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Abstract. It is presented in this paper some basic concepts of modal analysis aimed to serve as a 
reference for teaching this subject to undergrad students. It is described an experimental apparatus and the 
associated theory which allows to obtain the natural frequencies and modes of vibration of a cantilever beam. 
The results are attractive in the sense that the students get more involved with the subject by experimenting 
directly with the set up here described. 
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1. INTRODUCTION 
  
 The subject of structural vibration is part of the minimum curriculum in many 
engineering courses. Usually, a basic vibration course comprises the analysis of a mass 
connected to a frame with a spring and a dashpot. This simple, one degree of freedom, 
system is used to present the major features of the vibration motion, including natural 
frequency, forced vibration, damping, etc... 

Single degree of freedom system can be quite versatile in the sense that many real 
structures can be modelled using this concept, at least in a preliminary design phase. 
However, although sometimes neglected in an introductory vibration course, continuous 
systems are more realistic, despite of being more complex to analyse. The simplest 
continuous system, a rod, can be used to introduce the concept of natural modes of 
vibration, their associated natural frequencies, and the application of Fourier series to 
analyse forced motion. 

Nevertheless, the beams are really the first continuous system that has a wider use in the 
real world but it is sometimes neglected as a subject in a typical one semester vibration 
course. Experimental vibration is a more complex topic for teaching since it is necessary to 
have facilities like benches, shakers, acelerometers, amplifiers, PC data acquisition cards, 



osciloscopes, etc... Nevertheless, no doubt the students become more motivated and so 
learn much more when they can actually see a real structural vibration problem.  

Bearing this in mind, the authors prepared an experiment aiming at teaching modal 
analysis of beams for students who have attended an introductory vibration course. This 
paper aims to describe it in details the basic theoretical and experimental procedure adopted 
in order to awake the students curiosity to the important problem of modal analysis. 
 
2. MODAL ANALYSIS OF A CANTILEVER 
 
 An experimental set up was deviced to study the vibration of beams. It was decided to 
use a very simple beam arrangement which could suit well experimental facilities restraints. 
Accordingly, a cantilever was chosen since it is very easy to fix its clamped support to a 
shaker. The analysis is also somewhat simple, as described next. 

Consider a cantilever beam in line with the axis x with length l, breadth b, height h, 
made of a material with density ρ and elastic modulus E. The moment of inertia in relation 
to the axis z is I(x) and the cross-section area is A(x). 

Figure 1 presents the beam under analysis with a free body digramm where equilibrium 
of transverse force gives 
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Equlibrium of bending moments actind on the infinitesimal element of width dx leads to 
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such that transverse force, V (x,t), and bending moment, M(x,t), are related by 
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Figure 1. Cantilever beam and an infinitesimal element. 
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when disregarding high order terms. 

By invoking Hookes law and integrating it through the beam cross section, it is possible 
to express the bending moment with the beam transverse deflection w(x,t) using  
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From equations (1) to (4) and focusing on a free vibration problem, i.e. f(x,t) = 0, with A(x) 
e EI(x) constants, it follows that 
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which is the equation of motion for the vibration of a beam. 

Equation (5) can be solved by assuming a solution in the form w(x,t)=X(x)T(t), such 
that 
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where the constant ω is revealed to be the natural frequency when solving 
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whose solution is  
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The constants A and B are obtained from the initial conditions of the problem. 

Equation (6) also gives the spatial behaviour of a beam when solving 
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whose solution is  
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where β and three of the constants ai should be determined from the boundary conditions, 
which are  
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for the particular cantilever case here examined. 
 
2.1 Solution 
 

From the boundary conditions in equation (11), it is possible to show that 
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and in oder to avoid a trivial solution,  
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which gives,  
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The actual cantilever to be tested as described later has the following physical 

parameters 
 
l = 0.5 m 
E = 210 GPa 
I = 2.258 x 10-9 m4 
A = 3.002 x 10-4 m2 
ρ = 7860 kg/m3 

 
which, when using equation (9), (13) and (14), gives the following natural frequencies 
 

ω1 = 199.4 rad/s     .:  f1 = 31.7 Hz 
ω2 = 1249.4 rad/s   .:  f2 = 198.8 Hz 
ω3 = 3498 rad/s      .:  f3 = 557 Hz 

 
As for the vibration modes, they become 
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whose necessary parameters are all known except the constant a4 which is an arbitrary 
constant. These modes of vibration are depicted in Figure 2. 
 



Figure 2: Theoretical modes of vibration for a cantilever beam. 
 
3. INTRODUCING EXPERIMENTAL MODAL ANALYSIS 
 
 Modal analysis is a procedure to extract information on the natural modes of vibration 
and their respective natural frequencies and damping parameters. To perform an 
experimental modal analysis, it is necessary to excite the structure and there are a few 
techniques available. The excitation can come from a shaker or from the impact of a 
hammer. The shaker can be excited by a steady frequency sinusoidal wave or by sweeping 
it with a range of sinusoidal frequencies. 

In the present paper, the technique adopted consists in to excite the cantilever beam with 
a hammer along 10 points of the beam length. Each excitation produces beam motion, 
detected into a single station by na accelerometer fixed at the free end of the beam. The 
impact produced by the hammer is capable of exciting various modes of vibration at once, 
which should be uncoupled by performing a spectral analysis of the response signal. Each 
of the 10 points, equally spaced by 5cm, was excited three times and the accelerometer 
signal was averaged in time before performing the spectral analysis. 

The spectral analysis was done using the software MATLAB, such that the frequency 
response function, H(ω), was obtained for each measured station. This function presents 
higher amplitudes for the natural frequencies and to detect the exact frequency the Nyquist 
circle, formed by the real and imaginary part of the spectrum, is used. To extract and 
analyse the experimental data, a programm was developed which fits the Nyquist circle. 
From this circle, it is possible to obtain the damping coefficient for each natural frequency. 



 
4. BASIC EQUATIONS FOR THE EXPERIMENTAL MODAL ANALYSIS 
 

To uncouple the various recorded signals, the equation of motion for the beam can be 
written as 
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where M, C and K are the mass, damping and stifness matrix. The solution of this equation 
for an excitation f is x(t)=ue jω

dr
t  
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where u is the displacement vector whose components are associated with the motion in 
each degree of freedom, given by 
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or 
 
     u=α(ωdr)f                               (19) 
 
where α(ωdr) is the receptance matrix, proved to be 
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with S=M1/2P and P a matrix formed by the eigen-vectors of M-1/2KM -1/2. 
 

By noting that S-T is formed by modes of vibration, represented by the vector ui, 
equation (20) can be further expressed as a sum of n matrix such that 
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which is formed again by the eigen-vectors. A 

given element of  α(ωdr) in the position s-r is the transfer function between the response in 
s, us, to the excitation, fr, in r when all other excitation are fixed to zero. Hence,  

∑
= +−

=
n

i driidri

sr
T
ii

drsr
j

uu

1
22 )2(

][
)(

ωωζωω
ωα               (22) 

 
 Now, by assuming that continous system exhibit modes of vibration well separated 
apart, the sum in equation (22) will be dominated by term associated with the natural 
frequency, so that, for ωdr=ωi , equation (22) becomes 
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where |Hsr(ωi)|=|� αsr(ωi)| is the measured magnitude of the transfer function between the 
points s and r for the natural frequency i. 

Equation (24) gives only the magnitude but not the signal such that it is not possible to 
determine the direction of the movement. However, the phase of H(ωi) can be used to 
determine the signal of |uiui

T|sr. 
  
5. EXPERIMENTAL RESULTS AND DISCUSSION 
 
The beam shown in Figure 3 has at its tip an accelerometer connected to a charge amplifier, 
whose analogic signal is fed to a data acquisition board. 

 
 

Figure 3: Cantilever beam 
 
 
 By processing the data generated by the beam response to the various hammer 
excitations, the spectrum in Figure 4ª is obtained. It is evident in the figure the peaks in the 
amplitude related to the natural frequencies. This is further corroborated by plotting the real 
and imaginary part of this spectrum, so to obtain the Nyquist circle in Figure 4b. In Figure 
4c, the phase of the transfer function is plotted, allowing the calculation of the motion 
direction. 

beam 



The natural frequencies for the theoretical model were 31.7 Hz, 198.8 Hz and 556.7 Hz, 
whereas the ones obtained by the technique here described are 28.5 Hz, 184 Hz e 507 Hz. 

 
 
 

 

 
 
 

Figura 4. FFT, Nyquist circle and phase of the transfer function H(ω). 
 

  
Figura 5. The first three modes of vibration for the cantilever beam. Green- analytical, red- 

interpolation of the experimental data, dotted in blue. 
 
 
 The natural frequencies  were obtained within an error of no more than 10%. This is 
considered to be a reasonable result, when bearing in mind factors like the beam having a 
not perfectly rectangular cross-section and, mainly, that it is difficult to assure a fully 
clamped condition to the beam. 

It is evident in Figure 5 that the first mode of vibration was not accurately described 
although higher modes were. Despite this shortcoming, the technique used here gives to the 
students a much more attractive way to study vibration and moda analysis. The technique 
used is relatively easy to implement and the experimental set up allows the determination of 
the natural frequencies also by merely tunning the frequency with a signal generator. 

The possibility of showing to the students other techniques and to present in a clear way 
basic concepts like natural frequency and mode of vibration make the experiment above 
quite useful and attractive. 
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