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Diversas formulagdes de elementos finitos para problemas dindmicos acoplados fluido-estrutura
téem sido desenvolvidas utilizando-se diferentes varidaveis para o dominio fluido, tais como a
pressdo, potencial de deslocamentos, potencial de velocidades, entre outras. Considera-se neste
trabalho, uma analise acoplada elastoacustica, onde o céalculo dos modos proprios do sistema
envolve a discretizagdo simultdnea dos dominios estrutural e fluido pelo método dos elementos
finitos. Conforme a representagdo adotada, pode-se obter diferentes tipos de problemas de
autovalores: simétricos ou ndo simétricos, de primeira ou de segunda ordem. Neste trabalho sdo
analisadas e comparadas cinco formulacdes para problemas acoplados fluido-estrutura com énfase
nos aspectos numéricos e computacionais da analise modal. Problemas em dominios fechados, ou
com condigdes de contorno essenciais homogéneas serdo abordados, para geometrias
bidimensionais. Serdo avaliados os parametros relativos aos requisitos de memoria, custo
computacional, condicionamento numérico e a esparsidade das matrizes dos sistemas.
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1-INTRODUCAO

Sistemas acoplados fluido — estrutura estdo presentes em diversos sistemas utilizados nas
engenharias aeroespacial, automotiva, mecanica, naval, nuclear entre outras. O conforto actstico de
veiculos (um automdével ou uma aeronave), as vibragdes estruturais induzidas pelo ruido dos motores —
foguete na carga 0til de um langador espacial, as vibragcdes da membrana de um auto - falante (bem
como o campo de pressdo do fluido circundante) e as vibragdes de estruturas submersas sdo alguns
exemplos de problemas onde o acoplamento fluido-estrutura deve ser considerado. Neste trabalho
nossa atengdo esta voltada para a andlise pelo método dos elementos finitos das vibracdes livres de
sistemas fluido — estrutura nos quais existe acoplamento (logo nenhum dominio pode ser analisado
isoladamente) e onde o dominio fluido ¢ finito e ndo hd escoamento. As oscilagdes de pressdo e os
deslocamentos da estrutura podem ser considerados de pequena magnitude.

Para este tipo de problema, diversas formulagdes foram propostas. Escolher uma formulagdo para a
modelagem matematica de um sistema acoplado fluido — estrutura significa escolher as varidveis que
descreverdo o comportamento do sistema. Esta escolha tem conseqiiéncia direta nas propriedades
matematicas dos operadores a serem discretizados. Em fun¢ao da forma variacional obtida, chega-se a
diferentes tipos de problema de auto — valor: quadratico e simétrico, linear e ndo simétrico ou ainda
linear e simétrico.

Uma revisdo sobre as formula¢des de elementos finitos para o problema acoplado elasto - actstico
pode ser encontrada no trabalho de Everstine, 1997. Nosso objetivo no entanto ¢ comparar algumas
formulagdes de forma mais especifica, no tocante as caracteristicas numéricas € computacionais de suas
implementagdes, utilizando exemplos numéricos. Para isso utilizamos o programa de elementos finitos
“Meflab++”, desenvolvido no Departamento de Mecanica Computacional da UNICAMP o programa
ANSYS 6.0 bem como uma implementacdo especifica para ambiente MATLAB.

O exemplo escolhido consiste de uma viga imersa em fluido compressivel em uma configuragao
bidimensional. Os resultados da andlise comparativa realizada neste trabalho permitem estabelecer
algumas diretrizes para a escolha de formulagdes mais adaptadas a resolu¢do dos diferentes tipos de
problemas elasto-acusticos.

2-FORMULACOES PARA PROBLEMAS ACOPLADOS FLUIDO — ESTRUTURA

Uma sintese das formulagdes elasto-acusticas estudadas neste trabalho ¢ inicialmente
apresentada.

2.1 Formula¢éo u-p (deslocamentos-pressao)

Esta formulacdo pioneira e ainda hoje bastante utilizada, foi proposta por Zienkiewicz, 1969. A ¢
discretizada na forma Lagrangiana (deslocamentos) € o fluido na forma Euleriana (pressdes).
Desconsiderando-se efeitos de amortecimento e de ondas de superficie, a equacdo matricial
discretizada do sistema acoplado para o caso de vibragdes livres é:
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onde as matrizes [M ], [K ], [E], [H ] e [L] sdo respectivamente as matrizes de massa e de rigidez da
estrutura, de compressibilidade e volumétrica do fluido e de interface. O pardmetro A =@’ representa
a freqiiéncia angular @ ao quafrado, p € a massa especifica do fluido.

A Eq. (2.1) possui matrizes nao simétricas, perdendo pois, uma caracteristica das matrizes
usualmente geradas pelo método dos elementos finitos que permite: um armazenamento utilizando um



menor espaco de memoria, a utilizagdo de algoritmos padrdo para caclulo de auto — valores e auto
vetores. Além disso para o caso de cavidades acusticas completamente fechadas a resolugcdo da Eq.
(2.1) conduz a umn modo ndo fisico correspondente a um auto-valor nulo.

Pode-se “simetrizar” o sistema fazendo-se, da segunda linha de (2.1):

(p}=[11" 2o, [2] fu}+ [EYp}) 2.2)
Substituindo a Eq. (2.2) na Eq. (2.1) chega-se a:

p KT ON[tuf) Lo M)+ o[l L) o, [LTHT[E]|f{ed] _ [0}
[ [o] [EJ{{p}} }{ [El#] o, L] [E]#]"[£] H{ }} {{ }}
Na Eq. (2.2) é necessario inverter a matriz volumétrica, o que ¢ computacionalmente custoso € nao

poderd ser feito no caso de cavidades acusticas fechadas pois neste caso a matriz volumétrica sera
singular. Além disso a matriz de massa do sistema acoplado perdera sua esparsidade.

(2.3)

2.2 Formulacio u-u” (deslocamento-deslocamento)

Esta formulacdo consiste em tratar tanto o s6lido como o fluido pela descricdo Lagrangeana. Logo
os deslocamentos sdo as varaiaveis nodais da estrutura € do dominio fluido. Um fluido compressivel
inviscido pode ser representado por meio de um soélido eléstico isotrdpico equivalente cujo méddulo de
cisalhamento ¢ bastante pequeno porém nao nulo como mostrado por Everstine, 1997. Contudo, esta
formulagdo, ao contrario das demais, ndo inclui implicitamente a condi¢do de irrotacionalidade do
fluido. Desta forma modos espurios de circulagdo podem surgir. Estes modos podem ocorrer em
freqliéncias baixas ou altas e dependem da malha usada na discretizagdo. Para tentar contornar este
problema impde-se como condi¢ao adicional a irrotacionalidade do fluido como proposto por Hamdi
1978.

2.3 Formula¢io u-p-¢ (deslocamentos — potencial de deslocamentos — pressio)

A formulagdo de trés campos proposta por Morand, 1979, ¢ simétrica e utiliza duas variaveis nodais
para descrever o fluido, a pressao p e o potencial de deslocamentos ¢ dado por:

P=—pPP (2.4)
A equagdo do sistema acoplado em vibragdes livres é:

(k] [o] [ol| Tr[m] [o] [4]7l(&h ({0}
o] —[£] [o]|-4 [o] [o] [8] |[{p}t=100}
[o] p‘fo] [0] [4]" 8] -[a]}]lle}) ({0}

Onde [A] e [B] s@o matrizes de compressibilidade de acoplamento. Os detalhes para o calculo de
cada uma das matrizes pode ser encontrado em Morand, 1995.

Nesta formulagdo o numero de graus de liberdade do fluido ¢ dobrado, uma vez que o mesmo ¢
descrito por duas varidveis. Além disso, Mellado., 2001 mostra que as matrizes do sistema acoplado
sdo singulares, o sistema possui modos com freqiiéncia nula e o problema de autovalor ¢ de dificil
resolucdo utilizando-se os algoritmos tradicionais. Morand, 1995 propde eliminar todos os graus de
liberdade do potencial de deslocamentos, menos um, obtendo-se matrizes menores. Para isso sao feitas
parti¢des no vetor de graus de liberdade {o} e nas matrizes [H], [4] ¢ [B] da seguinte forma:

or=fid 0=y e -y gl -l -

(2.5)



Reescrevendo {p, } em termos de {u},{p}, ¢, , tem-se:

{(02 } =pPs [sz ]_1 [Azz ]T {u} +p; [sz ]_1 [Bzz ]T {p} — Py [sz ]_1 [H12 ]T 2 (2.8)
Introduzindo-se a Eq. (2.8) na Eq. (2.7) obtém-se, ap6s algumas manipulacdes:

[K] 1[0] {0} [M ] + [Azz ][H 2 ]_1 [Azz ]T [Azz ][H 2 ]_1 [B 2 ]T {a} {u} { }

[0] ; [E] {0} -4 [Bzz ][sz ]: [Azz ]T [Bzz ][sz ]T_1 [Bzz ]T {b} {p} = {0}

{O}T {O}T 0 {a} {b } 0 ?,

Onde: {a}T = {1 l}mvﬁ X [A]zﬁxzvs {b}T = {1 1}1xNZf X [B];;ixzv;’

Na pratica a matriz de massa da Eq.(2.9) pode ser obtida por condensagdo estatica da matriz de
massa da Eq. (2.5), conservando-se os todos os graus de liberdade de deslocamentos, de pressdo e
apenas um grau o prtimeiro grau de liberdade de potencial de deslocamentos como mostrado por
Morand, 1995.

Na Eq. (2.5) o acoplamento esta presente na matriz de massa do sistema acoplado. Alternativamente
Morand, 1995, mostra que o acoplamento pode ocorrer na matriz de rigidez, conforme mostrado
abaixo:

_ k] [o] -[z] | ][] [ol\|(&)) ({0}
ol [l [p] |-4[o] %[H] ]| Lo} = Lo} (2.10)
LTl -l [ ) L

(2.9)

(=]

(e)

onde: [D] ¢ uma matriz volumétrica de acoplamento p ¢ .

Morand, 1979 mostra que pode-se eliminar os graus de liberdade do potencial de deslocamentos,
obtendo-se

k] [o] T Hr. (2.11)
Lo LI [LAA T [E] ][] _ [0)
H[O] ,%,1’51] S [E][H]l[Erﬂ{{p}}‘{{o}}
que ¢ equivalente a Eq. (2.3).
Eliminando-se os graus de liberdade de pressao, obtém-se:
(2.12)
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Novamente ha o custo computacional de se inverter a matriz [E] que contudo ¢ sempre ndo singular,
pois deriva de uma forma quadratica positivo-definida. Logo, esta formulacao pode ser usada no caso
de sistemas fechados. No entanto as matrizes onde hd acoplamento perdem esparsidade tanto na Eq.
(2.11) quanto na Eq. (2.12).

Alguns autores (Sandberg, 1988 e Ding, 2001) utilizaram diferentes interpolagdes para os campos
de pressdo e potencial de deslocamentos na formulagdo com acoplamento na massa, baseando-se no

fato de que o potencial de deslocamentos ¢ a integral da pressdo. Isto permite que um menor nimero de
graus de liberdade seja utilizado no campo de potencial de deslocamentos do fluido.



2.4 Formulacao u-¢ (deslocamentos — potencial de velocidades)

A formulagdo u-¢ proposta por Everstine, 1981 ¢ uma modificacdo da formulag¢do u-p. Define-se
uma nova variavel nodal para o fluido, o potencial de velocidades dado por:

1 t
=—— [pa
¢ P, Jp (2.13)

e a equagdo do sistema acoplado passa a ser escrita da seguinte maneira:

L ol ler = 1~ 2

A Eq. (2.14) descreve um problema de auto — valor quadratico que a exemplo da Eq. (2.1), ndo
pode ser resolvido pelos algoritmos tradicionais.

Caso adote-se como constante na Eq. (2.13) 1/ p,, o sinal de [L]" é trocado e a matriz coeficiente do
termo de velocidade torna-se anti — simétrica. A equacdo do sistema acoplado ¢ entdo semelhante a de

um sistema giroscopico. Morand, 1995 afirma que esta formulagdo apresenta modos de freqii€éncia
nula,.

2.5 Formulacao u-¢-p, (deslocamentos — potencial de velocidades — pressiao hidrostatica)

A formulacido u-¢-p, proposta por Olson, 1985 ¢ uma modificagdo da formulacdo que utiliza o
potencial de velocidades e a pressdo hidrostatica como varidveis do fluido. A pressdo hidrostatica, ao
contrario do potencial de velocidades, nao ¢ uma variavel nodal e assume um valor constante para todo
o dominio fluido. Logo, o fluido ¢ discretizado apenas em termos de @4. A pressdo em cada ponto do
fluido ¢ dada por :

p=p,- P9 (2.15)
e a equagdo discretizada do sistema acoplado é:
(k] [l [&,T ol [T o [M] [o] [oI]|[{e}] ({0}
I -[#] Dol |+e|lcs] [l [c, ] |-e®| o] -[E] [o]| | i} =110} (2.16)
(K] [0]  [K,] I [c.r1 [0 o] [0l [oljlp,) ({0}

As dimensdes de [C,.|[K,s] e [K,,] sdo, respectivamente ngx1, ngxl e 1x1 (ng ¢ o numero de
graus de liberdade do fluido e ng € o numero de graus de liberdade da estrutura). O problema de

autovalor ¢ simétrico e quadratico com autovalores e autovetores reais ¢ ndo apresenta modos de
freqiiéncia nula.

3-COMPARACAO ENTRE AS FORMULACOES

Com o que foi apresentado no item 2, podemos observar as vantagens e¢ desvantagens de cada
formulagdo, que sdo apresentadas resumidamente na Tab. 3.1. Dentre as formulagdes analisadas,
escolhemos implementar ¢ comparar diretamente as formulagdes u-p, u-p-@, u-p-@; € u-¢, pois sao
capazes de resolver problemas com dominio fluido aberto ou fechado, ndo apresentam problemas de
autovalor de segunda ordem e sdo utilizadas por um consideravel nimero de autores, principalmente u-

p € u-p-o.



Tabela —3.1 Quadro comparativo das formula¢des

V - Vantagens D - Desvantagens
Formulagao
u-p V| 1)Um GDL" p/né fluido.
D| 1)Auto — valor ndo simétrico 2)Modos de freqiiéncia nula.
u-u" V| 1)Auto — valor simétrico ~ 2)Facil implementac¢do da interface.
D| 1)Trés GDL p/né fluido; 2)Penalidade necessaria para impor irrotacionalidade ao
fluido; 3)Preseng¢a de modos de circulagdo.
u-p-@ V_1)Problema de auto — valor simétrico.
D | 1)Dois GDL p/né fluido; 2)Modos de freqiiéncia nula;3)Matrizes singulares.
u-p-o; V| 1)Problema de auto — valor simétrico.
D| 1)Necessidade de inversdo da matriz [Hy;]; 2)Modos de freqiiéncia nula 3)Uma das
matrizes ndo esparsa.
u-¢ V| 1)Um GDL p/n6 fluido; 2)Auto — valor simétrico
D| I)Auto — valor quadratico; 2)Modos de freqiiéncia nula.
u-@ V| 1)Um GDL p/né fluido; 2)Auto — valor simétrico.
D| 1)Necessidade de inversdo da matriz [E], 2)Uma das matrizes ndo esparsa.
u-g@-po V| 1)Um GDL p/né fluido (p, ndo € variavel nodal);2)Auto — valor simétrico.
D| 1)Auto — valor quadratico.

M Grau de liberdade

Para comparar o desempenho computacional destas formulagdes, analisamos um modelo
bidimensional, mostrado na Fig. 3.1, com as condi¢des de contorno do fluido com a superficie superior
livre e fechada. Nas superficies laterais o fluido ¢ considerado em contato com uma parede rigida e na
superficie inferior ¢ aplicada a condi¢ao de contorno de interface fluido-estrutura.

As malhas foram geradas no ANSYS e as matrizes globais dos sistemas de equagdo foram geradas
no Meflab++. Os problemas de autovalor de cada formulacdo foram resolvidos utilizando-se o
MATLAB. Os dominios estrutural e fluido possuem, respectivamente, 66 e 481 (com superficie
superior livre) ou 468 (com superficie superior fechada) graus de liberdade. Em ambos os dominios
foram utilizados elementos quadrilaterais bilineares com 4 nds localizados nos vértices. As dimensdes
mostradas na Fig. 3.1 estdo em milimetros e as propriedades dos materiais dos dominios estrutural e
fluido sdo: E=2.1*¥10"" N/m%, p=7000 Kg/m®, v=0.3 para a estrutura ¢ p=1000 Kg/m® e ¢=1500m/s
(velocidade do som no fluido) para o fluido.
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Figura 3.1 Problema aberto Figura 3.2 Problema fechado

Analisamos o tempo de processamento, a memoria ocupada, a esparsidade das matrizes, o
nimero de autovalores nulos, e o condicionamento dos autovalores como parametros em cada
implementagao.

O tempo de processamento para o calculo dos autovalores e autovetores ¢ normalizado
considerando-se 1 para a formulagao mais rapida. Para o caso das formulacdes u-p-¢; € u-¢ o tempo
necessario as operagdes de inversdo de matrizes também ¢ incluido no tempo de calculo dos
autovalores e autovetores.

Como memoria ocupada considera-se apenas o espaco de memoria necessario para acomodar as
matrizes de massa e rigidez do sistema acoplado.

A esparsidade das matrizes foi avaliada pela razdo entre o numero de elementos ndo nulos e o
numero total de elementos da matriz.

O problema de autovalores generalizado associado as vibragdes livres tem a forma:

[k R} = Al Jix} 2.17)
Reduzindo-se a um problema de autovalores padrdo chega-se a:
[ ] [KFc} = 2} (2.18)

Em alguns casos foi possivel utilizar o algoritmo especial disponivel no MATLAB versao 6.5
para matrizes simétricas porém em algumas formulagdes isto ndo foi possivel devido a singularidade de
uma das matrizes. Na maior parte dos casos foi necessario reduzir-se o problema para a forma padrao
(perdendo-se a vantagem da simetria porém utilizando-se entdo o algoritmo QZ mais estavel) conforme
a Eq. (2.18) para obter resultados precisos nas feqiiéncias naturais (valores comparados com os obtidos
no ANSYYS).

Para calcular um indicador do condicionamento numérico do problema de autovalor da Eq.
(2.18) utilizamos o numero de condi¢ao dos autovalores dado por, Saad, 1992:

u; = Cond(2) = (cosO({x}, {y},))" (2.19)
Sendo A, o i-ésimo autovalor e {x}, e {y}. os seus respectivos autovetores a direita e a esquerda. Para
o problema de autovalores generalizado utilizamos como indicador de condicionamento, Stewart, 1978:

v =LK + () [ ) (2.20)




Os autovetores sdo normalizados de forma que suas normas Euclidianas sejam unitarias. Nas Eqs (2.19)

e (2.20), valores pequenos de ;/l._l e 4, indicam bom condcionamento.

4-RESULTADOS

Os parametros comparativos apresentados no item 3 sao mostrados na Tab. 4.1.

Tabela 4.1 Resultados numéricos (Sistema. Aberto: A;

Sistema. Fechado: F)

Tempo de | Memoria | Pior valor do indicador @ | Espars. | Espars. | Autovalores
proc.! (bytes) de [K] de [M] nulos
u-p A |23 114.308 |1,8637 (u,)® (0.0168) [(0.0154) |0
F (29 117.076 | 1,6883x10"" (1)@ (0.0163) [(0.0150) |1
u-p- A |56 116.480 | 1,0024 ( . )® (0.0047) [(0.0122) 468
Eq(2.5) [F 6,3 119.508 |1,2509 x10% ()@ (0.0046) [(0.0119) | 482
u-p-¢ A 285 116.480 [3,2400 x10'' () (0.0126) [(0.0043) |0
Eq- (2-10) [F 28,4 119.508 | 6,4800 x10' (') (0.0123) [(0.0042) |1
up-¢r  |A [2,6 1.423.972 | 4,2995 x10" (1,) @ (0.0166) | (0.8064) |1
F [2,6 1.500.792 |4,2995 x10" (u,) @ (0.0162) [(0.8107) |2
u-Q A |1 1.418.156 | 3,5961 x10™'% () (0.8073) |(0.0153) |0
F [1,01 1.494.844 [3,5961 x10™2 (') (0.8116) [(0.0149) |1

) Normalizado ) Reduzido ao problema de autovalor comum ©’ Nos 10 primeiros modos.

Nas Figs. (4.1) e (4.2) pode-se observar o padrao de esparsidade, das matrizes globais dos sistema.

wp
@

wp
@

u-p-¢ eq (2.5)

u-p-e eq (2.12)

w-o
(@)

.bz.

g
(@)

Figura 4.2 — Padrao de esparsidade das matrizes de massa do problema fechado
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Figura 4.1 — Padrao de esparsidade das matrizes de rigidez do problema fechado
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5-CONCLUSOES

Tempo de processamento — Uma vez que ndo foi possivel utilizar algoritmos otimizados para
matrizes simétricas, consideramos o tempo de processamento como um parametro apenas informativo.
De uma maneira geral, podemos esperar que os algoritmos de calculo de autovalores/autovetores para
matrizes simétricas sejam mais rapidos que para matrizes ndo simétricas quando implementados em
linguagens de programagdo como C ou FORTRAN.

Memoria ocupada — As formulagdes u-p-¢ e u-p apresentaram desempenho muito semelhante e
bastante superior ao das demais formulagdes, com pequena vantagem para u-p. A simetria e o elevado
grau de esparsidade das matrizes das formulagdes u-p-¢ compensa o fato de dobrarem o niimero de
graus de liberdade do fluido. As formula¢des u-¢ e u-p-¢; apresentam grande desvantagem neste
parametro, pois embora sejam simétricas, perdem muito em esparsidade.

Modos de freqiiéncia nula - Quanto a presenca de modos computacionais nulos, as formulagdes u-p
e u-¢ mostraram-se bastante superiores. No entanto, procedimentos de “shifting” no calculo de
autovalores talvez possam resolver este problema nas demais formulacdes, principalmente u-p-¢ com
acoplamento na massa.

Condicionamento dos autovalores — O problema fechado mostrou—se de uma maneira geral, mais
critico em quase todas as formulacdes. A formulacdo u-¢ ¢ claramente superior as demais no aspecto
condicionamento dos autovalores.

Deve-se ressaltar que as formulagdes simétricas requerem algoritmos de calculo de autovalores e
autovetores mais comumente utilizados e de mais simples implementacdo que formulagdes nao
simétricas ou ainda que formulagdes simétricas cujo problema de autovalor ¢ de segunda ordem. As
formulagdes de trés campos mesmo sendo simétricas apresentam problemas de singularidade e matrizes
ndo positivo — definidas Mellado., 2001. Também necessitam de algoritmos tradicionais adaptados
Sandberg, 1988, perdendo um pouco a vantagem da simplicidade dos algoritmos. Para as formulacdes
ndo simétricas € necessario usar métodos como o descrito em Yu, 1986, que utiliza as iteragcdes por sub
— espagos para obter um sistema nao - simétrico reduzido resolvido por meio do algoritmo QZ.

A escolha de uma formulacdo fluido — estrutura sera influenciada por fatores como o tipo de
algoritmo de calculo de autovalores/autovetores disponivel e a possibilidade de utilizar tipos de dados
com grande capacidade de armazenamento (matrizes simétricas em banda e esparsas, por exemplo). A
formulacdo u-¢ ¢ extremamente vantajosa dos pontos de vista do condicionamento dos autovetores e
dos modos de freqiiéncia nula, embora ocupe muita memoria. As formulagdes de trés campos podem
ser interessantes caso se utilize técnicas de ‘“‘shifting” que possam evitar a singularidade de suas
matrizes.
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Many finite-element formulations for fluid-structure coupled problems has been
developed in the last years. The fluid domain variables used can be: pressure, displacements
potentials, velocity potentials, e.g. We consider in this work the modal analysis of a coupled elasto
- acoustic system performed by the finite-element method. According to the formulation adopted,
one can obtain different types of eigenvalue problems: symmetric or non-symmetric, first order
or second order. In this work some formulations for fluid - structure coupled problems are
analyzed comparatively focused on the numerical and computational aspects when a modal
analysis is performed by the finite - element method. Simple geometry systems with different
boundary conditions (fluid with free surface and closed fluid domain) are analyzed. Special
attention is given to core memory needed, computational costs and numerical precision.
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