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Resumo: No presente trabalho ¢ apresentado um modelo fisico para simula¢do de um duto
inelastico axissimétrico sob carregamento de pressdo. Os termos de acoplamento irdo produzir
tensoes e deformagoes no material do duto gerando uma certa distribui¢do de dano. Utiliza-se um
modelo de dano isotropico baseado na teoria das variaveis internas com efeitos de endurecimento
isotrépico e cinemdtico inseridos. E proposto um algoritmo baseado no método de decomposi¢io
do operador para solu¢do numérica do problema. E utilizado um esquema numéricode solu¢do
tipo preditor elastico - corretor plastico juntamente com o MEF.
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1. INTRODUCAO

O avango atual das ferramentas computacionais tem possibilitado a utilizagdo de modelagens
mais completas e sofisticadas para simulagdo do comportamento de materiais de engenharia.
Modelos multifisica com equagdes constitutivas ndo lineares tém permitido prever o
comportamento de material de uma forma bem mais realista. Entretanto, ainda se faz necessario um
tratamento adequado para obtencao das equacdes que regem o modelo, bem como a apresentacao de
métodos numéricos simples e confidveis para resolvé-las. E apresentado neste trabalho, a partir de
um modelo de dano continuo, uma formulagdo para simular o comportamento de um duto
axissimétrico. O efeito do campo de pressdo proveniente do fluido no duto é colocado através da
condi¢io de contorno. E proposto também um algoritmo para solugio numérica do problema
baseado no métodos de decomposicao do operador através de um esquema tipo preditor eldstico e
corretor plastico e 0 método dos elementos finitos.

2. EQUACOES CONSTITUTIVAS

As equagdes que regem o modelo ¢ baseado numa teoria com variaveis internas desenvolvida
por Chaboche e Lemaitre(1990) para problemas isotérmicos. O modelo leva em conta o efeito do
endurecimento material e de dano isotrépico. O modelo pode ser aplicado para materiais com
comportamento linear elastico, ndo linear pléstico, ou ainda ndo linear viscoplastico.

2.1. Modelo constitutivo com variaveis internas



Baseado no modelo constitutivo com varidveis internas proposto por Lemaitre (1990) e,
introduzindo a hipdtese indicada por Barbosa (1998) de que a variavel de dano (D € [0,1]) afeta
tanto a parcela ineldstica como a parcela elastica da energia livre na forma:

pV/:(l'D)(Wa+We) (1)

W. e W, sdo as densidades de energia elastica e inelastica respectivamente. p ¢ a densidade do
material e é considerada constante. Observe que no modelo proposto neste trabalho, diferentemente
do modelo de Chaboche (1990), a energia livre afeta tanto a parte elastica como a inelastica da
energia livre. Esta formulacdo tem permitido bons resultados numéricos para problemas dinamicos
unidimensionais (Barbosa, 1998). Considerando o material inicialmente isotropico, as parcelas
elastica e inelstica tém a seguinte forma:

Wele-e" = (12) Atre-g"f +2unrl(e-e) (-2 @

W, (p,©)=W,(p) + W, (c)
W, (p)=b(p + (1/d)e ) 3)
W () =ama(ce)

Nas relacdes acima as variaveis internas p, ¢, € D exprimem, cada qual, um comportamento

dissipativo do material. A varidvel p, denominada de deformagdo plastica acumulada, ¢ um escalar
associado ao endurecimento isotropico; ¢ € um tensor simétrico de segunda ordem associado ao

endurecimento cinematico, e D um escalar que expressa o nivel de degradacao do material (quando
D = 0, material virgem e quando D = 1, material totalmente degradado). Em geral, considera-se
devido a observagdes experimentais, que o material falha quando D atinge certo valor critico D,
definido para cada material. Os pardmetros constitutivos A, W, sdo os coeficientes de Lamé, b, d, a,
Gp 30 parametros constitutivos

A partir da expressdo para o potencial da energia livre pode-se obter por derivacao, as relacdes
ou leis de estado que associam as forcas termodinamicas as variaveis internas. Assim, temos:

g:%[ﬂﬂvxﬁ-ﬁp)+”f<£'£p)1] “
Y= (1-Dybli-e| ®)
X =(1-D)(ac) ©

BP = (W, +W, +W,)

(7)
2.2. Caso Elastoviscoplastico

No caso em estudo, consideramos o material do duto como sendo elastoviscoplastico. Sendo

. . - ., .. - . . . *
assim, as leis de evolugdo para as varidveis internas sdo obtidas a partir de um potencial ¢ . Desta
forma, tem-se as seguintes equacdes:

(8)



: L | oo 2
F@ Y. X:0) =M@, Y. )+ (@)X : X)-la(1- D) (co) s PP _((ii))j ®

f(g,Y,é):J(é—):()—Y

(O-rr + O-HH + O-zz ) (10)

Je-0=p/as-0:6- D] =g

onde S ¢é a parte desviadora de o . Derivando o potencial ¢ dado em relagdo as forgas

termodinamicas, obtém-se as leis de evolugao para as varidveis internas associadas:

p-[emier ]

(11)
1(S-X)-Y\" (5-X)
Ay R, = = = =
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p-B"5
S (14)

Sendo valida aqui a decomposicdo aditiva da deformag¢do em parcelas eldstica e plastica de
forma que:

.
™.

e (15)
3. ANALISE AXISSIMETRICA ELASTOVISCOPLASTICA USANDO O MEF

O modelo do MEF requer a forma fraca do problema que obtida multiplicando a equacao
diferencial de equilibrio por uma fungdo teste e integrando no dominio B; como descrito em Bathe
(1996) e Zienkiewicz (1977). Obtém-se entao:

T
[&ha=[i b+ [i"s (16)
B, B, B,
onde o ¢ a expressdo vetorial do tensor de tensdes, ¢ vetor de tensdes no contorno e b a forca

de cortpo. As fungdes de interpolagdo N; , Nj e Ny, permitem aproximar o campo de deslocamentos
na forma:

u:{i’}:[uvi,w,,mm]ae (17)

onde a° representa o vetor deslocamento no elemento. O elemento utilizado foi o de forma
triangular com nds i, j , m numerados no sentido anti-horario. Assim, o vetor a° ¢ definido como:

(ae)r :{ana_/aam} (18)

com aj, a; € a, sdo definidos como os vetores que possuem os deslocamentos dos ndés como
coordenadas, ou seja: (a,)" ={u,,v,}.
O campo de deformagao pode ser expresso na forma vetorial e colocado como:



(20)

aT:{ gzagrgeyrz}:{ﬁv ou u ou 8\/}
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Usando as fungdes deslocamento definidas em (17) e conhecendo também as fungdes de forma (ou
fungdes de interpolacdo), podemos redefinir o campo de deformagdo como:

g=Ba‘=[B,B,,B, |a° @1)

onde B ¢ a matriz das derivadas das fung¢des de forma, que para o caso axissimétrico. B;, B; e By,
podem ser escritos numa estrutura explicitando os subindices nas fun¢des de forma. No presente
trabalho B; e a matriz de elasticidade s@o expresso por (Bathe, 1996),

[ 0 ON, | 1 v v 0 ]
oz 1-v 1-v
6Ni 0 0 G 14 1 14 0
R I U 0| L, En i i (2)
i 1N,~ 0 20|a, /r+b,+cz/r O = (1+v)(1-2v)| V v ! 0
g’ c, b, 1-v v
ON, ON, . . . 12y
L Oz or | I 20-0)

Substituindo as expressoes (21), (22) na forma fraca junto com a equacao (4), obtemos a forma
fraca em termos do dano. Desta maneira, fica-se com:

B B B

[(-D)" &' EBu= [i b+ [i'1+ [1-DY &' Ee’ o)
Bt

Que apos as integragdes resulta na forma matricial:

K(D)U =F +F"(D) (24)

Verifica-se entdo que o dano afeta a matriz de rigidez e os termos de forca associados a
deformacao plastica e a deformagao inicial.

4. METODO DE DECOMPOSICAO DO OPERADOR.

Apesar da generalidade e sofisticacdo das equagdes constitutivas consideradas neste trabalho,
técnicas numéricas relativamente simples podem ser utilizadas para se obter uma solugdo
aproximada do problema ndo linear acoplado. Para a aproximac¢do da solu¢do do problema com
evolucdo quase-estatica, propde-se uma técnica numérica simples baseada nos Métodos de
Decomposic¢do do Operador e Algoritmos Seqiienciais Associados ja usada com bons resutaldos em
Barbosa, 1998. A idéia basica do método consiste numa decomposicdo aditiva das equagdes do
problema original numa seqiiéncia de outros mais simples do tipo preditor/elastico e
corretor/termoplastico de forma que possam ser aplicados métodos numéricos classicos dos quais se
conhe¢a bem o comportamento de estabilidade e convergéncia. Aplicando a Decomposi¢do do
Operador ao problema em velocidades apresentado nas expressdes anteriores, obtém-se dois
subproblemas: um Preditor Elastico e um Corretor Plastico.



De agora por diante serd omitido as indicacdes de vetores e matrizes para ndo sobrecarregar
ainda mais a notagao.

4.1. Problema 1: Preditor Elastico

A cada instante t,+; , deve-se encontrar (ﬁ(zn+1),5q (th),EqP (. ),Eq (1) Eq (t,m)) para

cada elemento q = I, m onde m ¢ o niimero de elementos tais que (,8 = (p,g)):

ﬁ:_‘l(f+f" )+ K (F+FP) (25)

£, -8B, U (26)

7, =(l-ﬁq)Eq(Bq -ﬁ) 27)

Fr=F, =D, =0 28
com as condicoes iniciais:

(Ue,).5,,).5,).0,,).8,))=U,.0, .e¢ .D, .5, ) (29)

4.2. Problema 2: Corretor Plastico

A cada instante t,:; , encontrar (U(t,Hl),Uq (ti)s g (L) Dy (1) By (b )) para cada elemento q
tais que (ﬂ = (p,g)):

U=0 (30)
£, =0 (31)
. o,D, .
o, =- +(1-D )YE _|-&7 32
q (1 _Dq) ( q) Q( q ) ( )
el =P, H, (0.¢,8.D), (33)
B,= b H(0.p.D)
q q B q (34)
Dq:quD(gpaaaﬂaD)q (35)
com as condig¢des iniciais
(v, ).0,@0). 88 0.0, ). 8,0,))= U5, & D, .B, | (36)

5. DISCRETIZACAO DOS PROBLEMAS: FORMA INCREMENTAL.

A discretizagao dos problemas 1 e 2 pode ser feita utilizando esquemas de Euler. O problema 1
incremental nada mais ¢ do que o calculo dos deslocamentos nodais, das tensdes e das deformagdes
em um duto axissimétrico com uma tensao residual e modulo de elasticidade (1-D)E. Entdo, para o
preditor elastico, obtém-se a forma incremental descrita no item abaixo.

5.1. Problema 1: Preditor Elastico discretizado

Conhecidos (F,,H,an,gf ,D,, ﬂn) , calcular (ﬁHl,EHI,E,ﬁl,EM, E,Hl) em cada barra tal que:



KUn+1 = (Fn+1 + F;’D) (37)

.U (38)
&, =(1-D )E (@t = 20” ) — 2, (@0 —00)] (39)
&, =er o)
o =P, (1)
B, =D, @)

5.2. Problema 2: Corretor Plastico discretizado

Para o problema incremental 2, como todos os incrementos podem ser colocados em fungdo de
Apn, € possivel reduzir a solugdo do sistema e encontrar o zero de uma fun¢do ndo linear na reta.
Com isto a forma incremental para o problema 2 ¢ que, uma vez conhecidos

(Un s O-n s gn s gnp 9Dn s ﬂn ): (ﬁnﬂ s Enﬂ 4 E}Hl s Enlirl s BVHI b Bnﬂ ) (43)

Un+1 = (Un ) (44)

Entl = € (45)
AD,

n+l

n+l = O-n PN
(1-D,)
ern=¢€r+Ap, H, (e?,p,D),

+(1-D,)E, (A7)

o

n+l (46)
ﬁnﬂ ﬂ +Apn ﬂ(gpaﬁaD)n (47)
D,.. =D, +Ap, Hple”, 5. D), (48)

onde,
Ap,=0, se f(6,;D,.p,.B,)<0 (49)
ou, se >0, Ap, ¢ calculado como zero da fungao.
G(ap,) = p, -( LB
(50)

6. ALGORITIMO GLOBAL

Foi adotado no trabalho o seguinte algoritimo global de solucdo a partir da discretizagdo
descrita no item anterior que foi usado na solu¢ao do problema exemplo do item 7.

1) n=1; &, Bo, € D, séo conhecidos em cada elemento.

2) Estimativa elastica: &,>=¢,.°, = Bn.1,» € Dy=Dxp.; no tempo t,

3) Célculo das Condigdes de Contorno de Newman o n =1f(7,,,), e de Dirichlet u =u

4) Montagem da matriz rigidez K.
5) Montagem do vetor de carregamento F;

6) Calculo de FP(g,”) = FP,.



7) Calculo de U, solugdo do sistema pelo Método dos Elementos Finitos: (K,)(U,) = Fpi+ FP. (K é uma matriz
simétrica e positiva definida)
8) Calculo das deformagdes (g,°) associadas aos deslocamentos nodais (U,).
9) Calculo das for¢as termodinamicas em cada elemento (o,), (B,") através das equacdes de estado.
10) Verificar para cada elemento se Fn < 0.
10.1) Sim = Processo elastico: &,11"= &, Bus1=Pn € Dy=D,.1.
10.2) Ndo = Problema de evolugdo: Célculo de &,+1°, Bur1, € Dyr1 (Método de Euler).
11) Dy+1 < Deritico ?
11.1) Sim=> Continue
11.2) Ndo= Fim
12) n=n+1
13) Critério de parada: n> niimero maximo de passos?
12.1) Sim = Fim
12.2) Nao = Volte para (2).

As rotinas do algoritmo de solugdo foram implementados utilizando-se o software
MATLAB 5.0.

7. EXEMPLO NUMERICO

O tratamento numérico introduzido desde o inicio neste trabalho foi implementado num exemplo
simples para mostrar que o método pode ser aplicado com razoavel facilidade. A figura 1 abaixo
representa o modelo que constitui a geometria do duto. De acordo com a figura 1, temos uma fatia
de um duto com um raio interno de Ri=0,254 m e espessura t=0,127 m, com modulo de elasticidade
de E=193,0 GPa ¢ coeficiente de Poisson de 0,254. O duto estd sujeito a uma pressdo interna,
proveniente do fluido, inicialmente de 13,78 Mpa. A discretiza¢do da fatia do duto foi feita com
elementos triangulares lineares através de uma malha de 10 elementos e 12 nds.

%ﬂ \4 \E %B \IU \12
o/10/16 /10 /10/] |

" 0l/0|/6|/0 1

r &r Q3 & & Q&9 &

. A : t
L R - ,

. 3

Figura 1 — Malha de elementos finitos para a geometria do duto.

O valor da pressdo ¢ atualizada linearmente a cada passo de tempo fornecendo uma condi¢do de
Neuman na aresta 1-2 que contribui monotonicamente no vetor de carregamento global. Também de



acordo com a figura 1, as condi¢des de Dirichlet impostas sdo condigdes que mostram que nao ha
deslocamento na direcdo “y” ocorrendo deslocamentos s6 na direcdo “x” devido a simetria do
prolema.

As figuras de 2 a 4, mostram as diferentes curvas das tensdes no tempo para os diferentes
elementos ao longo do tempo. As maiores niveis de tensio estdo associadas as tensdes transversais e

radiais sendo as primeiras maiores que estas ultimas.
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Figura 2 — Evolucao da tensdo cisalhante nos elementos
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Figura 3 — Evolucao da tensdo circunferencial nos elementos
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Figura 4 - Evolugdo da tensdo radial nos elementos

A evolugdo do dano também ¢ verificada por elemento. A figura 5 abaixo mostra o comportamento do

dano para varios elementos. O dano aumenta uniformemente em todos os elementos, pois sua evolugéo
depende da tensdo de Mises e esta praticamente variou muito pouco nos elementos do problema.
Como nao se tem um termo difusivo de dano no modelo e por terem sido desprezados os termos de inércia
da equagdo balanco, o dano apresenta-se de forma praticamente homogénea ao longo da espessura. Um
efeito de ndo uniformidade do dano pode ser obtido quando o termo de inércia na equagdo de balango ou a
equacdo da energia (modelo anisotérmico) for considerada na analise.
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Figura 5 — Variacao do dano nos elementos

8. CONCLUSOES



Foi apresentado um modelo baseado de dano isotropico na teoria de varidveis internas para
simulacao de dutos axissimétricos inelasticos.

Para solugdo das equacdes diferenciais ndo lineares oriundas do modelo foi proposto um
esquema numérico baseado nos Método de Decomposicio do Operador. O método de
decomposi¢ao adotado permite dividir o problema em um problema preditor eldstico e um corretor
plastico que possibilitou utilizar métodos cldssicos de solu¢do como o métodos dos elementos
finitos e esquemas de Euler. O método utilizado permitiu propor um algoritimo em que a parcela
oriunda da plastificagdo entra na equagdo de equilibrio como um termo de carregamento. Além
disso o permite trabalhar com a matriz de rigidez sem necessidade de atualizagdo da mesma a cada
passo de tempo a ndo ser através da varidvel de dano.

Os resultados numéricos obtidos apontam a possibidade de se utilizar com sucesso esquemas de
decomposicdo em problemas acoplados bastando para isso subdividir o problema global em
subproblemas em que possam ser aplicados esquemas numéricos conhecidos.

O exemplo numérico utilizado apresentou uma distribui¢do homogénea do dano ao longo dos
elementos da espessura. Para as condi¢des adotadas, a tensdo de Mises variou muito pouco ao longo
do elementos da malha e, sendo a evolugdo da varidvel do dano dependente da tensdo de Mises, o
dano se manteve com mesmo comportamento espacial. Um efeito de ndo uniformidade espacial do
dano pode ser obtida através da inser¢do um termo difusivo de dano no modelo ou quando o termo
de inércia na equagdo de balanco ou a equacao da energia (modelo anisotérmico) for considerada na
analise tal como proposto em Barbosa, 1998.
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Abstract: This work presents a continuous damage model to simulate the material behavior of an
axisymmetric inelastic pipe submitted to pressure loads. A isotropic damage model based in the
theory of the internal variable with modifications to consider the effect of isotropic and kinematic
hardening was used. A numerical method is presented, based on the finite element method
considering also a scheme of the type elastic predictor and plastic corrector.
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