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Abstract. This paper analyzes the compaction process of porous materials. A well-known metal
forming technique, named Sab Method, is used to perform an approximate analysis for the
upsetting of a porous disk. The yield criteria for porous materials shall consider that hydrostatic
pressure can produce plastic deformation, an example of this, is the classic Drucker-Prager yield
condition which takes into consideration the influence of the hydrostatic pressure in the plastic
deformation. Although, more recently, other criteria have been presented in the literature related
to powder metallurgy, for the sake of simplicity, a mechanical model using Drucker-Prager yield
function is presented. The analysis is restricted to problems with symmetry of revolution and an
approximate analytical solution for the upsetting of a porous disk is presented.
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1. INTRODUCTION

This paper analyzes the compaction process of porous materias. In order to develop an
approximate analysis, some well-known techniques, such as those applied to the analysis of metal
forming, are used. Some of these methods, as for example, the Slab Method, are able to obtain
closed form solutions, which despite being approximate, can help in the description of the problem
as awhole (Wagoner and Chenot, 1997). The yield criterion for these materialsis still being studied
and it should consider that porous materials might have plastic deformation when subjected to
hydrostatic pressure. An example of a classic criterion, which takes into account the influence of the
hydrostatic pressure, is the Drucker-Prager yield criterion (Lubliner, 1990). More recently, other
criteria related to powder metallurgy have been presented in the literature (Akisanya et al., 1997).
Section 2 presents a mechanical model using Drucker-Prager yield function. Section 3 restricts its
analysis to problems with symmetry of revolution while Section 4 presents the results for the
upsetting of a porous disk.



2. MECHANICAL MODEL

2.1. Yield Function

The Drucker-Prager yield function (f) can be used to model porous materials with pressure
dependent plasticity, and it can be expressed by the following equation:

f =AJ, +Bl, (1)

in which A and B are parameters to be determined, 11 is the first invariant of the stress tensor, J is
the second invariant of the stress deviator tensor as follows:
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In order to figure out the material parameters A and B, two common mechanical tests might be
performed, namely: the isostatic pressure and the uniaxial compression.

Considering both tests as having a perfectly uniform stress state, the stress tensors for any
representative point in the material are shown below. For isostatic pressure:
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and for uniaxial compression:
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For uniaxial compression, the stress deviator tensor and the invariants J, and |1, are given by:
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Considering the yield in uniaxial compression, the yield stress Ty that depends on material
density r, is defined as the stress at the plastic deformation onset for adensity r .



By doing T11 = Ty and substituting the invariants J, and I in the yield function one has:
f = g— +B —TY 9

Introducing the concept of equivalent stress one might write:
f =AJ3, +Bl, =& +BYr, (10)
&3 g

Defining the yield pressure Py as the pressure at the plastic deformation onset for adensity r and
considering P = Py, the isostatic pressuretest leadsto J, = 0 and 11 = 3Py, giving rise to:

f=3BR = + BOT (11)
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From Eg. (11) one can find arelation between A and B which must be satisfied in order to make
the yield function consistent with this two mechanical tests:
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It is possible to rewrite the yield function as:
f =A\/J, +BI, =3BP, (13)
and substituting A using Eqg. (12) and rearranging terms one obtains:
f= \E,gi 93, + vy =T, (14)
3PY g 3R,

The expression above is consistent with the physical aspect that a material from ingot
metallurgy has a plastic behavior that is pressure independent. This can be checked by making Py
tend to infinity and noting that the classical Mises type yield function is recovered.

The classical material parameters A and B can be rewritten interms of Ty and Py as:

A= gi T? (15)
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Also, these parameters definition means that:

A =+/3(1- B) (17)



At this stage, it would be useful to introduce a relation between the density dependent uniaxial

yield stress Ty(r ) and the uniaxial yield stress for the dense material To , an usual relation between
thistwo quantitiesis:

Ty =dT, (18)

where d may, for example, be asimple linear function of the relative density R:

R-R
d= 0
1-R, (19)
with the relative density R being defined by:
R= density of theporousmaterial _ volume of thedensematerial (20)

- densityof thedensematerial ~ volume of theporousmaterial

which is equal to one for the fully dense material, and is equal to R for the initial relative density.

From Eqg. (19) one can see that d is equal to zero when R is equal to Ry, and is equal to one when
R isequal to one. Figure 1a compares the proposed function d with a nonlinear function previously
proposed by Doraivelu (1984), in the same way Fig. 1b compares the uniaxia yield stress Ty for
copper with yield stress of 60 MPafor the dense material.
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Figure 1 - Function d and yield stress Ty for ainitial relative density Ro = 0.7

From Eq. (16) one can see that the parameter B relates Py with Ty , and may write:

el ¢
p =& 9 21
v =Cgl T (21)
Introducing afunction b , defined by:
b= 22)



One has:
P, =bT, (23)

As before, the authors try to introduce a simple form for the function b, and use the following
heuristic reasoning: first, as the relative density approaches the unity the yield stress Ty approaches
To and the yield pressure Py tends to infinity. Hence the function b should also tend to infinity,
second, for the initial relative density Ry the yield stress Ty is assumed to be near zero. Therefore,
unless b has a non-finite value, the yield pressure Py will be near zero too and one will assume b to
be equal to a positive value k, which this work arbitrarily assumes to be equal one. Summarizing:
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The following form for b is proposed:

h=§ o (25
which isvery smilar to d and satisfies the previous conditions. Then one comes to:
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and rearranging the terms gives (Fig. 3):
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and one may finaly write:

f =AJ, +Bl; =dT, (28)
with A and B defined by:

A =4/3(1- B) (29)

p=L  1Z#-RO (30)
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The authors also emphasize that B is a linear function of R. Figure 2 shows a plot of parameters A
and B with the variation of the relative density R.

Doraivelu (1984) related the stress states Py and Ty by equating their energy of deformation and
obtaining the following expression:
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where R isthe relative density. For T, =dT,, and using Doraivelu's (1984) proposal for d we obtain
the following expression for the yield pressure in terms of the relative density R (Fig. 3):
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This expression is comparable (Fig. 3) with a previous result by Ashby (Akisanya, 1997):
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Figure 3 shows a plot of Egs. (27), (32) and (33) aong with the experimental results from
(Akisanya, 1997).
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Figure 2 - Variation of parameters A and B for ainitial relative density Ry = 0.7
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2.2. Plastic Deformation Rate

Considering the yield function, Eq. (28), as a plastic potential for the rate of deformation, i.e.,

assuming that normality rule applies, one has:
=N =1 (aR(/3,)+BNI,)
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where 13 is the identity matrix.

3. YIELD FUNCTION FOR PROBLEMSWITH SYMMETRY OF REVOLUTION

In the case of the uniaxial compression of acylindrical part one has:

then
S=9
The second invariant of the stress deviator tensor J, for this caseis:
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Writing the stress deviator components using the stress tensor components:
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§=:(1-T) @
and
S, = %(Tz - Tl) (49)

Substitution of the stress deviator componentsin J:

= g T+ (T Ty gl T (- ] Sl “
then
\/1 = %(Tl - Tz) (47

Thefirst invariant of the stress tensor is calculated by:
L =T +T,+T; =T, + 2T, (48)

Substitution of the second invariant of the stress deviator tensor J, , Eq. (47), and of the first
invariant of the stresstensor 11 , Eq. (48), in the yield function, Eq. (14):

& T,0 T
f=¢l- Y HAT,-T,)+—(T,+2T,)=T
gl 3PY'B(1 2)+3PY(1+ 2) Y (49)

Rearranging the terms:

f:T1+§?- 1%, =T, (50)
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and as:
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one can write:

f=T,+(3B-T, =T, (52)

4. APPROXIMATE SOLUTIONS- UPSETTING OF A DISK

On applying equilibrium conditions on a small element of the disk:

(s,+ds,)dq(r+dr)h- s.dgrh- qudrhd—2q+mp2(rdqdr) =0 (53)
Upon eliminating dq:

(s, +ds,)(r+dr)h-s;rh-s,drh+mp2(rdr) =0 (54)



Rearranging the terms and neglecting the second order differential term one obtains:

s drh+ds rh-s.,drh+2mp(rdr) =0 (55)
For r = 0in the differential equation of equilibrium, Eqg. (55), one has:

S, =Sy (56)
Assuming this condition to be valid for every value of r one comes to:

ds, h+2mpdr=0 (57)
By making T;=p and T, = s, in theyield function, Eq. (52):

p=(1- 3B)s, +T, (59)

Upon substituting the expression p, Eqg. (58), in the differentia equation of equilibrium, Eq.
(57), and after rearranging the terms:
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Knowingthatinr=D/2,s,=0, oneis able to perform the following integration:
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and obtain:
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Assuming Coulomb friction; the shear stress at the interface is given by:
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From Eq. (48), with T; = pand T, = s, , the hydrostatic pressure is given by:
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Figure 4 shows the stress results for a disk with 37.2 millimeters of diameter and 2.7 millimeters
of thickness, considering Coulomb friction m=0.1.
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Figure 4 - Stressresults for adisk with D = 37.2 mm, h=2.7 mm, Ry = 0.7 and T = 60 MPa
5. CONCLUSION

Using the Slab Method, an approximate analysis for the upsetting of a porous disk was
presented. This analysis managed to obtain a closed form solution, which despite been approximate,
can help in the description of the problem as a whole. The Drucker-Prager yield criterion was used
in the analysis, which takes into account the influence of the hydrostatic pressure in the plastic
deformation of the material.
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