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Resumo. O método de Elementos Finitos (MEF) tem sido tradicionalmente aplicado a problemas 
mecânicos de análise de tensões enquanto que o método de Volumes Finitos (MVF) tem sua 
aplicação principal em transferência de calor e mecânica dos fluidos. Nos últimos anos, o uso de 
Elementos Finitos a problemas de dinâmica dos fluidos tem mostrado um aumento substancial 
devido, não somente a sua conhecida facilidade de tratar geometria complexa, mas também ao 
desenvolvimento de novas técnicas de estabilização de elementos. Por outro lado, o 
desenvolvimento de novas estratégias baseadas em malhas não estruturadas tem aberto novas 
possibilidades de aplicação do método de Volumes Finitos. O presente trabalho apresenta um 
estudo da aplicação do método de Volumes Finitos para problemas de elasticidade plana onde 
aspectos de convergência da solução e comparações com o método de Elementos Finitos são 
discutidos. 
 
Palavras-chave. método de volumes finitos, elasticidade plana.  
 
1. INTRODUÇÃO 
 

O Método de Elementos Finitos é utilizado preferencialmente na área de Mecânica Estrutural 
enquanto que o MVF é utilizado preferencialmente na área de Dinâmica dos Fluidos Computacional 
(Computational Fluid Dynamics - CFD). A preferência em utilizar o MEF para problemas de 
mecânica estrutural reside na sua facilidade de representar domínios com geometria complexa 
através de malhas não estruturadas. Por outro lado, para problemas de dinâmica dos fluidos, apesar 
do MVF ter dificuldades na representação de geometrias complexas, o mesmo é conservativo, não 
somente no domínio  do  problema,  mas  também  dentro de cada  volume finito. Além disso, para
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problemas estruturais, o MVF satisfaz a continuidade das tensões através das fronteiras dos elementos. 
É interessante ressaltar que o MEF satisfaz o equilíbrio numa média global dentro do domínio, mas não 
é conservativo dentro dos elementos individuais (Wheel, 1997). 

Há mais de 30 anos que o MEF vem sendo utilizado com mais freqüência para problemas de 
mecânica estrutural. Atualmente, tem surgido um interesse em desenvolver procedimentos para esta 
área que empreguem uma aproximação por MVF. Esse interesse vem do desejo de utilizar algoritmos 
amplamente testados no contexto de CFD para problemas estruturais, visando uma solução acoplada 
com interação entre o movimento de fluidos e a deformação da estrutura (acoplamento fluido-
estrutura). Alguns exemplos são linhas de vapor sob pressão e vibrações induzidas por fluxos sobre 
estruturas flexíveis (Wheel, 2003). Esta estratégia permite a análise da interação entre escoamento de 
fluido, transferência de calor e deformação da estrutura sob o mesmo foco do MVF, o que facilita 
grandemente o estudo das propriedades e variáveis acopladas do problema. 

As pesquisas iniciais preocuparam-se principalmente com comparações entre as formulações dos 
dois métodos aplicados a problemas de mecânica estrutural. Pode-se considerar Oñate e colaboradores 
(1990, 1993 e 1994) como sendo os pesquisadores que impulsionaram, inicialmente, esse tipo de 
abordagem. A partir de então, surgiram diversas pesquisas voltadas para problemas de placas e cascas 
(Wheel, 1996), elasticidade e plasticidade (Taylor, 1995) e termoelasticidade em materiais 
anisotrópicos (Fainberg, 1996), dentre outras. O foco de pesquisa nesta área tem sido ampliado, com 
aplicações envolvendo processos de soldagem (Taylor, 2002), conformação mecânica (extrusão e 
forjamento) (Williams, 2002), interação entre fluido e estrutura (Slone, 2002), diferenças entre os 
métodos de diferenças finitas, volumes finitos e elementos finitos (Yamamoto, 2002) e estimativas para 
erro residual no MVF (Jasak e Gosman, 2003). O presente trabalho mostra um estudo da aplicação do 
método de Volumes Finitos para problemas de elasticidade plana onde são discutidos aspectos de 
convergência da solução e comparações com o método de Elementos Finitos. 

 
2. EQUAÇÕES DE GOVERNO 
 

As equações de equilíbrio são obtidas a partir das equações da conservação da quantidade de 
movimento e do momento da quantidade de movimento, como 
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onde ijσ  é o tensor tensão, b  são as forças de corpo,  é a aceleração e i iu&& ρ  é a massa específica. A 
equação do equilíbrio angular é manifestada pela simetria do tensor tensão. Na presente formulação os 
efeitos de inércia são desconsiderados. 

As leis constitutivas definem o relacionamento entre o tensor tensão e o tensor deformação, ijε . 
Utilizou-se o modelo elástico linear, também conhecido por Lei de Hooke Generalizada, para expressar 
a relação entre tensão e deformação. A mesma estabelece uma relação linear elástica entre os estados 
de tensão e deformação, 
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onde  são as componentes de um estado de tensão inicial e  é um tensor de quarta ordem 
contendo as constantes elásticas do material. Este modelo é capaz de descrever materiais ortotrópicos e 
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anisotrópicos. Para o caso de materiais isotrópicos, este tensor pode ser escrito em função de apenas 
dois parâmetros independentes. Deste modo, para o caso de tensão inicial nula,  
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para problemas 3D e estado plano de deformações (ε33  = 0) , e 
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para problemas de estado plano de tensões (σ33  = 0), onde E é o módulo de Young, ν é o coeficiente de 
Poisson. 
 
3. FORMULAÇÃO EM VOLUMES FINITOS 
 

O MVF é baseado na aplicação das leis de conservação em volumes de controle discretizados, o que 
torna possível, para fenômenos físicos complexos, obter de forma relativamente simples um modelo 
matemático e o respectivo tratamento numérico.  

 
 

 
Figura 1. Estrutura bidimensional de uma malha de volumes finitos estruturada. 

 
A aplicação do MVF às leis de conservação resulta em um sistema de equações algébricas baseadas 

nos valores dos deslocamentos em x, u P, u N, u S, u E, u W, uNE, u NW, u SE, u SW, e em y, vP, v N, vS, vE, vW, 
vNE, vNW, vSE, vSW, sobre os pontos nodais de cada volume finito. A localização destes pontos pode ser 
observada na Figura 1. A discretização pode ser aplicada a partir das leis de conservação na forma 
integral dentro do volume finito ou a partir da integração das respectivas equações diferenciais de 
governo sobre este volume. No presente trabalho a aproximação citada é utilizada em conjunto com 
uma malha estruturada para o estado plano de deformações, conforme ilustrado na Figura 1. 
Substituindo (3) em (1) e aplicando as deformações dadas pelas relações (5), obtêm-se as equações 
diferenciais expressas exclusivamente em termos dos deslocamentos u e v. 
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As Equações (6) e (7) são uma forma simplificada de representar as equações discretizadas para o 

volume finito mostrado na Figura 1. Os coeficientes A e B contêm na sua formulação as propriedades 
do material, os parâmetros da malha e as dimensões do elemento. 
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4. PROBLEMA PROPOSTO 
 

Visando uma primeira avaliação da formulação descrita anteriormente, tomou-se uma viga 
engastada com deslocamento prescrito na sua extremidade livre, conforme mostrado na Figura 2. Uma 
comparação entre a solução apresentada pelo MEF e pelo MVF é realizada. 

Figura 2. Viga engastada com uma extremidade em balanço. 
 

Os deslocamentos pré-definidos nas faces são: direita (extremidade em balanço) upre = 0 mm e       
vpre = -1 mm, face esquerda (engastada) upre = 0 mm e vpre = 0 mm. As dimensões da viga são: 50 mm de 
comprimento, 5 mm de altura e 250 mm de largura, onde E = 210 GPa e  ν = 0,3. 

 
4.1. Estudo de Convergência 

 
Para o MVF é feito um estudo de convergência utilizando-se os métodos de solução Gauss Seidel e 

TDMA, bem como a determinação do melhor parâmetro de sobre-relaxação.  
Na Figura 3 é apresentado um gráfico que ilustra o comportamento da convergência da solução em 

ambos os métodos para o caso de uma malha de 9 x 81, com 640 elementos e com o fator de 
sobrerelaxação ótimo (aquele que apresenta a maior taxa de convergência), que para ambos os casos foi 
de 1,950. A convergência é atingida quando o resíduo atinge um valor menor do que 10-5. Pode-se 
observar que no intervalo das primeiras 60 iterações, aproximadamente, houve uma tendência de 
acréscimo do resíduo, seguido de uma queda nas iterações seguintes. 

As Figuras 4(a) e (b) apresentam o gráfico utilizado para determinar o melhor parâmetro de sobre-
relaxação para cada método. Em ambos os casos, o parâmetro de sobre-relaxação, w, ótimo para três 
refinos de malha estudados foi sempre acima de 1,9. Observa-se que valores ligeiramente superiores ao 



wótimo causam um aumento abrupto do número de iterações necessárias para a solução. Este 
comportamento é típico de problemas resolvidos iterativamente e está associado aos autovalores da 
matriz de coeficientes (Ferziger e Perić, 1999). 

 

 
 

Figura 3. Convergência da solução para o método de Gauss Seidel w=1,950 e TDMA w=1,950. 
 
 

                      (a) Gauss-Seidel.                                               (b) TDMA 

 
 

Figura 4. Efeito da variação do parâmetro de sobrerelaxação para os métodos TDMA e Gauss-Seidel. 
 
 
4.2. Mapas de Diferenças MVF - MEF 

 
A Figura 5 apresenta o mapa de diferenças percentuais entre os métodos MEF e MVF para os 

deslocamentos na direção x dos pontos nodais. A malha 9x81 foi utilizada na comparação e contém 640 
elementos. Da mesma forma, a Figura 6 apresenta as diferenças para os deslocamentos na direção y, a 
Figura 7 para a tensão cisalhante no plano xy e a Figura 8 para a tensão equivalente de von Mises.  



O mapa de diferenças dado pela Figura 5 evidencia que os maiores valores, da ordem de 4,5%, 
aparecem apenas em 4 nós, sendo os demais valores inferiores a este. Nesta região os deslocamentos na 
direção x são próximos de zero o que reflete em uma grande diferença percentual. 

 

 
       

 5.00  4.58  4.17  3.75  3.33  2.92  2.50   2.08  1.67  1.25  0.83  0.42  0.00
 

Figura 5. Diferenças percentuais entre o MEF e MVF para os deslocamentos em x. 
 
O mapa de diferenças dado pela Figura 6 mostra que os maiores valores (podendo atingir até 35%) 

ocorrem nos nós localizados na 1a coluna subseqüente ao engaste. Nesta região os deslocamentos em y 
são próximos de zero, ocorrendo fenômeno semelhante àquele relatado para os deslocamentos em x. 
Para os demais nós do domínio as diferenças percentuais são bastante baixas, atingindo valores entre 
0,01 e 0,2 %. 

 

 
 

  10.00  9.17  8.33  7.50  6.67  5.83  5.00  4.17  3.33   2.50  1.67  0.83  0.00
 

Figura 6. Diferenças percentuais entre o MEF e MVF para os deslocamentos em y. 
 

Verifica-se que as diferenças das tensões cisalhantes no plano xy foram grandes nas extremidades e 
nas superfícies livres da viga. No restante da mesma as diferenças são inferiores a 4 % (ver Figura 7). 
Ressalta-se que, em ambos os casos, as tensões são calculadas a posteriori e, no caso do MEF, utilizou-
se elementos quadrilaterais lineares com 4 pontos de integração. A extrapolação das tensões para os nós 
é feita no elemento utilizando polinômios da mesma ordem de grandeza das funções de forma, com 
posterior média nos nós. Tal procedimento reconhecidamente pode trazer imprecisões no cálculo das 
tensões nodais em regiões próximas às fronteiras do problema. Uma vez que os deslocamentos em x na 
extremidade da viga foram restringidos, tem-se o mesmo efeito de concentração de tensões do engaste. 
 

 

 
 67.0  61.4  55.8  50.3  44.7  39.1  33.5  27.9   22.3  16.8  11.2   5.6   0.0 

 

Figura 7. Diferenças percentuais entre o MEF e MVF para as tensões cisalhantes no plano xy. 
 

Semelhantemente, a Figura 8 apresenta as diferenças para a tensão equivalente de von Mises. Vê-se 
que as diferenças são significativas apenas em alguns nós localizados em linhas centrais da viga junto 
às fronteiras. No resto do domínio as diferenças são inferiores a 4 %.  
 



 
 

 40.0  36.7  33.3  30.0  26.7   23.3  20.0  16.7  13.3  10.0   6.7   3.3   0.0 
 

Figura 8. Diferenças percentuais entre o MEF e MVF para as tensões equivalentes. 
 
 
4.3. Tensão Cisalhante e Equivalente nas Secções Transversais e Longitudinais 
 

As diferenças podem ser percebidas mais claramente através da análise do comportamento da 
tensão cisalhante e da tensão equivalente ao longo do eixo longitudinal (central) e do eixo transversal 
(central), conforme mostrado na Figura 9. 
 
 

 
Figura 9. Comparação entre MEF e MVF para tensão cisalhante no plano xy e tensão equivalente na 

secção transversal (central) da viga. 
 
 
Pela teoria, as superfícies livre superior e inferior da viga devem apresentar tensões cisalhantes 

nulas. Porém, tanto o MVF quanto o MEF obtiveram tensões não nulas, conforme mostrado na Figura 
9. Nota-se que para o MVF a tensão cisalhante nesta região é de ordem de grandeza inferior se 
comparada aos demais valores, tendendo a se aproximar da linha de tensão nula. A solução obtida pelo 
MEF se afastou mais da tensão nula. Comportamento semelhante ocorre para a tensão equivalente, e 
também pode ser visto na Figura 9. 

A Figura 10 apresenta as tensões cisalhantes e equivalentes na secção longitudinal central da viga 
para meio comprimento. A Figura 10 mostra que as tensões cisalhantes calculadas pelo MEF 
apresentam oscilações nos nós próximos das extremidades da viga. Essa oscilação já não ocorre para o 
MVF. As oscilações para a tensão equivalente calculada pelo MEF são ainda maiores. Ressalta-se que 
essa região é de grande concentração de tensões, sendo indicado um maior refinamento da malha. As 
oscilações apresentadas pelo MEF na Figura 10 explicam as grandes diferenças obtidas nos mapas 
mostrados nas Figuras 7 e 8.  

 



 
 

Figura 10. Comparação entre MEF e MVF para tensão equivalente e tensão cisalhante xy na secção 
longitudinal (central) da viga. 

 
 
5. CONCLUSÕES 

 
O MVF apresentado tem demonstrado ser uma alternativa para a estimativa de tensões em 

problemas de elasticidade plana, especialmente se aplicado a problemas de iteração fluido-estrutura. As 
diferenças nos deslocamentos apresentadas nas Figuras 5 e 6 foram causadas pela ordem de grandeza 
dos valores ser muito próxima de zero. As diferenças na tensão cisalhante e tensão equivalente, 
apresentadas nas Figuras 7 e 8, são oriundas de erros de aproximação dos valores pós-processados, 
tanto para o MVF quanto para o MEF. Nota-se que a média nodal das tensões calculadas pelo MEF é 
passível de maiores erros. A literatura mostra que a média nodal das tensões deve ser extrapolada 
através de polinômios de uma ordem de grandeza inferior do que aqueles usados para a solução do 
problema (Zienkiewicz e Taylor, 1994). No presente caso, dever-se-ia utilizar funções constantes 
(interpolação das tensões  no centróide com posterior média nos nós), o que, por outro lado, reduziria a 
precisão da solução. Estudos comparativos estão sendo feitos com elementos com 8 e 9 nós, com 
obtenção de tensões nodais através de métodos mais precisos, para o MEF. Entretanto, exceto pelas 
regiões de concentração de tensões e junto às superfícies livre da viga, as diferenças na tensão 
cisalhante e tensão equivalente entre os dois métodos é da ordem de 0,1 a 4%. Para os deslocamentos 
essas diferenças foram da ordem de 0,01 a 2,5% em todo o domínio.  

A geometria do problema estudado é relativamente simples, favorecendo o uso de uma malha 
ortogonal e estruturada. Porém, a mesma aproximação pode ser aplicada a malhas não estruturadas, o 
que facilita a representação de domínios complexos. 

Ressalta-se que o MVF apresenta um tempo de processamento elevado quando se utiliza método 
iterativo de solução do sistema de equações (Gauss-seidel, TDMA, ADI, etc.). Assim, recomenda-se a 
utilização de métodos para a solução do sistema de equações que aproveitem as características da 
matriz de coeficientes do MVF. 
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Abstract. The Finite Element Method (FEM) has been traditionally applied to stress analysis of 
mechanical problems, whereas the Finite Volume Method (FVM) has its main application in heat 
transfer and fluid dynamics. In recent years, use of Finite Elements in fluid dynamics problems has 
shown a substantial increase due, not only to its well-known facility to handle complex geometry, but 
also to the development of new element stabilisation techniques. On the other hand, the development of 
new models based on unstructured meshes has open new possibilities for application of the Finite 
Volume method. The present work presents a study on the application of the Finite Volume Method to 
plane elasticity, in which aspects of solution convergence are addressed and comparisons with Finite 
Element solutions are performed. 
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