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Abstract: This paper aims to analyse the plastic behavior of beams subjected to impulsive loads
until complete severance, through the comparison between numerical and analytical models. For
the numerical model, the failure criterion is based on the maximum plastic deformation, while for
the analytical model, the failure criterion is based on the maximum beam transver se displacement,
evolved from the Continuum Damage Mechanics. Some agreement between the analytical and
numerical results were obtained and thoroughly discussed.
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1. Introduction

The inelastic behavior of impulsively loaded beams may be usefull to the automobilistic,

aerospacial, offshore, nuclear and civil industries, as well #seimilitary field. The analysis of
impulsively loaded beams is a topic studied through the last threadeke by many

researchers(Shen and Jones, 1989; Jones and Alves). Among the gogtainnworks we may
include the experimental works of Menkes and Opat (1973), and the aadalyticks by Jones

(1971, 1976).

The impulsively loaded beam analysis usualy uses the rigideplastrigid-perfectly plastic

material models, due to the great simplicity resulting on théytesca solutions. These models
admit a material without any elastic deformation, or that the straitheimaterial are solely plastic.
Alongwith, the perfectly plastic model admits a constant flow stress, nasgely

These models have shown to be very efficient when predicitngma plkeatic behavior (N. Jones,
Structural Impact, 1989). Nevertheless, these models require & plagje lenght definition in
order to permit the strain calculation, a parameter which is often requirablire faodels.

An interesting feature of the dynamic lodaded beam analytistishear effects may be dominant
even for long beams. The influence of shear effects in the behawopuaisive loaded beams have
been studied by many authors, (Yu and Jones, 1991; Li and Jones, 1995; Yu and00bé);
Wierzbicki and Xeng, 2003), and the iteraction of membrane, shear andafleffects in clamped
beams still need attention.

A structure may be said to fail when presents any permanenrtrdgion, when it does not support
any load increase, or when presents material rupture. In thenpvesd we assume failure occurs
when the beams presents complete severance, or when it becomes compldteiy fitsesupports.
The usual criteria applied in analytical or numerical methodgrexdlicting the material failure are
based on the equivalent plastic deformation, maximum shear tepfastic deformation energy
density, etc.

As one may note, all these criteria are based on the cégsteiuum Mechanics, and its efficiency
have been compared in Yu and Chen, 2000(b). A more simple criterion fanasbgst to say that
material separation occurs when the beam moves a given fractierneight. Recently, it has been
shown that such a failure criterion may derived from Continuum Darvegghanics (Jones and
Alves (2004)).

The finite element numerical modeling of dynamic loaded struswirth material failure may be
very usefull even for analytical solutions development. Some fesatsmeh as the triaxiality, may
be assessed through a numerical simulation and then employed in the arsaditcah.



In this work we will compare an analytical solution developediealy work for simply suported
impulsively loaded beams, Jones and Alves (2004), and the numericas @siained through a
finite element simulation. The rupture condition is analised comgathe results of critical
velocity, residual velocity, kinetic energy and time to failure.

2. Analytical Model

The analytical model is based on Jones and Alves (2004), who shouwhéehédilure criterion
discussed below is derived from CDM. This failure criteriaimpsy a relation between beam
transverse displacement and beam height, such that failure occurs when

W, =KH eq. (1)
where Ws is the beam displacement in the support and K is a material property, butosbewn
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where D, is the critical damageS is a material parameteg, is the treshold damage strain and
R is defined by
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where the quadratic term is the stress triaxiality, takenhau#t when assuming a pure shear state,
and is the Poisson’s constant.
Assuming a plastic hinge lenght of

3-6
IQ =TH =0.27H eg. (4)
it is possible to obtain a relation between the parameter Khanthtit equivalent strain (Jones and
Alves, 2004)
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g =— K eq. (5)
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and, taken the material properties from the same reference, K=it, ngsults a limit strain of
£, =0.755
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It is shown that, for the simply supported beam, there existg ttifferent mechanisms of
deformation depending on the value of the paramediefined by:
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eg. (6)

where My and @ are the bending moment and transverse shear force that, independakéythe
beam section completely plastic.

Consider now a simply supported beam loaded along all its span bytiah \eiocity. For
sufficiently high velocity, the beam will fail from its support. This occursna¢
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which is associated with a critical velocity
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After failure, the beam will move freely and after a transiphase it will adquire a rigid body
velocity such that the following ratio is valid
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The equations above where employed to compare with the numerical results present be

3. Numerical Model

The numerical model employed was developed with the comercialaseftAbaqus/Explicit, v6.2.
The beam was modeled with plane stress four node quadrilataredrgge named CPS4R, with
reduced integration. It is required a refined mesh for monitoricgeefly the failure evolution at
the suport. The suport is modeled like the beam but much stiffesskeyting a high elastic modulus
in order to avoid its deformation

The symmetry of the model is used to reduce the toal elemeifenutis imposed 0.5mm for the
elements lenght for all analysis. The mesh for the beam with mO@mght is shown in figure 1.
The only load aplied is an initial velocity through the beam span.

The failure criterion in the numerical simulation is based on t#emun equivalent plastic strain.
This implies that the element fails when its equivalent plagtiin reaches a certain threshold.
After this instant, all the element structural strenght is taken null.

Figure 1 Mesh detail of thev=5 model.

4. Results

The beams were taken to be failed just when the transversaadispnt of the plastic hinge had
reached the limit imposed through the parameter K. It must be noted that nabthent, the plastic

strain criteria had not been reached by any element of the nsodehough the analytical model
predicts its failure, the beam hasn’t yet failed in the numerical model.

With this criteria, the following results were obtained: tiofefailure and rigid body (residual)

velocity.

The beams analysed are listed in table 1.



Table 1 Beams numerically simulated.

Viga [ 2L (mm) | H(mm) [ B(mm) | v | oo(Mpa) | &

A 30 10 10 1.5 300.0 0.75b
B 50 10 10 2.5 300.0 0.75b
C 100 10 10 5.0 300.0 0.755
D 200 10 10 10.0 300.0 0.755

Figure 2 shows a sequence of deformation profiles at the failure timeftendt may be noted that,

even after the beam severance, the beam bends. This is du¢rémsient phase proved to occur in
Jones and Alves, 2004.

(b)

(d)

(e)
Figure 2 Beam ¢=5) deformation: (a) t=0; (b) t=ty; (C) t=1.5t,; (d) t=3ts,; () t=5t.



The dashed lines in Figure 3 are related to the numerical results and the conitiesundicate the
analytical results. It presents the time to failure as atifbmof the initial velocity. It may be seen
significant differences between the numerical and the andlyticdels. This is attributed to the use
of the different failure criterion in the analytical model and in the FE code.
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Figure 3 Time to failure as a function of the inital velocity.

Figuer 4 shows the initial to final velocities ratio asiaction of the initial velocity. It may be seen
that the diference between the models reduce as the initial velocity egraasxpected.



Rigid Body Velocity Ratio
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Figure 4 Final to initial velocities ratio as a furction of the initial velocity.

Table 2 shows the equivalent plastic strain as obtained by the inaimesults applied to the
analytical solution. This means that, when the numerical model hesede its transversal
displacement was measured in the plastic hinge.

Table 2 Equivalent plastic strain as obtained fronthe numerical results in eq.5

beam velocity (m/s)
150 170 200 250 300
A 1.049 1.049 1.091 0.986 0.713
B 1.049 1.091 1.133 0.713 0.881
C 1.007 1.133 0.881 0.755 0.881
D 1.468 1.175 1.049 0.839 0.755

5. Discussion

It may be noted from figure 3 that the time failure for the nuraérmodel almost does not depend
on the aspect ratio, whereas in the analytical model it does. Nevertheless, flgst®ws a good
agreement for the rigid body velocity after severance and its dependemeeaspéct ratio.

An important feature of the numerical results is the influerfcéne boundary condition. For all
models, just a small portion of the beam was in contact withupeost. This would cause just a
small inertial effect, for its inertia corresponds just to sdi¥e to 5%, depending on the beam
modelled. But it was found that the plastic deformation of the eitsme contact with the support
introduces an axial component to the strain of the elements neamtiaet region. This may be the
cause of the severance for beams with initial velocity lotivan the critical velocity calculated
through the analytical model.



Another feature is the difficulty to establish the exact mommntfailure. The transversal
displacement is not uniform through the beam height and here itakes at the upper surface.
Also, it must be measured at some distance from the support.wdehave taken the distance
equivalent to the plastic hinge lenght as calculated with thetaralmodel, though it does not
correspond exactly to the plastic region, for the causes above cited.

All this features make difficult to fully compare the numeriaatl analytical models. Nevertheless,
while the analytical model seems to be a reasonable way dactptee behavior of impulsively
loaded beams, unfortunately, no experimental result is available in thautiéera
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