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Abstract. Shape Memory Alloys (SMAs) are materials that present, among other characteristics, the 
capacity to undergo large permanent deformations, and then, after a proper increase on the 
temperature, recover its original shape. Constitutive models consider phenomenological aspects of 
thermomechanical behavior of these alloys. The present contribution proposes a constitutive model 
to consider the tensile-compressive asymmetry that occurs in the mechanical behavior of SMAs. 
Numerical results show that the model is capable to capture the general behavior of SMAs, 
allowing the description of this important characteristic. A comparison between numerical and 
experimental results shows a good agreement. 
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1. INTRODUCTION 

 
Metallurgical studies have revealed the microstructural aspects of the behavior of SMAs 

(Otsuka & Ren, 1999; Shaw & Kyriakides, 1995). Basically, there are two possible phases on 
SMAs: austenite and martensite. In martensitic phase, there are plates that may be internally twin-
related. Hence, different deformation orientations of crystallographic plates constitute what is 
known by martensitic variants. On SMAs there are 24 possible martensitic variants that are 
arranged in 6 plate groups with 4 plate variants per group (Zhang et al., 1991). Schroeder & 
Wayman (1977) have shown that when a specimen is deformed bellow a temperature where only 
martensitic phase is stable, with increasing stress, only one of the 4 variants in a given plate group 
will begin to grow. This variant is the one that has the largest partial shear stress. On the other hand, 
because the crystal structure of martensite is less symmetric than the austenite, only a single variant 
is created on the reverse transformation (Zhang et al., 1991). For the analysis of one-dimensional 
media, it is possible to consider only three variants of martensite together with austenite (A) on 
SMAs: the twinned martensite (M), which is stable in the absence of a stress field, and two other 
martensitic phases (M+, M−), which are induced by positive and negative stress fields, respectively.  

Experimental results also show that SMAs present an asymmetric behavior when subjected to tensile 
or compressive loads. Polycrystalline NiTi, for example, deformed under compression presents smaller 
recoverable strain levels, higher critical transformation stress levels, and steeper transformation stress-
strain slopes (Gall et al., 1999). Gall & Sehitoglu (1999) argued that the tension-compression 
asymmetry in polycrystalline NiTi is caused by asymmetry at the single crystal level. Therefore, single 
crystal SMAs are expected to exhibit an extremely large tension-compression asymmetry since their 
martensite habit planes present a very low symmetry with respect to the parent phase.  



Other important phenomenon related to SMAs thermomechanical behavior is the plasticity. 
Plastic strains are concerned in different articles in order to evaluate either effects of these strains in 
phase transformations or the description of the two-way shape memory effect (Miller & Lagoudas, 
2000). The loss of actuation through repeated cycling due to plastic strain development is one of the 
important aspects related to the effect of plastic strains in SMAs.  

The thermomechanical behavior of shape memory alloys may be modeled either by microscopic 
or macroscopic point of view. There are many different works dedicated to the constitutive 
description of the thermomechanical behavior of shape memory alloys, however, this is not a well 
established topic (James, 2000; Savi et al., 2002). 

This article presents a constitutive model for the description of the thermomechanical behavior 
of SMAs. The proposed model is based on the Fremond’s theory (Fremond, 1987, 1996), later 
modified by Savi et al. (2002) and Baêta-Neves et al. (2003). Here, the tensile-compressive 
asymmetry is concerned allowing a correct description of the thermomechanical response of SMAs. 
The model here proposed includes four phases in the formulation: three variants of martensite and 
an austenitic phase. Plastic strain is included into the model and hardening effect is represented by a 
combination of kinematic and isotropic behaviors. An iterative numerical procedure based on the 
operator split technique (Ortiz et al., 1983), the orthogonal projection algorithm and the return 
mapping algorithm (Simo & Hughes, 1998) is developed. Numerical results are carried out showing 
good agreements with experimental data.  

 
2. CONSTITUTIVE MODEL 

 
Fremond (1987, 1996) has proposed a three-dimensional model for the thermomechanical 

response of SMA where martensitic transformations are described with the aid of two internal 
variables. These variables represent volumetric fractions of two variants of martensite (M+ and 
M−), and must satisfy constraints regarding the coexistence of three distinct phases, the third being 
the parent austenitic phase (A). Savi et al. (2002) proposes a constitutive model built up on the 
original Fremond’s model including a fourth phase related to twinned martensite (M). Moreover, 
the proposed model introduces the description of plastic strain, considering a thermo-plastic-phase 
transformation coupling. Recently, Baêta-Neves et al. (2003) proposes an enlargement of the stress-
strain hysteresis loop in order to allow better adjustment to experimental data. 

Modeling of SMA behavior can be done within the scope of the standard generalized material 
(Lemaitre & Chaboche, 1990). With this assumption, the thermomechanical behavior can be 
described by the Helmholtz free energy, ψ, and the pseudo-potential of dissipation, φ. The 
thermodynamic state is completely defined by a finite number of state variables: deformation, ε, 
temperature, T, the volumetric fractions of martensitic variants, β1 and β2, which are associated with 
detwinned martensites (M+ and M−, respectively) and austenite (A), β3. The fourth phase is 
associated with twinned martensite (M) and its volumetric fraction is β4. The plastic phenomenon is 
described with the aid of plastic strain, εp, and the hardening effect is represented by a combination 
of kinematic and isotropic behaviors, described by variables µ and γ, respectively. With these 
assumptions, each phase have a free energy function as follows, 
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where α,  LM = LM (T) and LA = LA (T) are material parameters that describe martensitic 
transformation, EM and EA represent the elastic moduli for martesitic and austenitic phases, 
respectively; ΩM and ΩA represent the thermal expansion coefficient for martensitic and austenitic 
phases, respectively; KM and KA are the plastic moduli for martensitic and austenitic phases while 
HM and HA are the kinematic hardening moduli for martensitic and austenitic phases; TM is a 
temperature below which the martensitic phase becomes stable in the absence of stress while T0 is a 
reference temperature; ρ is the density. It should be pointed out that superscript T is related to 
tensile parameters while C is associated with compressive parameters. A free energy for the mixture 
can be written as follows, 
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where the volumetric fraction of the phases must satisfy constraints regarding the coexistence of 
four distinct phases: 

 
 10 ≤≤ iβ  (i=1,2,3,4) ;   14321 =+++ ββββ  (6) 

 
In the absence of stress, detwinned martensites, M+ and M−, do not exist. In order to include this 

physical aspect, an additional constraint must be written, 
 

 0  (7)   and0if0 2121 ===== SS ββσββ
 

where and are the values of βS
1β S

2β 1 and β2 , respectively, when the phase transformation begins to 
take place. With these considerations,  is the indicator function of the convex τ (Rockafellar, 
1970):  
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 Using constraints (6), β4 can be eliminated and the free energy can be rewritten as: 
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where,  
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Now, assuming additive decomposition, it is possible to write: 
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Therefore, the free energy is rewritten as follows: 
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Now, J represents the indicator function of the tetrahedron π of the set (Figure 1),    
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Figure 1 - Tetrahedron of the constraints π. 

 
State equations can be obtained from the Helmholtz free energy as follows: 
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where Bi, X, Y and Z are the thermodynamic forces and σ represents the uniaxial stress; i∂  is the 
sub-differential with respect to βi (Rockafellar, 1970). Lagrange multipliers offer a good alternative 
to represent sub-differentials of the indicator function (Savi & Braga, 1993b). Furthermore, the 
parameters E, Ω, K and H are defined from their values in the austenitic and martensitic phase as 
follows: 
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In order to describe the dissipation processes, it is necessary to introduce a pseudo-potential of 

dissipation. This pseudo-potential can be written through its dual φ*. Considering the following 
type,  
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where If is the indicator function related to the yield surface defined as follows, 
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The parameter ηi (i = 1,2,3) is associated with the internal dissipation of the material while ηci 

and ηck are related to plastic-phase transformation coupling. The parameter ηci is associated with 
isotropic hardening coupling while ηck is associated with kinematic hardening coupling. At this 
point, it is possible to write the following complementary equations: 
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where λ is the plastic multiplier. The irreversible nature of plastic flow is represented by means of 
the Kuhn-Tucker conditions. Another constraint must be satisfied when 0),,( =µγσf . It is referred 
to as the consistency condition and corresponds to the physical requirement that a stress point on the 
yield surface must persist on it. These conditions are presented as follows (Simo & Hughes, 1998): 

 
 0≥λ ; 0)  , , ( ≤µγσf ; 0)  , , ( =µγσλ f  ;   if 0)  , , ( =µγσλ f& 0)  , , ( =µγσf   (30) 

 
These equations form a complete set of constitutive equations. Since the pseudo-potential of 

dissipation is convex, positive and vanishes at the origin, the Clausius-Duhen inequality is 
automatically satisfied if the entropy is defined as Ts ∂−∂= /ψ . 

Furthermore, it is important to consider the definition of the parameters LM = LM(T) and            
LA = LA(T), which are obtained assuming  and 01 =β& Rεε =  in a critical temperature, TC, below 
which there is no change in stress-strain hysteresis loop position. With this aim, it is necessary to 
define the following parameters for tensile behavior, 
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Analogous, it is necessary to define similar parameters for compressive behavior: 
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Hence, using these conditions in Equations (24) e (25), the following expressions are obtained, 
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 Moreover, in order to contemplate different characteristics to the kinetics of phase 
transformation for loading and unloading processes, it is possible to consider different values to the 
parameter ηi, which is related to internal dissipation:  and , being the internal dissipation 
parameters related to variable β

L
iη U

iη

i during loading or unloading process, respectively. 
The operator split technique (Ortiz et al., 1983) associated with an iterative numerical procedure 

is developed in order to deal with the nonlinearities in the formulation. The procedure isolates the 
sub-differentials and uses the implicit Euler method combined with an orthogonal projection 
algorithm (Savi et al., 2002) to evaluate evolution equations. Orthogonal projections assure that 
volumetric fractions of the phases will obey the imposed constraints. In order to satisfy constraints 
expressed in (13), values of volumetric fractions must stay inside or on the boundary of π, the 
tetrahedron shown in Figure 1. The elasto-plastic behavior is simulated with the aid of the return 
mapping algorithm proposed by Simo & Hughes (1998). 
 
 
 



3. NUMERICAL SIMULATIONS 
 
In order to evaluate the response predicted by the proposed model, a SMA specimen is subjected 

to different thermomechanical loadings. Basically, stress-driving simulations are carried out 
considering tensile and compressive behaviors at a constant temperature. Moreover, it is assumed 
that all simulations are performed without reaching the yield surface. 

Experimental results presented by Gall et al. (1999) are used as reference to validate the 
numerical results obtained from the proposed model. In the experimental tests developed in the 
cited reference, single and polycrystal specimens with different orientation and subjected to 
different aging treatments are analyzed. The aging treatment causes Ti3Ni4 precipitation, being 
related to the tension-compression asymmetry. Basically, these precipitates act as nucleation sites 
for martensite and obstacles for dislocation motion. This mechanism effectively increases the 
critical stress for dislocation motions and decreases the critical stress for phase transformation. 

 
Table 1. Thermomechanical properties: Peak-aged single crystal 

[111] orientation, aged 1.5h at 673K. 

AE  (GPa) ME  (GPa) Tα  (MPa) Cα  (MPa) T
Rε  C

Rε  

36.5 107 4044 1520 0.0646 −0.0227 

L  (MPa) T
ML  (MPa) C

ML (MPa) 

152 −120 87.5 

AΩ  (MPa/K) MΩ (MPa/K) MT  (K) AT  (K) 0T  (K) 

0.74 0.17 273.5 317.5 295 

L
1η  (MPa.s) U

1η  (MPa.s) L
2η  (MPa.s) U

2η  (MPa.s) L
3η  (MPa.s) U

3η  (MPa.s)

6.02 6.02 4.09 4.09 3.8 3.8 

 
 

Table 2. Thermomechanical properties: Over-aged single crystal. 
[111] orientation, aged 15h at 773K. 

AE  (GPa) ME  (GPa) Tα  (MPa) Cα  (MPa) T
Rε  C

Rε  

94 161 2250 1670 0.0723 −0.0311 

L  (MPa) T
ML  (MPa) C

ML (MPa) 

152 −85 40 

AΩ  (MPa/K) MΩ (MPa/K) MT  (K) AT  (K) 0T  (K) 

0.74 0.17 271.2 301.7 295 

L
1η  (MPa.s) U

1η  (MPa.s) L
2η  (MPa.s) U

2η  (MPa.s) L
3η  (MPa.s) U

3η  (MPa.s)

1.91 1.91 2.063 2.063 2 2 

 



 
Here, numerical simulations related to some of these tests are carried out, showing the 

potentiality of the proposed model. At first, a single crystal aged 1.5h at 673K (peak aged) is 
considered. The parameters presented in Table 1 are used for numerical simulations. Under this 
condition, compressive behavior presents small values of critical stress, where phase transformation 
begins to take place, and also smaller residual strains. The model response captures this behavior as 
shown in Figure 2a. On the other hand, tensile behavior is quite different. Numerical and 
experimental results are in agreement except for the response during unloading in tensile behavior. 
Gall et al. (1999) say that this indicates that transformation product is unstable under tensile 
unloading. 

Figure 2b shows the same test related to a different aging treatment, namely aged 15h at 773K 
(over-aged), which the specimen is subjected before the test. Table 2 presents the employed 
parameters. Again, experimental and numerical results are in agreements. Notice that aging 
treatment alters the response of the specimen changing the slope of the phase transformation region. 
Gall et al. (1999) say that either tension-compression asymmetry or orientation dependence of the 
stress-strain response are strongly related to heat treatments (precipitate sizes).  
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Figure 2 – Stress-strain curves for a single crystal with [111] orientation:  

(a) aged 1.5h at 673K. (b) aged 15h at 773K. 
 

 
Table 3. Thermomechanical properties: Peak-aged polycrystal 

<111> {110} texture, aged 1.5h at 673K. 

AE  (GPa) ME  (GPa) Tα  (MPa) Cα  (MPa) T
Rε  C

Rε  

58 96.5 1817 910 0.0525 −0.0268 

L  (MPa) T
ML  (MPa) C

ML (MPa) 

120 −69 76 

AΩ  (MPa/K) MΩ (MPa/K) MT  (K) AT  (K) 0T  (K) 

0.74 0.17 262.2 314 295 
L

1η  (MPa.s) U
1η  (MPa.s) L

2η  (MPa.s) U
2η  (MPa.s) L

3η  (MPa.s) U
3η  (MPa.s)

5.7 5.7 6.75 6.75 7 7 

 
 
 
 



Table 4. Thermomechanical properties: Over-aged polycrystal 
<111> {110} texture, aged 15h at 773K. 

AE  (GPa) ME  (GPa) Tα  (MPa) Cα  (MPa) T
Rε  C

Rε  

78 148 1880 1443 0.0536 −0.0262 

L  (MPa) T
ML  (MPa) C

ML (MPa) 

100 −60 27 

AΩ  (MPa/K) MΩ (MPa/K) MT  (K) AT  (K) 0T  (K) 

0.74 0.17 273.8 305.8 295 

L
1η  (MPa.s) U

1η  (MPa.s) L
2η  (MPa.s) U

2η  (MPa.s) L
3η  (MPa.s) U

3η  (MPa.s)

3.24 3.24 3.58 3.58 3.3 3.3 

 
The forthcoming analysis considers a polycrystal SMA with <111> {110} texture (Figure 3). 

Results are qualitatively similar to the previous one related to single crystals. Since the proposed 
model is related to phenomenological features, the results demonstrate the model ability in 
describing both single and polycrystals behavior. Table 3 presents parameters used for the peak-
aged polycrystal specimen. Figure 3a shows the numerical simulation together with experimental 
data. Notice that the numerical and experimental results are in good agreement as well as in the 
single crystals simulations. 

Finally, Figure 3b shows results related to an over-aged polycrystal. Parameters are presented in 
Table 4. Again, results present qualitatively the same behavior compared to the related single 
crystal response, showing quantitative agreements between numerical and experimental data. Both 
results associated with polycrystal simulations are analogous showing a smaller influence of the 
aging process in the thermomechanical behavior. 
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Figure 3 – Stress-strain curves for a polycrystal with <111> {110} texture. 

 (a) aged 1.5h at 673K. (b) aged 15h at 773K. 
 
 
 
 
 



4. CONCLUSIONS 
 
The description of the thermomechanical behavior of SMAs involves different and complex 

phenomena. Among others, plastic strain and thermo-plastic-phase transformation coupling are 
some of these behaviors. This article proposes a constitutive model that is capable to describe the 
tensile-compressive asymmetry. Numerical and experimental results are in agreement showing the 
potentiality of the proposed model. 
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