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Resumo: A espessura relativa é um pardmetro importante nas equagoes de cascas. No
célculo de cascas muito finas (¢ pequeno), a solugao u. apresenta camadas limites, i.e. estreitas
regioes (cuja espessura diminui com ¢) onde a solu¢do ou suas derivadas tendem a infinito
quando ¢ tende a zero. Neste artigo sao apresentadas simulacoes numéricas, via métodos dos
elementos finitos, de carregamentos de cascas uniformemente hiperboélicas. Obviamente, para
obter-se calculos precisos, é necesséario o refinamento da malhas nas camadas limite. Assim, é
empregado um processo de adaptacao de malha que permite um calculo iterativo automético

de alta qualidade.
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1 INTRODUCAO

Neste artigo queremos estudar a propagacao de singularidades nos sistemas de cascas hi-
perbolicas (a superficie média da casca tem curvaturas principais de sinais opostos). De fato,
as teorias de cascas de Kirchhoff-Love e Mindlin sao baseadas em sistemas de equacoes elipticas
para € > ( e suas solucoes possuem as propriedades cléssicas de regularidade. Entretanto, o
sistema limite obtido quando ¢ tende a zero é eliptico somente se a superficie média é ela mesma

eliptica. Quando a superficie média tem pontos hiperbolicos ou paraboélicos o problema limite



tem verdadeiras linhas caracteristicas (as linhas assintoticas da superficie média da casca).
Neste caso, dados de entrada singulares (nas condigoes de contorno ou no carregamento im-
posto) produzem singularidades que se propagam ao longo das linhas caracteristicas em regioes

situadas longe de onde foram originadas.

Em certos casos, estas singularidades sao distribuigoes (por exemplo como um § ou um ¢’)
na dire¢ao transversal as linhas caracteristicas e se propagam ao longo destas e a deformacao e
a energia se concentram nestas regioes que sao nomeadas camadas limites ou camadas internas.
Para valores de ¢ pequenos mas diferentes de zero as solugdes sao regulares com regides de
comportamento singular, i.e. regides estreitas (cuja espessura diminue com ¢) onde a solucdo

ou suas derivadas tendem & infinito quando ¢ tende a zero.

Neste artigo sao mostradas simulagoes numéricas realizadas empregando-se o elemento
finito de cascas DKT (implementado por |Bernadou & Mato Eiroa (1987)| no coédigo de ele-
mentos finitos MODULEF). As incognitas deste elemento sdo as componentes tangenciais do
deslocamento da casca u; e ug, a componente normal uz e as componentes de rotacao da nor-
mal & superficie média 3; e f». A adaptagdo da malha é realizada através do codigo BAMG,
desenvolvido por [Hecht (1998)] no INRIA (Institut national de recherche en informatique et en
automatique - Franca). Os célculos numéricos mostram as vantagens da utilizacdo de malhas

adaptadas a este tipo de problema.

O primeiro estudo de caso é um problema cléssico encontrado em [Huang & Hinton (1986)],
[Bernadou & Mato Eiroa (1987)], [Kanok-Nukulchai (1979)] e [Meek & Tan (1986)]. Este pro-
blema nao apresenta singularidades mas os dois seguintes sao casos onde existem singularidades
decorrentes da condicao de contorno ou do carregamento aplicado que apresenta uma discon-
tinuidade. Nestes dois casos de singularidades sao feitos calculos da casca com valores da
espessura € muito pequenos que permitem estudar a forma e a espessura das camadas limite

(no contorno do dominio) e interna (no interior do dominio).

Nos casos de comportamento singular da casca ¢ estudada a propagacgao das singularidades
e sao feitas estimativas da ordem de grandeza das camadas limite e interna. Um estudo teorico
de um problema modelo similar ao problema de cascas foi feito por [Karamian et al. (2000)]
e [De Souza et al. (2002)]. Os resultados obtidos nestes trabalhos sdo utilizados aqui para se

fazer uma anélise comparativa entre solugoes analiticas e numéricas.

2 Geometria da casca hiperbodlica

Designamos por £3 o espaco euclidiano e sua base ortonormal (0, €, &, €3). Considera-se
o dominio 2 = {(z,y) € R?| — 50in < x,y < 50in} e S a superficie hiperbolica parametrizada

—, —

pela carta local (€2, ¢), com ¢(z,y) = (z,y, *¥). Na casca em estudo tomamos ¢ = 250.

Os vetores tangente d, = a$ que definem o plando tangente a superficie S em todos os



Figura 1: Casca hiperbélica em forma de sela

pontos gg(x, y) e o vetor normal ao plano tangente @3 sdo dados por
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A segunda forma fundamental da superficie média S é dada por

b11 dZL‘2 + 2[)12 dxdy + bgg dy2

onde
1

big = by =0 e b1y =

sao as componentes covariantes da segunda forma fundamental.

Para estudar a superficie S calcula-se

1

b2y — bbby = ——"s >

Assim, a superficie média da casca é uniformemente hiperbolica e existem duas linhas

assintoticas em cada um dos pontos da casca. Estas linhas sao definidas pela equacao

b1y da? + 2b1o dazdy + by dy? = 0
2
Vaz+y? 4 c?
2 , .. : o .
¢ sempre positivo, as linhas assintoéticas sao dadas por

Como o termo
Vat+y?+

T = const e y = const.

dxdy = 0.




3 Casca hiperbdlica engastada sob pressao uniforme

A casca hiperbolica descrita na secao anterior é engastada em todo o seu contorno e é
simulada como uma casca fina carregada por uma pressao uniforme em todo o seu dominio.
As caracteristicas do material sdo: mo6dulo de Young E = 285001b/in?, coeficiente de Poisson

v = 0,4, espessura da casca e = 0.8in e pressao p = 0.01{b/in? exercida normalmente & casca.

O grafico da figura 2a mostra o valor da componente normal do deslocamento u3 no ponto
O = (0,0). As solugoes foram calculadas com malhas uniformes e adaptadas e comparadas com
os resultados obtidos por [Huang & Hinton (1986)] (elemento finito QUAD9**). Néo existem

simetrias neste problema e todo o dominio foi discretizado.
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Figura 2: a) Componente normal du deslocamento u3(0) em fungdo do ntmero de graus de
liberdade (GDL).  b) Deslocamento us ao longo y = 0 calculado com os elementos QUAD9**
([Huang & Hinton (1986)]) e DKT adaptado.

Analisando estes graficos pode-se concluir que para este valor de espessura (e = 0.8in e
e = 0.8x107%) nao & necessério o emprego de técnicas de adaptagao de malhas, porque a solugio
é suficientemente regular. A convergéncia com o elemento finito DKT utilizado aqui é mais
rapida do que com o elemento QUAD9** implementado por Huang [Huang & Hinton (1986)].
Do grafico 2b constata-se que os resultados obtidos com os elementos QUAD9** e DKT sao
quase coincidentes, mas o segundo utiliza uma malha mais grosseira, com pouco mais da metade
no numero de graus de liberdade (GDL) do primeiro. Isto confirma a qualidade do elemento

finito do tipo DKT utilizado aqui.
4 Casca hiperbélica parcialmente engastada submetida a

carregamento de pressao uniforme

O problema ¢ o mesmo da se¢do anterior mas a borda direita do dominio (z = 50)

¢ deixada livre, ou seja, sem nenhuma restricao de deslocamento. Esta borda ¢ uma linha



assintotica e, segundo a teoria de cascas elasticas delgadas e os problemas modelos estudados em
|[Karamian et al. (2002)], uma camada limite deve se desenvolver nesta regido. Para observar
a formacao da camada limite nesta regiao faz-se variar o valor da pressao normal com o valor
numérico da espessura da casca, i.e., p = e [b/in® e os célculos sao feitos para valores de e
iguais & 0.001, 0.002, 0.003, 0.005, 0.008 e 0.01.

A figura 3a mostra o deslocamento normal ug calculado com uma malha uniforme com
16641 nos (45957 GDL) e com valor de espessura e = 0.001 (¢ = 107°). A figura 3b apresenta
uma malha adapta a este problema. Deste segundo gréafico constata-se a existéncia de camadas
limites ndo apenas na borda livre (z = 50in) mas também em todo o resto do contorno do
dominio que apresenta malha mais refinada do que na parte central. Isto pode ser constatado

através da grande concentragao de elementos em torno do contorno do dominio.
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Figura 3: a) Deslocamento normal us com malha uniforme de 16641 nés b) Malha adaptada
com 12480 nos (34515 GDL).

Na verdade, as bordas engastadas do dominio sao curvas caracteristicas onde, segundo
|[Karamian et al. (2000)], devem exister camadas limite de espessura 7; de ordem de grandeza

1/3

/3. Na borda libre a espessura da camada limite 7, ¢ de mesma ordem (1, = O(g/?)) e o

deslocamento normal u3 é de ordem 72 = O(e~%/3).

Para estudar estas camadas limite toma-se o valor de uz ao longo da linha y = 0in (a
linha horizontal que divide o dominio em duas partes iguais). A figura 4 mostra dois gréficos:
a) uz sobre esta linha na regido da primeira camada limite (z € [-50, —25]); b) u3 sobre esta
linha na regido da segunda camada limite (z € [30,50]), ou seja, a borda livre do dominio.
Os resultados apresentados foram obtidos a partir de malhas adaptadas com aproximadamente
40000 GDL com valores de ¢ entre 107% e 1077 .

Além de visualizar o comportamento do deslocamento normal us na regiao das camadas
limites estes graficos permitem fazer a estimativa da ordem de grandeza da espessura destas
camadas bem como da ordem de grandeza de us na borda livre. Do grafico 4b mede-se o
valor da espessura 7y da camada limite. Esta medida é feita calculando-se a distancia entre a
borda livre (z = 50in) e o valor da coordenada x para o qual uz atinge seu valor méximo. Em

1/3

seguida, no grafico 5a traca-se os valores de 7, em funcao de €/°. O comportamento linear dos
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Figura 4: us sobre a linha y = Oin: a) Camada limite 1, proxima & borda engastada (z = —50in)

b) Camada limite 2, proxima & borda livre (x = 50in).

valores de 7, em funcio dos valores de /3 comprova os resultados teéricos que afirmam que
no = O(¢'/3). A boa concordancia entre os os pontos calculados e a linha reta que representa

a teoria comprova a qualidade do calculo utilizando-se malhas adaptadas.
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Figura 5: a) Espessura da camada limite 2 (1) em funcdo de €'/2  b) Deslocamento normal

uz no ponto (50,0) em funcio de e~%/3

Para se construir o gréafico da figura 5b toma-se o valor maximo do deslocamento normal

2/3 Desta forma confirma-se

us no grafico 4b e traca-se este valor em funcao do valor de e~
a afirmacao tedrica de que em uma linha assintotica onde desenvolve-se uma camada limite
tem-se us = O(¢7%?). Neste caso a estimativa foi feita empregando-se valores de usz obtidos
a partir de calculos com malhas adaptadas (com aproximadamente 40000 GDL) e uniformes

(com 45957 GDL).

Deste grafico observa-se o comportamento linear e a boa concordancia obtida entre teoria
e os resultados obtidos com as malhas adaptadas, enquanto que os valores de u3 resultantes do
calculo com malhas uniformes sao inferiores e nao apresentam a linearidade que comprovaria a

ordem de grandeza do deslocamento normal na regiao de camada limite. Este exemplo mostra



claramente a vantagem do calculo feito com malhas adaptadas. Em calculos realizados posteri-
ormente verificou-se que para obter-se resultados similares aos obtidos com malhas adaptadas
empregando-se malhas uniformes é necessario diminuir significativamente o passo da malha
uniforme, elevando-se consideravelment o nimero de GDL (em mais de 200000 GDL para os

menores valores de ¢).

5 Casca hiperbdlica engastada submetida a carregamento

singular

O problema é o mesmo da se¢do 3 (todas bordas do dominio engastadas) mas o carre-
gamento nao ¢ mais uma pressao uniforme e sim um carregamento singular proporcional &
espessura da casca sobre o segmento de linha y =  com = > 0 (chamado aqui segmento de

AB), i.e., uma distribuicdo de Dirac (ou massa de Dirac) sobre esta linha.

Um problema modelo similar a este foi estudado por [De Souza et al. (2002)], onde foi
demonstrado que us apresenta uma singularidade do tipo & sobre a linha AB quando a espessura
da casca tende a zero. As linhas z = 0 e y = 0 sdo curvas caracteristicas e a discontinuidade
do carregamento no ponto O = (0,0) implica numa singularidade do tipo ¢’ em u3 (quando &

tende a zero), a qual se propaga sobre x =0 e y = 0.

Os calculos foram feitos para valores de espessura da casca iguais a 0.01, 0.02, 0.03, 0.05
e 0.1 (¢ entre 107* e 107) com malhas uniformes (a mais fina com 45957 GDL) e adaptadas.

As malhas resultantes do processo de adaptacdo para os valores de espessura de 0.01 (59595
GDL) e 0.1 (35039 GDL) sdo mostrados na figura 6.

1A i
Figura 6: Malhas resultantes do processo de adaptagao: a) e =0.0lin b) e =0.lin

Para estudar a primeira singularidade do problema (sobre o segmento AB) mostra-se na
figura 7a o deslocamento normal w3 ao longo da linha z = 37.5 calculado com véarios valores de
espessura da casca. Observa-se que a singularidade no ponto y = 37.5 tende a uma distribuicao

de Dirac 6 quando a espessura tende a zero. A figura 7a comprova que a espessura desta camada



interna 7, ¢ de ordem e'/2, contrariamente as camadas sobre as linhas caracteristicas que sio

sempre de ordem /3.
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Figura 7: a) Deslocamento uz ao longo da linha x = 37.5 b) Estimativa da ordem de grandeza

da espessura da camada interna 7, = O(¢'/?)

Para estudar a segunda singularidade do problema mostra-se na figura 8a o deslocamento
u3 ao longo da linha x = 25.0 calculado com varios valores de espessura da casca. Na regiao
central do grafico (y = 0) o comportamento de u3 se assemelha & uma série de fung¢oes continuas
que tendem a uma distribuicao do tipo ¢’ quando a espessura da casca tende a zero. O gréafico
da figura 8b mostra que a espessura desta camada interna que se propaga a partir do centro do
dominio é de ordem £!/?, visto que as linhas de propagacao sio as caracteristicas da superficie

média da casca.
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Figura 8: a) Deslocamento u3 ao longo da linha z = 25.0 b) Estimativa de ordem de grandeza
da espessura da segunda camada interna 1, = O(c'/?)

A utilizacdo do processo de adaptacao de malha neste segundo caso é essencial para o
calculo da solugao nas regioes de camadas. Constata-se também o grande refinamento das
malhas nas regioes de propagacao das singularidades, principalmente para os menores valores

da espessura da casca.



6 Conclusao

O elemento finito DK'T implementado no c6digo MODULEF fornece resultados satisfato-
rios para a solucao de problemas de cascas elasticas delgadas. A solucao de problemas singulares
exige a utilizacao de técnicas iterativas de adaptacao de malhas quando se quer permancer com
um numero de graus de liberdade compativel com um calculo efetivo em estagoes de trabalho

de pequeno porte.
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Abstract: The relative thickness ¢ is a significant parameter in the shell equations. In calcu-
lations of very thin shells (¢ small), the solution u. present boundary layers, i.e. narrow areas
(the thickness of which decreases with €) where the solution or its derivatives tends to infinite
when ¢ tends to 0. We present numerical simulations by finite elements concerning uniformly
hyperbolic shells. Obviously, to make precise calculations, we need a refined mesh in the layers.
Thus, we employ a mesh adaptation process which allows a high quality automatic iterative

calculation.

Keywords: thin shells, boundary layer, adapatation process.



