed  )(4)( 222222 srbsr +>+−  and ic are constants. 
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where, 
 

(11)

 
The corresponding eigenfunctions, normal modes iV  and Ψ , can be obtained as: 
 

 

(12)

where 

 

(13)

 
The displacement field function by Timoshenko’s theory can be found as: 
 

 
(14)

 
where ( ) ][ 21 vnvv

T
v FFF K=Γ ξ  and  are the displacements fields functions or element and 

][ 21 ncccc K=  they are the constant that multiply the analytic solutions of CT. 
 
2.2.  Displacement field function of FEM. 
 
The beam element consists of two nodes i and j, each node has degrees of freedom of lateral 

displacement  ev  and bending rotation (or slope)  eψ as shown in Fig. (1). 



 

 
 

Figure 1. Timoshenko beam element. 
 

 

(15)

 
The displacements field function of Timoshenko’s beam element can be found as: 
 

 
(16)

 
Here eq  is the element nodal displacement vector, and N is the shape functions (or interpolation 

functions): 
 

(17)

 

(18)

 
where 2GAlEI12 κ=Φ  is the shear deformation parameter. 

 
2.3. Composite Element Formulation. 
 
The displacement field of the composite element consists of two parts: 
 

 

(19)

or 
 



  

 

(20)

 
The matrix function  ( )ξS  is defined as the generalized shape function matrix of CEM which 

consists of both the shape function ( )ξN  of the conventional FEM and the mode shape ( )ξΓ of the 
analytical solution of Timoshenko theory. The vector q is called the generalized coordinates ( or 
DOF) of CEM which consists of both the nodal DOF q  of conventional FEM and the mode 
coordinate c of the analytical solution of Timoshenko theory. The flexural strain or curvature fε  
and the shear angle θ  within the element are defined as: 
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1B . With the aid of  Eq. (16) and Eq. (21), the strain energy 

eU  and the kinetic energy eT can be expressed in terms of the element nodal displacement vetor eq  
as: 

 

(22)

 
The superposed dots denote differentiation whit respect to time t. By Hamilton's principle, the 

respective element matrices are given by: 
 

 

(23)

 
Where [ ] [ ]( )cc BSB −= ψ and  fk is bending stiffness matrix, ck  is shear stiffness matrix,  tm  

is mass translational inertia matrix and rm  is mass rotatory inertia matrix. Note the when the shear 
deformation parameter Φ  is set equal to zero and rotatory inertia mass matrix is neglected, the 
resulting model is identical to the classical Euler-Bernoulli beam. 

The Hamilton´s principle (Horr and Schmidt, 1995) leads to the matrix equation governing the 
free vibrations of the Timoshenko beam as: 



 

 

 

(24)

 
where 

 

 

(25)

 

 

(26)

 
where [ ]K  is assembled stiffness matrix, [ ]M  is assembled consistent mass matrix and { }q  is 
assembled nodal displacement vector. If it is assumed to be harmonic in time with circular 
frequency ω , Eq. (24) becomes, an   eigenvalues problem of the form ( ){ } 0QMK 2 =ω− ,  where 
{ }Q  is a vector of nodal displacement amplitudes of vibration (modal vector). The solution of Eq. 
(24) yields the natural frequencies and the corresponding mode shape. 

 
3. NUMERICAL EXAMPLE  
  
Example 1. 
 
The first example is concerned for a simple supported beam. The value of the shear coefficient 

is 0,85, the Poisson coefficient is 0.3, the length of beam is 1 and the radius of gyration is 
008.0rg = . The beam is subdivided into 1, 2, 4, 8 and 10 finite elements. The FEM results are 

shown in Tab. (1). Considering the Composite Element Method, with just one finite element and 1, 
2, 4 and 10 c-functions, the results are presented in Tab. (2). The relative errors of CEM and FEM 
are showed, for some eigenvalues in the Fig. (2)  and relative error of the h and c refinaments of 
CEM are showed, for nd2  eigenvalue in the Fig. (3). 

 
Table 1. Results gotten for the MEF. 

 
Analytical FEM (1e) FEM (2e) FEM (4e) FEM (8e) FEM (10e) 

9.857 10.951 9.898 9.860 9.858 9.857 
39.278 50.191 43.762 39.461 39.323 39.287 
87.823  109.802 89.697 88.307 87.923 
154.794  200.663 174.381 157.313 155.330 
239.274   275.209 247.864 241.213 
340.189   435.287 389.894 345.616 
456.355   655.027 520.088 469.036 
586.534   800.987 713.507 612.245 

 
 



  

 
Table 2. Results gotten for the CEM. 

 
Analytical CEM(1e 1c) CEM(1e 2c) CEM(1e 4c) CEM(1e 10c) 

9.857 9.858 9.858 9.857 9.856 
39.278 50.191 39.306 39.270 39.262 
87.823 122.511 122.511 88.220 88.018 
154.794  229.623 155.828 155.245 
239.274   371.168 240.381 
340.189   548.687 342.089 
456.355    459.971 
586.534    591.773 

 

 
Figure 2 . Relative error – CEM and FEM. 

 
Example 2. 
To examine the influence of the height of the cross section, the same simple supported beam of 

the previous example is analyzed considering now the radius of gyration equal to 04.0rg = .  Tab. 
(3) shows the FEM and CEM solutions for models with the total number of dof equal to 12. In this 
case, the computational effort of both solutions is the same.  

 
 
 
 
 
 
 
 
 



 

Table 3. Results gotten for the CEM. 
 

Analytical MEF (6e) CEM (1e 10c) CEM (2e 4c) CEM (4e 1c) 
9.571 9.576 9.519 9.591 9.581 
35.359 35.620 34.830 36.685 35.814 
71.657 73.760 73.920 76.319 75.142 
113.845 121.948 117.055 125.948 135.893 
159.136 178.970  164.238 179.00 193.746 
205.992 314.134 210.928 233.663 268.205 
253.582 368.293 258.320 287.815 344.070 
301.458 420.616 304.063 343.221 428.277 

 
One be noted in Tab. (3) that the FEM results are very closed to the analytical solution for lower 

frequencies cases, but they do not have the same accuracy for the higher ones. On the other hand, 
the CEM solution with coarse mesh (1e 10c) has very good approximation even for lower and 
higher frequencies. This behavior is not the same for finest meshes. One observes that, as the 
number of finite elements increase, the accuracy of CEM results decrease. As closer the mesh is to 
the global analytical model, better will be the CEM results. This best solution e.g., the analytical 
one, is “degraded” by the finite element approximation. It suggests that, the c-refinement must be 
used preferably in coarse meshes and may be used to determine local vibration modes specially the 
higher ones. 

 

 
 

Figure 3. c-refinament and h-refinament of CEM. 
 
It must be considered that, as higher is the height of the cross section, most important is the 

shear and the rotatory inertia effects. The FEM is strongly affected by this condition and its results 
have less accuracy compared with shallow beams. As the CEM approximation is based on the finite 
element displacement field then, if the finite element solution is not accurate, the CEM solution is 



  

not so accurate as one would be wished. The h-refinement of CEM is affected by the bad 
performance of FEM. Despite of this, for higher modes the CEM results are better than FEM ones.  

The Fig. (4) shows the graph of the relative error (%) of the FEM and CEM analyses for many 
eigenvalues (frequencies) and considering different meshes. The next Fig. (5) and Fig (6), shows 
the relative error (%) for the 1st beam eigenvalues considering different radius of gyration.  

 
 

 
 

Figure 4. Results gotten for the CEM. 
 
 

 
 

Figure 5. Relative error (%) for the st1  eigenvalue gotten for CEM. 



 

 
 

 

 
Figure 6. Relative error (%) for the st1  eigenvalue gotten for FEM. 

 
4. CONCLUSIONS 
 
A numerical technique has been presented for vibration analysis of Timoshenko’s beams. The 

Composite Element Method is developed by the superposition of the conventional FEM and 
analytical solutions of the classical Timoshenko’s theory. The CEM is more accurate numerical 
method than the FEM, with the same versatility and efficiency. Two types of refinements may be 
considered. The h refinement, like the FEM, that corresponds to increase the number of elements; 
and the c-refinement that corresponds to increase the number of analytical functions into the local 
displacement element field. This enrichment does not alter the stiffness and mass matrices, which 
were previously calculated, it just aggregates new terms without re-built the hole matrices. It can be 
inferred that the c-refinement is of a hierarchical type. The interpolation functions of the CEM are 
completed and consistent.  

The c-refinement of CEM leads a super convergency of the results. With the same number of 
dof, e.g., the same computational effort, the eigenvalues associated to the CEM are more accurate 
than the FEM. Than, to obtain higher efficiency for the CEM, it must be adopted a minimum 
number of finite elements to represent the geometry and choose an appropriated number of c-dof. 
Considering the presented examples, one concludes hat the addition of rotational inertia and the 
shear effects provokes a decrease of the accuracy of the beam frequencies. The bigger the 
contribution of the rotational inertia and shear, e.g., the bigger the gyration ratio, the less accurate 
will be the solution obtained by the FEM and the CEM. 
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