MODAL ANALYSIS OF BEAMS:
AN EXPERIMENT FOR TEACHING
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Abstract. It is presented in this paper some basic concepts of modal analysis aimed to serve as a
reference for teaching this subject to undergrad students. It is described an experimental apparatus and the
associated theory which allows to obtain the natural frequencies and modes of vibration of a cantilever beam.
The results are attractive in the sense that the students get more involved with the subject by experimenting
directly with the set up here described.
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1. INTRODUCTION

The subject of structural vibration is part of the minimum culam in many
engineering courses. Usually, a basic vibration course compheeantlysis of a mass
connected to a frame with a spring and a dashpot. This simple, greeds freedom,
system is used to present the major features of the vibratiommaticluding natural
frequency, forced vibration, damping, etc...

Single degree of freedom system can be quite versatile isethge that many real
structures can be modelled using this concept, at least in a ipeelyndesign phase.
However, although sometimes neglected in an introductory vibration ¢caosgnuous
systems are more realistic, despite of being more compleaxnatyse. The simplest
continuous system, a rod, can be used to introduce the concept of nabdes of
vibration, their associated natural frequencies, and the applicatidiowfer series to
analyse forced motion.

Nevertheless, the beams are really the first continuous stisé¢inas a wider use in the
real world but it is sometimes neglected as a subject ipieatyone semester vibration
course. Experimental vibration is a more complex topic for teacimiog & is necessary to
have facilities like benches, shakers, acelerometers, angliR€ data acquisition cards,



osciloscopes, etc... Nevertheless, no doubt the students become more dhainhiso
learn much more when they can actually see a real structural vibratioamrobl

Bearing this in mind, the authors prepared an experiment ainitgaehing modal
analysis of beams for students who have attended an introductory vilraticse. This
paper aims to describe it in details the basic theoreticalxqetimental procedure adopted
in order to awake the students curiosity to the important problem of modal analysis.

2. MODAL ANALYSIS OF A CANTILEVER

An experimental set up was deviced to study the vibration of bdamas decided to
use a very simple beam arrangement which could suit well experimacitaiels restraints.
Accordingly, a cantilever was chosen since it is very eadix tibs clamped support to a
shaker. The analysis is also somewhat simple, as described next.

Consider a cantilever beam in line with the axis x with lengtitrédadth b, height h,
made of a material with densipyand elastic modulus E. The moment of inertia in relation
to the axis z is I(x) and the cross-section area is A(X).

Figure 1 presents the beam under analysis with a free bodyndigvehere equilibrium
of transverse force gives

1)

0%w(x,t)
2

(V(x,t) LGS,
ox

dxj =V (x,t) + f(x,t)dx = p DA(X)dx

Equlibrium of bending moments actind on the infinitesimal element of width dx leads to

OM (x,t) 6V(x,t)
0x X

[M(x,t)+ dx}— M(x,t){V(x,t) + }d x + [ (%, t)dx]——O 2)

such that transverse force, V (x,t), and bending moment, M(x,t), are related by
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Figure 1. Cantilever beam and an infinitesimal element.
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when disregarding high order terms.
By invoking Hookes law and integrating it through the beam cros®seittis possible
to express the bending moment with the beam transverse deflection w(x,t) using

M (x.t) = El (x) azw(;(’t) (4)
X

From equations (1) to (4) and focusing on a free vibration problem(x,@.=f 0, with A(x)
e El(x) constants, it follows that

2 4
0“W(X,t) e 0"W(X,t) —0, c= El (5)
at? ox* Ap

which is the equation of motion for the vibration of a beam.
Equation (5) can be solved by assuming a solution in the form w(X3)EX), such
that
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where the constanb is revealed to be the natural frequency when solving
T(t)+w?T(t)=0 (7)
whose solution is
T(t) = Alsin(at) + Blcost) (8)
The constants A and B are obtained from the initial conditions of the problem.
Equation (6) also gives the spatial behaviour of a beam when solving
XO-pxp=0  ph= =R ®
o El
whose solution is
X(X) = asin(Bx) + a, cos(Bx) + agsinh( /) + a, cosh(x) (20)

where3 and three of the constantsshould be determined from the boundary conditions,
which are



M (©,t) =V (O,t)=w(,t)=0(,t)=0 (11)
for the particular cantilever case here examined.
2.1 Solution

From the boundary conditions in equation (11), it is possible to show that

X (0)=X'(0)=ElI IX"(I)=El IX"(1) =0 (12)
and in oder to avoid a trivial solution,

cos(@)[cosh@@) =1 (13)
which gives,

B, 1=1.87510407
B, 1=4.6940911: (14)
B, =7.8547574

The actual cantilever to be tested as describegr lahs the following physical
parameters

[=0.5m

E =210 GPa

| =2.258 x 10 m*
A =3.002 x 10 n?
p = 7860 kg/n

which, when using equation (9), (13) and (14), gitree following natural frequencies

w =199.4rad/ls ..1E31.7Hz
wp =1249.4 rad/s .., 198.8 Hz
w3 = 3498 rad/s ..3FE 557 Hz

As for the vibration modes, they become

cos(Bl) + cosh(G| . .
Xy = ay| ~ COS(B,X) + coshiB,x) + (S.n(g:li u gnh(/(f:l))) r{sin(8,%) - sinh(5,)) 15
n=123.
whose necessary parameters are all known exceptaftant awhich is an arbitrary

constant. These modes of vibration are depictédguare 2.



Modos de vibrar de uma viga simplesmente engastada
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Figure 2: Theoretical modes of vibration for a damer beam.
3. INTRODUCING EXPERIMENTAL MODAL ANALYSIS

Modal analysis is a procedure to extract infororatn the natural modes of vibration
and their respective natural frequencies and dagnparameters. To perform an
experimental modal analysis, it is necessary tatexbe structure and there are a few
techniques available. The excitation can come fershaker or from the impact of a
hammer. The shaker can be excited by a steadyenegusinusoidal wave or by sweeping
it with a range of sinusoidal frequencies.

In the present paper, the technique adopted censish excite the cantilever beam with
a hammer along 10 points of the beam length. Eacitaéion produces beam maotion,
detected into a single station by na acceleronfeted at the free end of the beam. The
impact produced by the hammer is capable of excitarious modes of vibration at once,
which should be uncoupled by performing a speetnallysis of the response signal. Each
of the 10 points, equally spaced by 5cm, was exditeee times and the accelerometer
signal was averaged in time before performing pexsal analysis.

The spectral analysis was done using the softwak@MB, such that the frequency
response function, ki), was obtained for each measured station. Thistilmm presents
higher amplitudes for the natural frequencies andetect the exact frequency the Nyquist
circle, formed by the real and imaginary part of tpectrum, is used. To extract and
analyse the experimental data, a programm was alee@lwhich fits the Nyquist circle.
From this circle, it is possible to obtain the damgpcoefficient for each natural frequency.



4. BASIC EQUATIONS FOR THE EXPERIMENTAL MODAL ANALYSIS

To uncouple the various recorded signals, the emuatf motion for the beam can be
written as

MX + Cx + Kx = fel@art (16)

where M, C and K are the mass, damping and stifimedex. The solution of this equation
for an excitation f is x(t)ge!“y,

(K _wng + jwy Cu=f (17)

whereu is the displacement vector whose components aciassd with the motion in
each degree of freedom, given by

u=(K _wng + jwdrc)_lf (18)
or

u=at (wun)f (19)

wherea(wy) is the receptance matrix, proved to be

a(oy)=[Sdiag?-o3 +2C0,0,4 j]ST]'1=S'Tdia{ — L } st (20)
W~y +Zi('q(‘q}rj

with S=M“?P and P a matrix formed by the eigen-vectors ofkMm 2.

By noting that S is formed by modes of vibration, represented by Wector y
equation (20) can be further expressed as a summattrix such that

n U-U-T
= i (21)
a(wy ) .Zl (af_wgr)+(2(icqm)J}

which is formed again by the eigen-vectors. A
given element ofa(wy,) in the position s-r is the transfer function beén the response in
S, u, to the excitation, fin r when all other excitation are fixed to zdr®ance,

_y [uy']
< (@) = haBEE : 22
O () lea%2 ~wh + LWy ) ] #2)

Now, by assuming that continous system exhibit @sodf vibration well separated
apart, the sum in equation (22) will be dominatgdtérm associated with the natural
frequency, so that, fany=w , equation (22) becomes
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luy g =12af IHg ()] (24)

where |H{w)|=los{w)| is the measured magnitude of the transfer fundbietween the
points s and r for the natural frequency i.

Equation (24) gives only the magnitude but notdigmal such that it is not possible to
determine the direction of the movement. Howeviee, phase of H§) can be used to
determine the signal of;{i|s-

5. EXPERIMENTAL RESULTS AND DISCUSSION

The beam shown in Figure 3 has at its tip an acmeleter connected to a charge amplifier,
whose analogic signal is fed to a data acquistiioard.
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Figure 3: Cantilever beam

By processing the data generated by the beam nespto the various hammer
excitations, the spectrum in Figure 42 is obtairted. evident in the figure the peaks in the
amplitude related to the natural frequencies. Thfarther corroborated by plotting the real
and imaginary part of this spectrum, so to obtaeNlyquist circle in Figure 4b. In Figure
4c, the phase of the transfer function is plottthwing the calculation of the motion
direction.



The natural frequencies for the theoretical modsien81.7 Hz, 198.8 Hz and 556.7 Hz,
whereas the ones obtained by the technique hecellues are 28.5 Hz, 184 Hz e 507 Hz.
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Figura 5. The first three modes of vibration fog tantilever beam. Green- analytical, red-
interpolation of the experimental data, dottedlireb

The natural frequencies were obtained within aoreof no more than 10%. This is
considered to be a reasonable result, when bearimgnd factors like the beam having a
not perfectly rectangular cross-section and, maittat it is difficult to assure a fully
clamped condition to the beam.

It is evident in Figure 5 that the first mode obndtion was not accurately described
although higher modes were. Despite this shortcgnilre technique used here gives to the
students a much more attractive way to study vitmaand moda analysis. The technique
used is relatively easy to implement and the expamtal set up allows the determination of
the natural frequencies also by merely tunningtbguency with a signal generator.

The possibility of showing to the students othehteques and to present in a clear way
basic concepts like natural frequency and modeilmfation make the experiment above
quite useful and attractive.
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