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Resumo. O método de Elementos Finitos (MEF) tem sido tradicionalmente aplicado a problemas
mecanicos de andlise de tensoes enquanto que o método de Volumes Finitos (MVF) tem sua
aplicagdo principal em transferéncia de calor e mecanica dos fluidos. Nos ultimos anos, o uso de
Elementos Finitos a problemas de dindmica dos fluidos tem mostrado um aumento substancial
devido, ndo somente a sua conhecida facilidade de tratar geometria complexa, mas também ao
desenvolvimento de novas tecnicas de estabilizacdo de elementos. Por outro lado, o
desenvolvimento de novas estratégias baseadas em malhas ndo estruturadas tem aberto novas
possibilidades de aplicagdo do método de Volumes Finitos. O presente trabalho apresenta um
estudo da aplicagdo do método de Volumes Finitos para problemas de elasticidade plana onde
aspectos de convergéncia da solu¢do e comparagoes com o método de Elementos Finitos sdo
discutidos.

Palavras-chave. método de volumes finitos, elasticidade plana.
1. INTRODUCAO

O M¢étodo de Elementos Finitos ¢ utilizado preferencialmente na area de Mecanica Estrutural
enquanto que o MVF ¢ utilizado preferencialmente na area de Dinamica dos Fluidos Computacional
(Computational Fluid Dynamics - CFD). A preferéncia em utilizar o MEF para problemas de
mecanica estrutural reside na sua facilidade de representar dominios com geometria complexa
através de malhas ndo estruturadas. Por outro lado, para problemas de dinamica dos fluidos, apesar
do MVF ter dificuldades na representacdo de geometrias complexas, o0 mesmo ¢ conservativo, nao
somente no dominio do problema, mas também dentro de cada volume finito. Além disso, para
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problemas estruturais, o MVF satisfaz a continuidade das tensdes através das fronteiras dos elementos.
E interessante ressaltar que o MEF satisfaz o equilibrio numa média global dentro do dominio, mas nao
¢ conservativo dentro dos elementos individuais (Wheel, 1997).

H4 mais de 30 anos que o MEF vem sendo utilizado com mais freqiiéncia para problemas de
mecanica estrutural. Atualmente, tem surgido um interesse em desenvolver procedimentos para esta
area que empreguem uma aproximacao por MVF. Esse interesse vem do desejo de utilizar algoritmos
amplamente testados no contexto de CFD para problemas estruturais, visando uma solug¢do acoplada
com interagdo entre o movimento de fluidos e a deformagdo da estrutura (acoplamento fluido-
estrutura). Alguns exemplos sdo linhas de vapor sob pressdo e vibragdes induzidas por fluxos sobre
estruturas flexiveis (Wheel, 2003). Esta estratégia permite a analise da interagcdo entre escoamento de
fluido, transferéncia de calor e deformagdo da estrutura sob o mesmo foco do MVF, o que facilita
grandemente o estudo das propriedades e varidveis acopladas do problema.

As pesquisas iniciais preocuparam-se principalmente com comparacdes entre as formulagdes dos
dois métodos aplicados a problemas de mecénica estrutural. Pode-se considerar Ofiate e colaboradores
(1990, 1993 e 1994) como sendo os pesquisadores que impulsionaram, inicialmente, esse tipo de
abordagem. A partir de entdo, surgiram diversas pesquisas voltadas para problemas de placas e cascas
(Wheel, 1996), clasticidade e plasticidade (Taylor, 1995) e termoelasticidade em materiais
anisotropicos (Fainberg, 1996), dentre outras. O foco de pesquisa nesta area tem sido ampliado, com
aplicagdes envolvendo processos de soldagem (Taylor, 2002), conformagdo mecanica (extrusdo e
forjamento) (Williams, 2002), interacdo entre fluido e estrutura (Slone, 2002), diferencas entre os
métodos de diferencas finitas, volumes finitos e elementos finitos (Yamamoto, 2002) e estimativas para
erro residual no MVF (Jasak e Gosman, 2003). O presente trabalho mostra um estudo da aplicacdo do
método de Volumes Finitos para problemas de elasticidade plana onde s3o discutidos aspectos de
convergéncia da solucdo e comparagdes com o método de Elementos Finitos.

2. EQUACOES DE GOVERNO

As equagdes de equilibrio sdo obtidas a partir das equagdes da comservag¢do da quantidade de
movimento ¢ do momento da quantidade de movimento, como

o, tb = pi,
] (1)
o, =0,

onde o, ¢ o tensor tensdo, b, sdo as forgas de corpo, i, € a aceleragdo e p ¢ a massa especifica. A

equacdo do equilibrio angular ¢ manifestada pela simetria do tensor tensdo. Na presente formulagdo os
efeitos de inércia sdo desconsiderados.

As leis constitutivas definem o relacionamento entre o tensor tensdo e o tensor deformagéo, ¢ .

Utilizou-se 0 modelo eléstico linear, também conhecido por Lei de Hooke Generalizada, para expressar
a relagdo entre tensdao e deformagao. A mesma estabelece uma relagdo linear elastica entre os estados
de tensdo e deformacao,

o, =B; +Cy &4 (2)

onde B; sdo as componentes de um estado de tensdo inicial e Cy,, ¢ um tensor de quarta ordem

contendo as constantes elasticas do material. Este modelo ¢ capaz de descrever materiais ortotropicos e



anisotropicos. Para o caso de materiais isotrdpicos, este tensor pode ser escrito em funcdo de apenas
dois pardmetros independentes. Deste modo, para o caso de tensdo inicial nula,

E
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para problemas 3D e estado plano de deformagdes (33 =0), e

E

Gaﬁ=m aﬂ]’ com a,,b’:l,Z, (4)

[(1 + v)gaﬂ tve, o
para problemas de estado plano de tensoes (o33 = 0), onde E € o modulo de Young, v ¢ o coeficiente de
Poisson.

3. FORMULACAO EM VOLUMES FINITOS

O MVF ¢ baseado na aplicagdo das leis de conservagao em volumes de controle discretizados, o que
torna possivel, para fenomenos fisicos complexos, obter de forma relativamente simples um modelo
matematico e o respectivo tratamento numérico.

Figura 1. Estrutura bidimensional de uma malha de volumes finitos estruturada.

A aplicacdo do MVF as leis de conservagdo resulta em um sistema de equagdes algébricas baseadas
nos valores dos deslocamentos em x, up, u N, Us, U g, U w, UNE, UNW, U SE, U SW, € €M V), Vp, VN, Vs, VE, VW,
VNE, VNW, VSE, Vsw, sobre os pontos nodais de cada volume finito. A localiza¢dao destes pontos pode ser
observada na Figura 1. A discretizacao pode ser aplicada a partir das leis de conservagdo na forma
integral dentro do volume finito ou a partir da integra¢do das respectivas equagdes diferenciais de
governo sobre este volume. No presente trabalho a aproximacao citada ¢ utilizada em conjunto com
uma malha estruturada para o estado plano de deformacdes, conforme ilustrado na Figura 1.
Substituindo (3) em (1) e aplicando as deformacgdes dadas pelas relagdes (5), obtém-se as equagdes
diferenciais expressas exclusivamente em termos dos deslocamentos u € v.
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As Equacdes (6) e (7) sdo uma forma simplificada de representar as equagdes discretizadas para o
volume finito mostrado na Figura 1. Os coeficientes 4 ¢ B contém na sua formulacdo as propriedades
do material, os parametros da malha e as dimensdes do elemento.
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4. PROBLEMA PROPOSTO

Visando uma primeira avaliagdo da formulacdo descrita anteriormente, tomou-se uma viga
engastada com deslocamento prescrito na sua extremidade livre, conforme mostrado na Figura 2. Uma
comparagdo entre a solucdo apresentada pelo MEF e pelo MVF ¢ realizada.

U

50 mm

Figura 2. Viga engastada com uma extremidade em balanco.

Os deslocamentos pré-definidos nas faces sdo: direita (extremidade em balango) up. = 0 mm e
vpre = -1 mm, face esquerda (engastada) up. = 0 mm e vye = 0 mm. As dimensdes da viga sdo: 50 mm de
comprimento, 5 mm de altura e 250 mm de largura, onde £ =210 GPae v=0,3.

4.1. Estudo de Convergéncia

Para o MVF ¢ feito um estudo de convergéncia utilizando-se os métodos de solu¢do Gauss Seidel e
TDMA, bem como a determinagao do melhor parametro de sobre-relaxagao.

Na Figura 3 ¢ apresentado um grafico que ilustra o comportamento da convergéncia da solugdo em
ambos os métodos para o caso de uma malha de 9 x 81, com 640 elementos ¢ com o fator de
sobrerelaxacdo 6timo (aquele que apresenta a maior taxa de convergéncia), que para ambos os casos foi
de 1,950. A convergéncia ¢ atingida quando o residuo atinge um valor menor do que 10°. Pode-se
observar que no intervalo das primeiras 60 itera¢des, aproximadamente, houve uma tendéncia de
acréscimo do residuo, seguido de uma queda nas iteragdes seguintes.

As Figuras 4(a) e (b) apresentam o grafico utilizado para determinar o melhor pardmetro de sobre-
relaxacdo para cada método. Em ambos os casos, o parametro de sobre-relaxagdo, w, 6timo para trés
refinos de malha estudados foi sempre acima de 1,9. Observa-se que valores ligeiramente superiores ao



Wstimo Causam um aumento abrupto do numero de iteragdes necessarias para a solugdo. Este
comportamento ¢ tipico de problemas resolvidos iterativamente e estd associado aos autovalores da
matriz de coeficientes (Ferziger e Peri¢, 1999).
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Figura 3. Convergéncia da solucdo para o método de Gauss Seidel w=1,950 e TDMA w=1,950.
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Figura 4. Efeito da variacdo do parametro de sobrerelaxagdo para os métodos TDMA e Gauss-Seidel.

4.2. Mapas de Diferencas MVF - MEF

A Figura 5 apresenta o mapa de diferencas percentuais entre os métodos MEF e MVF para os
deslocamentos na direcdo x dos pontos nodais. A malha 9x81 foi utilizada na comparagao ¢ contém 640
elementos. Da mesma forma, a Figura 6 apresenta as diferencas para os deslocamentos na direcdo y, a
Figura 7 para a tensdo cisalhante no plano xy e a Figura 8 para a tensdo equivalente de von Mises.



O mapa de diferengas dado pela Figura 5 evidencia que os maiores valores, da ordem de 4,5%,
aparecem apenas em 4 nos, sendo os demais valores inferiores a este. Nesta regido os deslocamentos na
dire¢do x sdao proximos de zero o que reflete em uma grande diferenca percentual.

e o o
1 1 1 1 1 1 1

5.00 4.58 4.17 3.75 3.33 2.92 2.50 2.08 1.67 1.25 0.83 0.42 0.00

Figura 5. Diferencgas percentuais entre 0 MEF e MVF para os deslocamentos em wx.

O mapa de diferencas dado pela Figura 6 mostra que os maiores valores (podendo atingir até 35%)
ocorrem nos nés localizados na 1* coluna subseqiiente ao engaste. Nesta regido os deslocamentos em y
sdo proximos de zero, ocorrendo fendmeno semelhante aquele relatado para os deslocamentos em x.

Para os demais nds do dominio as diferencgas percentuais sdo bastante baixas, atingindo valores entre
0,01 0,2 %.

e o o
1 1 1 1 1 1 1

10.00 9.17 8.33 7.50 6.67 5.83 5.00 4.17 3.33 2.50 1.67 0.83 0.00

Figura 6. Diferengas percentuais entre o MEF e MVF para os deslocamentos em y.

Verifica-se que as diferencas das tensoes cisalhantes no plano xy foram grandes nas extremidades e
nas superficies livres da viga. No restante da mesma as diferencas sdo inferiores a 4 % (ver Figura 7).
Ressalta-se que, em ambos os casos, as tensdes sao calculadas a posteriori e, no caso do MEF, utilizou-
se elementos quadrilaterais lineares com 4 pontos de integracdo. A extrapolacdo das tensdes para os nds
¢ feita no elemento utilizando polindmios da mesma ordem de grandeza das fun¢des de forma, com
posterior média nos nés. Tal procedimento reconhecidamente pode trazer imprecisdes no calculo das
tensdes nodais em regides proximas as fronteiras do problema. Uma vez que os deslocamentos em x na
extremidade da viga foram restringidos, tem-se o mesmo efeito de concentragdo de tensdes do engaste.

67.0 61.4 55.8 50.3 44.7 39.1 33.5 27.9 22.3 16.8 11.2 5.6 0.0

Figura 7. Diferengas percentuais entre o MEF e MVF para as tensdes cisalhantes no plano xy.

Semelhantemente, a Figura 8 apresenta as diferengas para a tensdo equivalente de von Mises. Vé-se
que as diferencgas sao significativas apenas em alguns nés localizados em linhas centrais da viga junto
as fronteiras. No resto do dominio as diferengas sao inferiores a 4 %.
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Figura 8. Diferencgas percentuais entre 0o MEF e MVF para as tensdes equivalentes.

4.3. Tensao Cisalhante e Equivalente nas Sec¢oes Transversais e Longitudinais

As diferengas podem ser percebidas mais claramente através da andlise do comportamento da
tensao cisalhante e da tensdo equivalente ao longo do eixo longitudinal (central) e do eixo transversal
(central), conforme mostrado na Figura 9.
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Figura 9. Comparagao entre MEF e MVF para tensao cisalhante no plano xy e tensao equivalente na
seccdo transversal (central) da viga.

Pela teoria, as superficies livre superior e inferior da viga devem apresentar tensdes cisalhantes
nulas. Porém, tanto o MVF quanto o MEF obtiveram tensdes ndo nulas, conforme mostrado na Figura
9. Nota-se que para o MVF a tensdo cisalhante nesta regido ¢ de ordem de grandeza inferior se
comparada aos demais valores, tendendo a se aproximar da linha de tens@o nula. A solugdo obtida pelo
MEF se afastou mais da tensao nula. Comportamento semelhante ocorre para a tensdo equivalente, e
também pode ser visto na Figura 9.

A Figura 10 apresenta as tensdes cisalhantes e equivalentes na sec¢do longitudinal central da viga
para meio comprimento. A Figura 10 mostra que as tensdes cisalhantes calculadas pelo MEF
apresentam oscilagdes nos nos proximos das extremidades da viga. Essa oscilagdo ja ndo ocorre para o
MVF. As oscilagdes para a tensdo equivalente calculada pelo MEF s3o ainda maiores. Ressalta-se que
essa regido ¢ de grande concentragdo de tensdes, sendo indicado um maior refinamento da malha. As
oscilacdes apresentadas pelo MEF na Figura 10 explicam as grandes diferencas obtidas nos mapas
mostrados nas Figuras 7 e 8.
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Figura 10. Comparacdo entre MEF e MVF para tensdo equivalente e tensdo cisalhante xy na sec¢do
longitudinal (central) da viga.

5. CONCLUSOES

O MVF apresentado tem demonstrado ser uma alternativa para a estimativa de tensdes em
problemas de elasticidade plana, especialmente se aplicado a problemas de iteracao fluido-estrutura. As
diferencas nos deslocamentos apresentadas nas Figuras 5 e 6 foram causadas pela ordem de grandeza
dos valores ser muito proxima de zero. As diferencas na tensdo cisalhante e tensdo equivalente,
apresentadas nas Figuras 7 e 8, sdo oriundas de erros de aproximacao dos valores pos-processados,
tanto para o MVF quanto para o MEF. Nota-se que a média nodal das tensdes calculadas pelo MEF ¢
passivel de maiores erros. A literatura mostra que a média nodal das tensdes deve ser extrapolada
através de polindmios de uma ordem de grandeza inferior do que aqueles usados para a soluciao do
problema (Zienkiewicz e Taylor, 1994). No presente caso, dever-se-ia utilizar fungdes constantes
(interpolagdo das tensdes no centrdide com posterior média nos nds), o que, por outro lado, reduziria a
precisao da solucdo. Estudos comparativos estdo sendo feitos com elementos com 8 ¢ 9 nds, com
obtencdo de tensdes nodais através de métodos mais precisos, para o MEF. Entretanto, exceto pelas
regioes de concentragdo de tensdes e junto as superficies livre da viga, as diferencas na tensao
cisalhante e tensdo equivalente entre os dois métodos ¢ da ordem de 0,1 a 4%. Para os deslocamentos
essas diferengas foram da ordem de 0,01 a 2,5% em todo o dominio.

A geometria do problema estudado ¢ relativamente simples, favorecendo o uso de uma malha
ortogonal e estruturada. Porém, a mesma aproximacao pode ser aplicada a malhas ndo estruturadas, o
que facilita a representacdo de dominios complexos.

Ressalta-se que o MVF apresenta um tempo de processamento elevado quando se utiliza método
iterativo de solucdo do sistema de equagdes (Gauss-seidel, TDMA, ADI, etc.). Assim, recomenda-se a
utilizacdo de métodos para a solucdo do sistema de equagdes que aproveitem as caracteristicas da
matriz de coeficientes do MVF.
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Abstract. The Finite Element Method (FEM) has been traditionally applied to stress analysis of
mechanical problems, whereas the Finite Volume Method (FVM) has its main application in heat
transfer and fluid dynamics. In recent years, use of Finite Elements in fluid dynamics problems has
shown a substantial increase due, not only to its well-known facility to handle complex geometry, but
also to the development of new element stabilisation techniques. On the other hand, the development of
new models based on unstructured meshes has open new possibilities for application of the Finite
Volume method. The present work presents a study on the application of the Finite Volume Method to
plane elasticity, in which aspects of solution convergence are addressed and comparisons with Finite
Element solutions are performed.
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