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Diversas formulações de elementos finitos para problemas dinâmicos acoplados fluido-estrutura
têm sido desenvolvidas utilizando-se diferentes variáveis para o domínio fluido, tais como a
pressão, potencial de deslocamentos, potencial de velocidades, entre outras. Considera-se neste
trabalho, uma análise acoplada elastoacústica, onde o cálculo dos modos próprios do sistema
envolve a discretização simultânea dos domínios estrutural e fluido pelo método dos elementos
finitos. Conforme a representação adotada, pode-se obter diferentes tipos de problemas de
autovalores: simétricos ou não simétricos, de primeira ou de segunda ordem. Neste trabalho são
analisadas e comparadas cinco formulações para problemas acoplados fluido-estrutura com ênfase
nos aspectos numéricos e computacionais da análise modal. Problemas em domínios fechados, ou
com condições de contorno essenciais homogêneas serão abordados, para geometrias
bidimensionais. Serão avaliados os parâmetros relativos aos requisitos de memória, custo
computacional, condicionamento numérico e a esparsidade das matrizes dos sistemas.
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1-INTRODUÇÃO

Sistemas acoplados fluido – estrutura estão presentes em diversos sistemas utilizados nas
engenharias aeroespacial, automotiva, mecânica, naval, nuclear entre outras. O conforto acústico de
veículos (um automóvel ou uma aeronave), as vibrações estruturais induzidas pelo ruído dos motores –
foguete na carga útil de um lançador espacial, as vibrações da membrana de um auto - falante (bem
como o campo de pressão do fluido circundante) e as vibrações de estruturas submersas são alguns
exemplos de problemas onde o acoplamento fluido-estrutura deve ser considerado. Neste trabalho
nossa atenção está voltada para a análise pelo método dos elementos finitos das vibrações livres de
sistemas fluido – estrutura nos quais existe acoplamento (logo nenhum domínio pode ser analisado
isoladamente) e onde o domínio fluido é finito e não há escoamento. As oscilações de pressão e os
deslocamentos da estrutura podem ser considerados de pequena magnitude.

Para este tipo de problema, diversas formulações foram propostas. Escolher uma formulação para a
modelagem matemática de um sistema acoplado fluido – estrutura significa escolher as variáveis que
descreverão o comportamento do sistema. Esta escolha tem conseqüência direta nas propriedades
matemáticas dos operadores a serem discretizados. Em função da forma variacional obtida, chega-se a
diferentes tipos de problema de auto – valor: quadrático e simétrico, linear e não simétrico ou ainda
linear e simétrico.

Uma revisão sobre as formulações de elementos finitos para o problema acoplado elasto - acústico
pode ser encontrada no trabalho de Everstine, 1997. Nosso objetivo no entanto é comparar algumas
formulações de forma mais específica, no tocante às características numéricas e computacionais de suas
implementações, utilizando exemplos numéricos. Para isso utilizamos o programa de elementos finitos
“Meflab++”, desenvolvido no Departamento de Mecânica Computacional da UNICAMP o programa
ANSYS 6.0 bem como uma implementação específica para ambiente MATLAB.

O exemplo escolhido consiste de uma viga imersa em fluido compressível em uma configuração
bidimensional. Os resultados da análise comparativa realizada neste trabalho permitem estabelecer
algumas diretrizes para a escolha de formulações mais adaptadas à resolução dos diferentes tipos de
problemas elasto-acústicos.

2-FORMULAÇÕES PARA PROBLEMAS ACOPLADOS FLUIDO – ESTRUTURA

Uma síntese das formulações elasto-acústicas estudadas neste trabalho é inicialmente
apresentada.

2.1 Formulação u-p (deslocamentos-pressão)

Esta formulação pioneira e ainda hoje bastante utilizada, foi proposta por Zienkiewicz, 1969. A é
discretizada na forma Lagrangiana (deslocamentos) e o fluido na forma Euleriana (pressões).
Desconsiderando-se efeitos de amortecimento e de ondas de superfície, a equação matricial
discretizada do sistema acoplado para o caso de vibrações livres é:
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onde as matrizes � �M , � �K , � �E , � �H  e � �L  são respectivamente as matrizes de massa e de rigidez da
estrutura, de compressibilidade e volumétrica do fluido e de interface. O parâmetro 2

�� �  representa
a freqüência angular �  ao quafrado, �  é a massa específica do fluido.

A Eq. (2.1) possui matrizes não simétricas, perdendo pois, uma característica das matrizes
usualmente geradas pelo método dos elementos finitos que permite: um armazenamento utilizando um



menor espaço de memória, a utilização de algoritmos padrão para cáclulo de auto – valores e auto
vetores. Além disso para o caso de cavidades acústicas completamente fechadas a resolução da Eq.
(2.1) conduz a umn modo não físico correspondente a um auto-valor nulo.

Pode-se “simetrizar” o sistema fazendo-se, da segunda linha de (2.1):
� � � � � � � � � �� �� �pEuLHp T

f ��
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Substituindo a Eq. (2.2) na Eq. (2.1) chega-se a:
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Na Eq. (2.2) é necessário inverter a matriz volumétrica, o que é computacionalmente custoso e não
poderá ser feito no caso de cavidades acústicas fechadas pois neste caso a matriz volumétrica será
singular. Além disso a matriz de massa do sistema acoplado perderá sua esparsidade.

2.2 Formulação u-uF (deslocamento-deslocamento)

Esta formulação consiste em tratar tanto o sólido como o fluido pela descrição Lagrangeana. Logo
os deslocamentos são as varáiaveis nodais da estrutura e do domínio fluido. Um fluido compressível
invíscido pode ser representado por meio de um sólido elástico isotrópico equivalente cujo módulo de
cisalhamento é bastante pequeno porém não nulo como mostrado por Everstine, 1997. Contudo, esta
formulação, ao contrário das demais, não inclui implicitamente a condição de irrotacionalidade do
fluido. Desta forma modos espúrios de circulação podem surgir. Estes modos podem ocorrer em
freqüências baixas ou altas e dependem da malha usada na discretização. Para tentar contornar este
problema impõe-se como condição adicional a irrotacionalidade do fluido como proposto por Hamdi
1978.

2.3 Formulação u-p-� (deslocamentos – potencial de deslocamentos – pressão)

A formulação de três campos proposta por Morand, 1979, é simétrica e utiliza duas variáveis nodais
para descrever o fluido, a pressão p e o potencial de deslocamentos �  dado por:

�� ��fp �� (2.4)
A equação do sistema acoplado em vibrações livres é:
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Onde [A] e [B] são matrizes de compressibilidade de acoplamento. Os detalhes para o cálculo de
cada uma das matrizes pode ser encontrado em Morand, 1995.

Nesta formulação o número de graus de liberdade do fluido é dobrado, uma vez que o mesmo é
descrito por duas variáveis. Além disso, Mellado., 2001 mostra que as matrizes do sistema acoplado
são singulares, o sistema possui modos com freqüência nula e o problema de autovalor é de difícil
resolução utilizando-se os algoritmos tradicionais. Morand, 1995 propõe eliminar todos os graus de
liberdade do potencial de deslocamentos, menos um, obtendo-se matrizes menores. Para isso são feitas
partições no vetor de graus de liberdade � ��  e nas matrizes � �H , � �A  e � �B  da seguinte forma:
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Reescrevendo � �2�  em termos de � � � � 1,, �pu , tem-se:
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Introduzindo-se a Eq. (2.8) na Eq. (2.7) obtém-se, após algumas manipulações:
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Onde: � � � � � �T xNNxN
T
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Na prática a matriz de massa da Eq.(2.9) pode ser obtida por condensação estática da matriz de
massa da Eq. (2.5), conservando-se os todos os graus de liberdade de deslocamentos, de pressão e
apenas um grau o prtimeiro grau de liberdade de potencial de deslocamentos como mostrado por
Morand, 1995.

Na Eq. (2.5) o acoplamento esta presente na matriz de massa do sistema acoplado. Alternativamente
Morand, 1995, mostra que o acoplamento pode ocorrer na matriz de rigidez, conforme mostrado
abaixo:
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onde: � �D  é uma matriz volumétrica de acoplamento p � .

(2.10)

Morand, 1979 mostra que pode-se eliminar os graus de liberdade do potencial de deslocamentos,
obtendo-se
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que é equivalente à Eq. (2.3).
Eliminando-se os graus de liberdade de pressão, obtém-se:
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Novamente há o custo computacional de se inverter a matriz [E] que contudo é sempre não singular,
pois deriva de uma forma quadrática positivo-definida. Logo, esta formulação pode ser usada no caso
de sistemas fechados. No entanto as matrizes onde há acoplamento perdem esparsidade tanto na Eq.
(2.11) quanto na Eq. (2.12).

Alguns autores (Sandberg, 1988 e Ding, 2001) utilizaram diferentes interpolações para os campos
de pressão e potencial de deslocamentos na formulação com acoplamento na massa, baseando-se no
fato de que o potencial de deslocamentos é a integral da pressão. Isto permite que um menor número de
graus de liberdade seja utilizado no campo de potencial de deslocamentos do fluido.



2.4 Formulação u-� (deslocamentos – potencial de velocidades)

A formulação u-� proposta por Everstine, 1981 é uma modificação da formulação u-p. Define-se
uma nova variável nodal para o fluido, o potencial de velocidades dado por:
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e a equação do sistema acoplado passa a ser escrita da seguinte maneira:
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A Eq. (2.14) descreve um problema de auto – valor quadrático que a exemplo da Eq. (2.1), não
pode ser resolvido pelos algoritmos tradicionais.
Caso adote-se como constante na Eq. (2.13) f�/1 , o sinal de [L]T é trocado e a matriz coeficiente do
termo de velocidade torna-se anti – simétrica. A equação do sistema acoplado é então semelhante a de
um sistema giroscópico. Morand, 1995 afirma que esta formulação apresenta modos de freqüência
nula,.

2.5 Formulação u-�-po (deslocamentos – potencial de velocidades – pressão hidrostática)

A formulação u-�-po proposta por Olson, 1985 é uma modificação da formulação que utiliza o
potencial de velocidades e a pressão hidrostática como variáveis do fluido. A pressão hidrostática, ao
contrário do potencial de velocidades, não é uma variável nodal e assume um valor constante para todo
o domínio fluido. Logo, o fluido é discretizado apenas em termos de �. A pressão em cada ponto do
fluido é dada por :
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fopp �� (2.15)

e a equação discretizada do sistema acoplado é:
� � � � � �
� � � � � �

� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� �
� �

� �
� �
� ���

�
�

�

�
�

�
�

�

�
�
�

�
�

�

�
�

�
�

�

	
	
	
	




�

�
�
�
�




�

�
�
�

�

�

�
�
�

�

�

��
�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�

0
0
0

000
00
00

00
0

00

0
00

0
2

oPF

T
PFFS

T
FS

PPPS

T
PS

p

u
E

M

C
CC

C

KK
H

KK
��� (2.16)

As dimensões de � � � �PSPF KC ,  e � �PPK  são, respectivamente nFx1, nSx1 e 1x1 (nF é o número de
graus de liberdade do fluido e nS é o número de graus de liberdade da estrutura). O problema de
autovalor é simétrico e quadrático com autovalores e autovetores reais e não apresenta modos de
freqüência nula.

3-COMPARAÇÃO ENTRE AS FORMULAÇÕES

Com o que foi apresentado no ítem 2, podemos observar as vantagens e desvantagens de cada
formulação, que são apresentadas resumidamente na Tab. 3.1. Dentre as formulações analisadas,
escolhemos implementar e comparar diretamente as formulações u-p, u-p-�, u-p-�1 e u-�, pois são
capazes de resolver problemas com domínio fluido aberto ou fechado, não apresentam problemas de
autovalor de segunda ordem e são utilizadas por um considerável número de autores, principalmente u-
p e u-p-�.



Tabela –3.1 Quadro comparativo das formulações
V - Vantagens D - Desvantagens

Formulação
V 1)Um GDL(1) p/nó fluido.u-p
D 1)Auto – valor não simétrico          2)Modos de freqüência nula.
V 1)Auto – valor simétrico       2)Fácil implementação da interface.u-uF

D 1)Três GDL p/nó fluido;  2)Penalidade necessária para impor irrotacionalidade ao
fluido;     3)Presença de modos de circulação.

V 1)Problema de auto – valor simétrico.u-p-�
D 1)Dois GDL p/nó fluido; 2)Modos de freqüência nula;3)Matrizes singulares.

u-p-�1 V 1)Problema de auto – valor simétrico.
D 1)Necessidade de inversão da matriz [H22]; 2)Modos de freqüência nula 3)Uma das

matrizes não esparsa.
V 1)Um GDL p/nó fluido;    2)Auto – valor simétricou-�
D 1)Auto – valor quadrático;     2)Modos de freqüência nula.
V 1)Um GDL p/nó fluido;    2)Auto – valor simétrico.u-�
D 1)Necessidade de inversão da matriz [E], 2)Uma das matrizes não esparsa.
V 1)Um GDL p/nó fluido (po não é variável nodal);2)Auto – valor simétrico.u-�-po

D 1)Auto – valor quadrático.
(1) Grau de liberdade

Para comparar o desempenho computacional destas formulações, analisamos um modelo
bidimensional, mostrado na Fig. 3.1, com as condições de contorno do fluido com a superfície superior
livre e fechada. Nas superfícies laterais o fluido é considerado em contato com uma parede rígida e na
superfície inferior é aplicada a condição de contorno de interface fluido-estrutura.

As malhas foram geradas no ANSYS e as matrizes globais dos sistemas de equação foram geradas
no Meflab++. Os problemas de autovalor de cada formulação foram resolvidos utilizando-se o
MATLAB. Os domínios estrutural e fluido possuem, respectivamente, 66 e 481 (com superfície
superior livre) ou 468 (com superfície superior fechada) graus de liberdade. Em ambos os domínios
foram utilizados elementos quadrilaterais bilineares com 4 nós localizados nos vértices. As dimensões
mostradas na Fig. 3.1 estão em milímetros e as propriedades dos materiais dos domínios estrutural e
fluido são: E=2.1*1011 N/m2, �=7000 Kg/m3, �=0.3 para a estrutura e �=1000 Kg/m3 e c=1500m/s
(velocidade do som no fluido) para o fluido.



Figura 3.1 Problema aberto Figura 3.2 Problema fechado

Analisamos o tempo de processamento, a memória ocupada, a esparsidade das matrizes, o
número de autovalores nulos, e o condicionamento dos autovalores como parâmetros em cada
implementação.

O tempo de processamento para o cálculo dos autovalores e autovetores é normalizado
considerando-se 1 para a formulação mais rápida. Para o caso das formulações u-p-�1 e u-�  o tempo
necessário às operações de inversão de matrizes também é incluído no tempo de cálculo dos
autovalores e autovetores.

Como memória ocupada considera-se apenas o espaço de memória necessário para acomodar as
matrizes de massa e rigidez do sistema acoplado.

A esparsidade das matrizes foi avaliada pela razão entre o número de elementos não nulos e o
número total de elementos da matriz.

O problema de autovalores generalizado associado às vibrações livres tem a forma:
� �� � � �� �xMxK �� (2.17)
Reduzindo-se a um problema de autovalores padrão chega-se a:
� � � �� � � �xxKM ��

�1 (2.18)
Em alguns casos foi possível utilizar o algoritmo especial disponível no MATLAB versão 6.5

para matrizes simétricas porém em algumas formulações isto não foi possível devido à singularidade de
uma das matrizes. Na maior parte dos casos foi necessário reduzir-se o problema para a forma padrão
(perdendo-se a vantagem da simetria porém utilizando-se então o algoritmo QZ mais estável) conforme
a Eq. (2.18) para obter resultados precisos nas feqüências naturais (valores comparados com os obtidos
no ANSYS).

Para calcular um indicador do condicionamento numérico do problema de autovalor da Eq.
(2.18) utilizamos o número de condição dos autovalores dado por, Saad, 1992:

� � � �� � 1)(cos)( �

�� iii yxCond ��� (2.19)

Sendo i�  o i-ésimo autovalor e � �ix  e � �iy  os seus respectivos autovetores à direita e à esquerda. Para
o problema de autovalores generalizado utilizamos como indicador de condicionamento, Stewart, 1978:

� � � �� � � � � �� �i
H

ii
H

ii xMyxKy ���
(2.20)



Os autovetores são normalizados de forma que suas normas Euclidianas sejam unitárias. Nas Eqs (2.19)
e (2.20), valores pequenos de 1�

i�  e i�  indicam bom condcionamento.

4-RESULTADOS

Os parâmetros comparativos apresentados no item 3 são mostrados na Tab. 4.1.

Tabela 4.1 Resultados numéricos (Sistema. Aberto: A; Sistema. Fechado: F)

Tempo de
proc.(1)

Memória
(bytes)

Pior valor do indicador (3) Espars.
de [K]

Espars.
de [M]

Autovalores
nulos

A 2,3 114.308 1,8637 ( i� ) (2) (0.0168) (0.0154) 0u-p
F 2,9 117.076 1,6883x1011 ( i� ) (2) (0.0163) (0.0150) 1
A 5,6 116.480 1,0024 ( i� )(2) (0.0047) (0.0122) 468u-p-�

Eq (2.5) F 6,3 119.508 1,2509 x1006 ( i� ) (2) (0.0046) (0.0119) 482
A 28,5 116.480 3,2400 x1011 ( 1�

i� ) (0.0126) (0.0043) 0u-p-�
Eq. (2.10) F 28,4 119.508 6,4800 x1011 ( 1�

i� ) (0.0123) (0.0042) 1
A 2,6 1.423.972 4,2995 x1010 ( i� ) (2) (0.0166) (0.8064) 1u-p-�1

F 2,6 1.500.792 4,2995 x1010 ( i� ) (2) (0.0162) (0.8107) 2
A 1 1.418.156 3,5961 x10-12 ( 1�

i� ) (0.8073) (0.0153) 0u-�
F 1,01 1.494.844 3,5961 x10-12 ( 1�

i� )(3) (0.8116) (0.0149) 1
(1) Normalizado    (2) Reduzido ao problema de autovalor comum   (3) Nos 10 primeiros modos.

Nas Figs. (4.1) e (4.2) pode-se observar o padrão de esparsidade, das matrizes globais dos sistema.

u-p
(a)

u-p-� eq (2.5)
(b)

u-p-� eq (2.12)
(c)

u-�
(d)

u-p-�1
(e)

Figura 4.1 – Padrão de esparsidade das matrizes de rigidez do problema fechado

u-p
(a)

u-p-� eq (2.5)
(b)

u-p-� eq (2.12)
(c)

u-�
(d)

u-p-�1
(e)

Figura 4.2 – Padrão de esparsidade das matrizes de massa do problema fechado



5-CONCLUSÕES

Tempo de processamento – Uma vez que não foi possível utilizar algoritmos otimizados para
matrizes simétricas, consideramos o tempo de processamento como um parâmetro apenas informativo.
De uma maneira geral, podemos esperar que os algoritmos de cálculo de autovalores/autovetores para
matrizes simétricas sejam mais rápidos que para matrizes não simétricas quando implementados em
linguagens de programação como C ou FORTRAN.

Memória ocupada – As formulações u-p-� e u-p apresentaram desempenho muito semelhante e
bastante superior ao das demais formulações, com pequena vantagem para u-p. A simetria e o elevado
grau de esparsidade das matrizes das formulações u-p-� compensa o fato de dobrarem o número de
graus de liberdade do fluido. As formulações u-� e u-p-�1 apresentam grande desvantagem neste
parâmetro, pois embora sejam simétricas, perdem muito em esparsidade.

Modos de freqüência nula - Quanto à presença de modos computacionais nulos, as formulações u-p
e u-� mostraram-se bastante superiores. No entanto, procedimentos de “shifting” no cálculo de
autovalores talvez possam resolver este problema nas demais formulações, principalmente u-p-� com
acoplamento na massa.

Condicionamento dos autovalores – O problema fechado mostrou—se de uma maneira geral, mais
crítico em quase todas as formulações. A formulação u-� é claramente superior às demais no aspecto
condicionamento dos autovalores.

Deve-se ressaltar que as formulações simétricas requerem algoritmos de cálculo de autovalores e
autovetores mais comumente utilizados e de mais simples implementação que formulações não
simétricas ou ainda que formulações simétricas cujo problema de autovalor é de segunda ordem. As
formulações de três campos mesmo sendo simétricas apresentam problemas de singularidade e matrizes
não positivo – definidas Mellado., 2001. Também necessitam de algoritmos tradicionais adaptados
Sandberg, 1988, perdendo um pouco a vantagem da simplicidade dos algoritmos. Para as formulações
não simétricas é necessário usar métodos como o descrito em Yu, 1986, que utiliza as iterações por sub
– espaços para obter um sistema não - simétrico reduzido resolvido por meio do algoritmo QZ.

A escolha de uma formulação fluido – estrutura será influenciada por fatores como o tipo de
algoritmo de cálculo de autovalores/autovetores disponível e a possibilidade de utilizar tipos de dados
com grande capacidade de armazenamento (matrizes simétricas em banda e esparsas, por exemplo). A
formulação u-� é extremamente vantajosa dos pontos de vista do condicionamento dos autovetores e
dos modos de freqüência nula, embora ocupe muita memória. As formulações de três campos podem
ser interessantes caso se utilize técnicas de “shifting” que possam evitar a singularidade de suas
matrizes.
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Many finite-element formulations for fluid-structure coupled problems has been
developed in the last years. The fluid domain variables used can be: pressure, displacements
potentials, velocity potentials, e.g. We consider in this work the modal analysis of a coupled elasto
- acoustic system performed by the finite-element method. According to the formulation adopted,
one can obtain different types of eigenvalue problems: symmetric or non-symmetric, first order
or second order. In this work some formulations for fluid - structure coupled problems are
analyzed comparatively focused on the numerical and computational aspects when a modal
analysis is performed by the finite - element method. Simple geometry systems with different
boundary conditions (fluid with free surface and closed fluid domain) are analyzed. Special
attention is given to core memory needed, computational costs and numerical precision.
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