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Resumo. Muitas vezes o desenvolvimento de aplica¢des baseadas no método dos elementos finitos
empregando-se a programacao paralela pode ser uma forma econémica de se resolver um
problema. Neste sentido, com uma rede de computadores disponivel, aliada ao uso de softwares
livres ou de baixo custo e, ainda, um sistema operacional Linux, o uso da computacao paralela em
um cluster de microcomputadores passa a ser uma alternativa interessante e possivel de ser
implementada. Este trabalho tem por objetivo comparar a execugdo paralela em ambiente MPI e
PVM, em um cluster de computadores, de uma aplicacdo baseada no método dos elementos finitos.
Foi desenvolvido um codigo para solucéo de problemas estruturais, escrito em linguagem C, que
utiliza o método dos gradientes conjugados para solucdo do sistema de equacBes. O preé-
processamento é feito utilizando-se o programa GID® e para a particdo da malha é empregado o
METIS®. O sistema de equacdes é montado conforme a estrutura ““block arrowhead”. O cddigo é
validado e avaliagbes quanto ao desempenho do mesmo séo efetuadas mostrando-se que ganhos
significativos em termos de tempo de execucéo sdo obtidos.
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1. INTRODUCAO

O uso do método dos elementos finitos em andlise estrutural muitas vezes apresenta um custo
computacional elevado em termos de tempo de execucdo dado o volume de informagdes a serem
processadas durante a solu¢do do sistema de equagdes. Neste sentido, a programacao paralela em
cluster de microcomputadores passa a ser uma op¢ao viavel por possibilitar a redu¢ao do tempo
computacional a baixos custos, uma vez que utiliza tecnologia ja depurada de alta disponibilidade e
confiabilidade, arquitetura aberta e softwares de dominio publico.

As bibliotecas padrdes mais utilizadas na paralelizacdo sao o MPI (Message-Passing Interface)
¢ o PVM (Parallel Virtual Machine). O PVM ¢ mais antigo que o MPI, tendo surgido em 1989 nos
laboratorios da Emory University e Oak Ridge National Laboratory, com o objetivo de criar e
executar aplicacdes paralelas em um hardware ja existente. O ambiente PVM tornou-se um padrao
devido a sua flexibilidade, pois habilita um conjunto de computadores heterogéneos a
comportarem-se como um unico computador paralelo virtual.

O MPI teve sua primeira versdao publicada em 1994 e atualizada em junho de 1995. Incorporou
os modelos de comunicagdo por troca de mensagens habitualmente descritos na literatura, prevendo
tanto a comunicacdo sincrona quanto a assincrona, permitindo, em quaisquer dos casos, 0 uso
excelente suporte a comunicagdo coletiva, que facilita o desenvolvimento de aplicagdes que
necessitam de efetuar freqiientes operagdes sobre matrizes.

Duas etapas importantes no desenvolvimento de aplicagdes paralelizadas baseadas no método
dos elementos finitos sdo a decomposi¢do do dominio, que depende da arquitetura da maquina
paralela e a solucao do sistema de equacdes, que demanda um maior custo computacional. Atencao
deve ser direcionada também aos custos adicionais em comunica¢do em face do processamento
multitarefa. Em um cdédigo de elementos finitos paralelizado, as comunicagdes entre os



processadores podem ser necessarias na distribui¢do dos dados de entrada entre os processadores,
na divisdo das informagdes referentes aos nos compartilhados pelos elementos, na distribuicao dos
resultados dos produtos de vetores, etc.

Este trabalho apresenta uma implementacdo de um cddigo paralelizado para uma aplicagdo do
método dos elementos finitos utilizando o método dos gradientes conjugados, em ambiente MPI e
PVM. Apesar da analise linear nao representar um exemplo de alto custo dentre aplicacdes do
método dos elementos finitos, sabe-se que anélises nao-lineares mais complexas podem envolver o
emprego de algoritmos que executam andlises lineares por partes na obtencao da solucdo final,
justificando a paralelizacdo da aplicacdo em elasticidade linear adotada neste trabalho. Ainda,
comparagdes entre os tempos de execucao do cddigo nos ambientes MPI e PVM sao apresentadas.
Foram utilizadas as implementa¢des mpich do MPI (Gropp et all, 1994) e PVM3 do PVM.

2. ESTRUTURA DE DADOS

A discretizacdo do dominio continuo utilizando o método dos elementos finitos conduz a um
sistema de equagdes algébricas que pode ser escrito como:

AX=b (D

onde, A é uma matriz simétrica positiva definida, X é o vetor de incognitas nodais e b é o vetor de
termos independentes.

No presente trabalho, o sistema de equagdes foi estruturado na forma matricial por blocos ou
“block arrowhead” de acordo com Jimack and Touheed (2000) e descrita a seguir.

A solugdo do problema paralelizado requer a divisao do dominio em sub-regides de acordo com
o numero de processadores disponiveis na rede e as equacgdes referentes a estas regides sdo
resolvidas independentemente. Dessa forma, a Figura (1) representa uma malha de elementos finitos
triangulares, dividida em subdominios. Observa-se que graus de liberdade de fronteira sdo
compartilhados por mais de um subdominio, e graus de liberdade internos (ou privados), sdo
contidos em um tnico subdominio.
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Figura 1. Particdo de uma malha em 5 outras sub-malhas.

A matriz A de cada subdominio computacional ¢ desmembrada em quatro outras que sdo Ap, As,
Bp e BpT, como mostra a Fig. (2). Ap ¢ uma matriz quadrada onde sdo armazenados somente os
valores referentes aos graus de liberdade internos. A matriz As também ¢ quadrada e seu tamanho ¢
definido pelo numero de graus de liberdade que estdo na fronteira de cada particdo. A dimensao da
matriz By € fungdo tanto do nimero de graus de liberdade internos quanto dos de fronteira. Nesta
matriz sdo escritos os valores que relacionam os graus de liberdade privados com os de fronteira. O
vetor b por sua vez ¢ desmembrado em by e bs, sendo que o primeiro tem dimensdo igual ao
nimero de graus de liberdade internos e o segundo aos de fronteira. O mesmo procedimento ¢ feito
para o vetor X.
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Figura 2. Matriz de um subdominio montada de acordo com a estrutura “block arrowhead”.
3. DESCRICAO DO CODIGO

A etapa de pré-processamento é realizada em uma inica maquina com o uso do aplicativo GID®
que fornece para o cddigo paralelizado os arquivos de entrada referentes a geometria, condi¢des de
contorno e malha, Fig. (3). O corpo do programa realiza a chamada das fun¢des de leitura de dados,
particionamento da malha e montagem das matrizes dos elementos.
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Figura 3. Fluxo de dados no cédigo paralelizado.



O particionamento da malha é realizado através do programa METIS® (George and Vipin,
1998), e o nimero de partigdes ¢ igual ao nimero de processadores utilizados.

A solu¢do do sistema de equacdes algébricas ¢ feita no proprio corpo do programa através do
método dos gradientes conjugados (Golub and Van Loan, 1989), por ser adequado a solucao de
grandes sistemas de equagdes e pelo fato do algoritmo paralelizado j& se encontrar disponivel na
literatura (Jimack and Touheed, 2000).

A funcdo gradientes conjugados resolve o sistema de equagdes montado de acordo com a
estrutura de dados “block arrowhead” para cada subdominio. Dentro desta fung¢do sdao chamadas as
fungdes produto interno e atualizar.

A fungdo produto interno calcula o produto interno entre dois vetores distribuidos em paralelo,
sendo necessario nesta etapa, uma comunicagdo global entre os processos. Antes (no caso do PVM)
ou durante (no caso do MPI) esta comunicagdo ¢ realizada uma operagdo de reducdo, a qual
determina a soma das contribui¢gdes do produto interno. Ao término desta(s) operagao(des) todos os
processos recebem o valor calculado. Ver Tabela (1) e Tabela (2) para as implementagdes do codigo
no MPI e no PVM, respectivamente.

A funcdo atualizar faz uso de algumas comunicagdes ponto a ponto de cada processo com seus
vizinhos. Esta fun¢do tem por finalidade permitir que as distribui¢des dos valores nodais na
fronteira da particdo sejam montadas em cada processo.

A Tabela (1) mostra a seqiiéncia de comandos do codigo paralelizado com o uso da biblioteca
MPIL.

Maiores detalhes sobre esta implementacdo em ambiente MPI podem ser encontrados em
Jimack and Touheed (1999).

Tabela 1 — Codigo paralelizado com o uso da biblioteca MPI

Todas as tarefas:
Inicializa¢do das variaveis do programa
MPI_Init () — inicializa¢do do MPI
MPI_Comm_rank (') — cada tarefa obtém o seu rank no comunicador
MPI_Comm_size () — cada tarefa obtém o tamanho do grupo (nimero de tarefas)
Chamada da funcéo leitura de dados
Chamada da funcéo de particionamento: cada processador executa 0 METIS"
Chamada da funcéo elemento trilinear: cada processador calcula as matrizes de elemento
¢ monta a matriz na estrutura arrowhead associada ao seu subdominio
* Chamada da fun¢ao produto interno
MPI_Allreduce ( ) — Cada processo envia o valor
Chamada da funcéo calculado e sobre este valor ¢ realizada a operacao de
gradientes conjugados: soma, em seguida todos os processos recebem o valor
calculado na operagao.
* Chamada da fun¢ao atualizagdo (comunicagao)
MPI_Send()
MPI_Recv()

MPI_Finalize( ) — Finaliza o MPI

Para facilitar a implementagao do codigo com o uso da biblioteca PVM a partir de um codigo
escrito para MPI, utilizou-se as instdncias das tarefas no lugar dos ranks (MPI) ao invés de
identificadores de tarefas (tids). Os valores dos tids foram apenas utilizados quando requeridos em
comandos do PVM (fungdes send e receive). A Tabela (2) mostra a seqiiéncia de comandos do
codigo paralelizado com o uso da biblioteca PVM.



Tabela 2 — Coédigo paralelizado com o uso da biblioteca PVM

Todas as tarefas:

Inicializar as variaveis do programa

Receber nimero de tarefas (PROCNO).

Se Tarefa - instancia (rank) = 0, fazer: Sendo:

pvm_spawn ( ) — A tarefa mestre cria
PROCNO -1 tarefas, de modo que o grupo
tenha PROCNO tarefas.

Todas as tarefas:

pvm_barrier("pvm®, PROCNO) - sincroniza as tarefas no grupo “pvm” antes de comegar
a execugdo dos calculos. em caso de erro todas as tarefas devem sair do grupo
(pvm_lvgroup( )) e finalizar o PVM (pvm_exit( )). PROCNO ¢é o nimero de tarefas para
sincronizar.

Chamada da funcéo leitura de dados

Chamada da funcéo de particionamento

Chamada da funcgéo elemento trilinear

* Chamada da funcao produto interno
(Fungao Produto Interno)
Se Tarefa - instancia (rank) = 0, fazer:

pvm_reduce(, , , , , , ) operagdo de redugdo, na qual a tarcfa rank=0
recebe o valor da reducgao.

pvm_initsend( ) —inicializar o buffer para o envio do bcast
pvm_pkfloat(, , ) — empacota dados

pvm_bcast(,) — A tarefa mestre envia o resultado da reducdo para todas
as outras tarefas do grupo.

Chamada Senao, outras tarefas:

da _fungéo pvm_reduce(, , , ,,, ) - operacdao de redugdo, na qual a tarefa rank=0
gra(_:llentes recebe o valor da redugdo.

conjugados: pvm_recv(, ) — tarefas com rank #0 recebem o valor enviado pelo bcast

da mestre. E necessario usar o comando pvm_gettid como argumento.
pvm_upkfloat(, , ) — desempacota os valores recebidos.

* Chamada da fun¢ao atualizagao
(Fungao Atualizagdo)
Todas as tarefas:

pvm_initsend()
pvm_pkfloat(, , )

pvm_send(,) - ¢é necessario usar o comando pvm_gettid como
argumento.
pvm_recv(, ) - ¢é necessario usar o comando pvm_gettid como
argumento.

pvm_upkfloat(, , )

Todas as tarefas:

pvm_barrier(*"pvm”, PROCNO) — sincroniza a saida das tarefas do grupo “pvm” .

pvm_lvgroup(“pvm”) — Tarefas devem sair do grupo “pvm”.

pvm_exit( ) —finalizar os comandos pvm




4. VALIDACAO DOS RESULTADOS E ANALISE DE DESEMPENHO

Para realizar os testes de validacdo do codigo e a andlise dos tempos de execucdo em paralelo
foi utilizada uma placa tracionada, representada na Fig. (4a) e o respectivo modelo computacional,
Fig. (4b) com a malha de elementos finitos triangulares lineares. As dimensoes da placa sdo: |; =
0,058 m, I,=0,0254m, |3 =0,0127m, r; = 0,00254m ¢ r, = 0,0015875m.
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Figura 4. Geometria da placa; (b) Malha computacional de elementos triangulares utilizada na
simulagdo paralela.

No modelo da Fig. (4b) a placa ¢ tracionada com uma carga de 22.241 N distribuida no contorno
5 e foram aplicadas restrigdes nos graus de liberdade da dire¢do y do contorno 1 e da dire¢do x do
contorno 4. Considerou-se ainda o mddulo de Young, E = 6,89 GPa, o coeficiente de Poisson, U =
0,35 e a espessura da placa unitaria. A malha gerada, resultou em 5.808 graus de liberdade. Os
resultadog foram obtidos com 311 iteragdes do método dos gradientes conjugados € uma tolerancia
de 1x 10™.

O programa ANSYS foi utilizado para a verificacdo dos valores calculados pelo cédigo. Cabe
observar que no modelo executado no referido programa, a malha foi refinada localmente sendo
empregados elementos finitos triangulares quadraticos. Na Fig. (5) sdo mostrados os resultados
obtidos dos deslocamentos na dire¢do y para o coédigo paralelizado e para o ANSYS,
respectivamente.
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Figura 5. (a) Deslocamentos (m) na direcdo Yy calculados pelo cédigo paralelizado (b)
Deslocamentos (m) em Yy calculados pelo ANSYS.



A Tabela (3) mostra os resultados dos tempos decorridos do particionamento e do codigo
(obtidos com a fung¢ao getttimeofday), nos ambientes mpich-1.2.5 ¢ pvm3. Os valores apresentados
foram obtidos pela execucdo do cédigo em um cluster de PCs composto por nove maquinas
Pentium II 350 MHz com 128 MB de memoéria RAM que utiliza o sistema operacional Linux
Debian. As maquinas se comunicam por meio de um switch e a rede de interconexdo ¢ ethernet de
100 Mb/s. As simulag¢des foram realizadas em apenas seis nds (maquinas) do cluster ¢ a cada um
destes foi atribuido um processo em execucao.

Tabela 3. Tempos de execugdo do codigo paralelizado em MPI e PVM.

NOs/Processos — MPI - — PVM -

Particionamento (s) | Codigo (s) | Particionamento (s) | Codigo (s)

1 0,112 1.150,56 0,119 1.140,07

2 0,133 320,70 0,141 314,87

3 0,117 156,72 0,156 151,24

4 0,119 90,48 0,142 91,03

5 0,120 60,23 0,143 65,55

6 0,124 43,40 0,145 52,32

7 0,127 34,44 0,153 42,85

8 0,174 28,55 0,332 60,18

Ainda, na Tabela (3), observa-se um acréscimo no tempo de processamento do particionamento
para a execu¢do em ambiente MPI com o aumento no nimero de sub-malhas. O tempo de
particionamento ¢ o tempo gasto na execugdo do arquivo particionar.c, o qual tem como principal
escopo particionar a malha de elementos finitos com o auxilio do Metis®. De acordo com os valores
apresentados € possivel verificar que o tempo de particionameto tende a crescer com o aumento do
nimero de processos em execucao, isto porque a complexidade do corte aumenta com o nimero de
subdominios a serem criados. Verifica-se ainda que na execu¢do no ambiente MPI os tempos de
particionamento foram menores do que os obtidos no ambiente PVM.

A Figura (6) mostra a relagdo entre os tempos de execucdo do cddigo e o numero de
processadores de acordo com os valores apresentados na Tab. (3). Para o MPI e o PVM esta relagao
se mostrou bastante ajustada por meio de uma curva polinomial, onde t ¢ a funcao de ajuste (tempo)
e R? é o coeficiente de correlagio dos valores desta fungdo. N&o houve preocupagdo com a
eficiéncia do método dos gradientes conjugados implementado para resolver o sistema de equacoes,
ndo tendo sido feito o pré-condicionamento, por exemplo. Melhorias também podem ser
implementadas utilizando-se a técnica elemento-por-elemento e paralelizando-se o produto matriz-
vetor (Sahu, 1995).

A Figura (7) mostra a curva de ajuste para os valores de speedup obtidos para as execu¢des em
ambientes MPI ¢ PVM. Pode-se observar que o speedup cresce com o aumento do numero de
processos para os dois ambientes sendo que, a curva referente ao MPI apresenta um crescimento
mais acentuado. Na mesma Figura (7), a tabela mostra o ganho percentual em termos de tempo
decorrido de um ambiente em relagdo ao outro.
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Figura 7. Speedup versus nimero de maquinas e MPI mPVM.

E importante notar que mesmo existindo ganhos significativos na solugdo paralelizada do
programa tanto em MPI quanto em PVM foi observada uma melhor adequagdo ao ambiente MPI
para o caso estudado, principalmente com o aumento do nimero de maquinas. Este fato esta
relacionado a um menor tempo gasto na comunicagdo entre processos para este ambiente. No
ambiente MPI sdo usadas fun¢des de comunicagcdo mais apropriadas aos calculos realizados nas
técnicas de solugdo existentes, como por exemplo, a fungdo MPI_Allreduce empregada na fungio
produto interno do método dos gradientes conjugados. No ambiente PVM esta funcdo foi



substituida por outras seis que sdo: pvm_reduce, pvm_initsend, pvm_pkfloat, pvm_bcast, pvm_recv
e pvm_upkfloat.

Para a solucdo de um problema de elasticidade utilizando o método dos elementos finitos,
mostra-se que podem ser obtidos bons resultados utilizando-se uma rede de computadores ja
existente sem nenhum custo adicional com hardware ou software. Na realiza¢do desta aplicagao foi
necessario ainda, o uso do pré-processador GID® para descricdo da geometria e geragdo da malha e
0 uso de um programa para realizacdo do particionamento da malha, no caso, o METIS®. Para
aplicagdes que nao necessitam de maiores investimentos no desempenho apo6s a paralelizacao, o uso
do cluster de computadores em rede pré-existente ¢ uma alternativa interessante em termos de
economia de tempo de processamento.
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TITLE: PARALLELIZATION IN PVM AND MPI ENVIRONMENT
APPLIED TO AFINITE ELEMENT METHOD APPLICATION.

Cadigo: 54012

Abstract: Developing applications to finite element method using distributed computing can be an
economic way to solve some problems. For an existing network and disposing some free or low cost
softwares and a Linux operational system, the use of cluster computing is an interesting alternative.
The aim of this work is the comparison of parallel execution using both MPI and PVM enviroments
for a finite element application. Using C language, a code was developed to the solution of
structural problems. The conjugate gradient method was employed to solve the resulting set of
equations. The mesh generation was done using GID® as a preprocessor. For mesh partition,
METIS® was employed. The equation system was assembled in a block arrowhead data structure.
The code was validated and performance valuations were done to show the speedup in execution
time.

Keywords: finite element method, MPI1, PVM.



