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Resumo. Neste artigo é apresentada uma metodologia para a avaliagdo do dano causado pela
fadiga em estruturas offhore e a sua aplicagdo na orientacdo da inspegdo e reparo em plataformas
de producdo de petroleo. Através de medicoes de deslocamento e de redes neurais artificiais, a
estimativa do dano causado pela fadiga é feita em tempo real, utilizando-se um sistema de
aquisi¢do e processamento de sinais instalado na plataforma. Este procedimento para estimar o
dano acumulado de fadiga pode ser estendido para outros tipos de estruturas submetidas a
carregamentos aleatorios, considerando que as caracteristicas de comportamento dindmico sejam
avaliadas sob o enfoque numérico-experimental.
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1. INTRODUCAO

As incertezas existentes na previsdao do dano de fadiga tornam os procedimentos de inspecao, de
estruturas offshore em operagdo, extremamente importantes para a garantia da sua integridade
estrutural. Em virtude da complexidade deste tipo de estrutura, o tempo e o custo envolvidos nos
procedimentos de inspe¢do sdo elevados. A utilizagdo de técnicas de Inteligéncia Artificial tem
permitido um tratamento mais abrangente para esta classe de problemas. Em particular, as redes
neurais artificiais permitem a obtencdo de informacdes a partir de uma descricdo numérica
apropriada, conforme Kosko (1992).

Uma alternativa que pode ser viabilizada com a utilizagdo de redes neurais ¢ a otimizacao dos
procedimentos de inspeg¢do, feita através do estabelecimento da prioridade da inspecdo, utilizando
também a identificacdo das juntas mais criticas, com o auxilio de um sistema de monitoracdo de
fadiga instalado a bordo da plataforma, de acordo com (Macguire, 2000 ¢ Ebecken, 1997).

2. MODELO ESTOCASTICO DE FADIGA

No caso da distribuigdo de tensdes para um processo estocastico de banda larga, a técnica
utilizada para a contagem dos ciclos e identificacdo dos picos € extremamente importante para a
precisdo da estimativa do dano de fadiga. A partir da expressdo da densidade espectral de tensdes ¢
possivel a determinagdo do dano de fadiga para processos aleatdrios de banda larga, visto que as
propriedades estatiticas destes processos sao representadas de forma adequada pelos momentos de
ordem n das densidades espectrais, fornecidos pela Eq. (1):
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onde o ¢ a frequéncia em rad/s e S (®) € a fungdo densidade espectral de resposta em tensao.
Considerando-se (Chaudhury, 1985 e Lassen, 2002), a expressdao do dano de fadiga, no periodo
de tempo T, pela Regra de Miner, pode ser expressa pela Eq. (2):
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onde ¢ ¢ o parametro de largura de banda, o € o fator de irregularidade, § € o pardmetro de tensdo,
I' ¢ a fungdo gamae A, m e f, sdo os parametros da curva S-N. Considerando-se (Kam, 1987,

Ritchie, 1994 e Etube, 1998), uma expressao semelhante para o calculo do dano de fadiga pela
mecanica da fratura linear pode ser obtida.

O dano causado pela fadiga ¢ geralmente calculado em 8 pontos igualmente espacados,
conforme indicado na Fig. (1).
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Figura 1. Locais considerados na junta

3. REDES NEURAIS ARTIFICIAIS

A identificagdo do comportamento de sistemas lineares ¢ normalmente realizada pela estimativa
de parametros, conforme pode ser verificado na extensa literatura disponivel sobre o assunto. A
relacdo entrada-saida para um sistema de ordem n pode ser obtida por meio da expressdo recursiva
descrita na Eq. (3):

y(k) = Zaiy(k— i)+ Zbix(k— i) 3)

onde a; e b; sdo determinados a partir dos dados conhecidos.

O problema se torna mais complexo no caso de sistemas ndo lineares, sendo impraticavel a sua
identificagdo através da utilizacdo de modelos selecionados de forma arbitraria. Assim sendo, para
se aplicar a adaptatividade das redes neurais artificiais na identificagdo de sistemas dinamicos nao
lineares, deve ser adotado um modelo apropriado que, teoricamente, satisfaca as relagdes entrada-
saida disponiveis.

O termo neurdnio ou elemento processador ¢ referente ao operador que mapeia RV SR e¢
descrito pela Eq. (4) apresentada a seguir:
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onde u ¢ o vetor de entrada do neurdnio i, w; € o vetor peso associado ao neurdnio i, wi, € 0 bias,
G(.) ¢ a fungdo de ativagdo e v; € a saida do neuronio i.

O modelo matematico do neuronio geralmente inclui uma funcao de ativagdo ou transferéncia
ndo linear G(.). A fungdo de ativagao deve ser continuamente diferencidvel, sendo muito empregada
a funcao logistica, pertencente ao conjunto das func¢des sigmoides. Este tipo de funcdo ¢ justificado
sob o aspecto bioldgico, visto que satisfaz propriedades de comportamento dos neurdnios reais.

Uma rede neural artificial ¢ criada por um conjunto de neuronios conectados parcialmente ou
totalmente entre si. Assumindo que os neurdnios estdo organizados em camadas /=0,1,....,L e que

um neurdnio da camada /¢ recebe o sinal de entrada dos neurdnios da camada (/-1) ou anteriores, a
rede neural ¢ denominada feedforward. Esta arquitetura tem como caracteristica a estabilidade de
operacgdo. O ensino supervisionado tem como objetivo estimar uma fungdo desconhecida f: X > Y
por meio de amostras de vetores aleatorios (X1,y1), (X2,¥2),...,(Xm,Ym), minimizando o valor esperado

de um funcional de erro E[J (W)], que define uma superficie média de erro. O erro ¢ definido como

o desempenho desejado menos o desempenho real, originando um pardmetro de avaliacdo para a
regra de aprendizado. A saida desejada y. menos a saida real j(x,) da rede neural define o erro

instantaneo. A Equacao (5) define o valor esperado do erro quadratico, para a amostra (Xx,yx).
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4. MODELO DA PLATAFORMA

O modelo simples da plataforma fixa estd mostrado na Fig. (2). A sua altura total ¢ de 75m, a
largura na face A ¢ de 16m e a largura na face B é de 20m. As mesas, no total de 4, estdo
igualmente espagadas, sendo a superior correspondente aos conveses de uma plataforma tipica de
produgdo de petroleo e as outras 3 mesas pertencentes a jaqueta da plataforma. A lamina d’agua ¢
de 55m.
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Figura 2. Modelo simplificado da plataforma



Neste trabalho, tendo em vista que parametros extraidos do espectro de deslocamento serdo as
entradas da rede neural, a densidade espectral de resposta foi dividida em quatro regides, conforme
indicado na Fig. (3). A regido A esta associada a resposta ndo amplificada da estrutura. As regides
B, C e D correspondem as respostas no entorno das frequéncias naturais. Areas ¢ momentos
espectrais foram utilizados para gerar os dados de entrada para a rede neural.
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Figura 3. Densidade espectral de resposta em deslocamento

Os valores sao referentes a um determinado espectro de mar e dire¢do de onda, visto que o
carregamento dindmico que atua na plataforma, produzido pela a¢ao das ondas, ¢ fung¢do da sua
distribuicdo de energia no dominio da frequéncia e da direcdo predominante da incidéncia das
ondas na plataforma. Os dados para o treinamento da rede neural foram preparados por um
programa de elementos finitos, considerando-se a ocorréncia de diversos espectros de mar e
direcoes de incidéncia de onda.

Visto que a combinacdo das tensdes ao longo da secdo de uma junta e a operacdo destas tensoes
com o expoente m geralmente fornece resultados com diferengas de uma ou mais ordens de
grandeza para os diversos valores de dano calculados, a conversdo destes valores para outra outra
escala, como a escala logaritmica, tornaria a operagdo com estes valores mais facil de ser realizada.
Desta forma, os valores indicados no grafico da Fig. (4) estdo sendo representados através de uma
conversao feita pelo logaritmo neperiano, considerando o seu valor absoluto, uma vez que o dano
de fadiga ¢ um valor menor do que 1.
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Figura 4. Danos de fadiga em escala logaritmica



5. AVALIACAO DO DANO DE FADIGA

O processo de céalculo do dano causado pela fadiga em estruturas offshore, no dominio da
frequéncia, a partir do conhecimento das funcdes de densidade espectral de deslocamento,
corresponde uma fungdo nao linear que pode ser determinada numericamente por meio de um
programa de elementos finitos, com capacidade de andlise dinamica aleatoria, e de expressdes do
tipo definido na Eq. (2). O tempo necessario para a realiza¢do dos célculos tornaria impossivel a
determinagdo do dano de fadiga em tempo real através de microcomputadores. Este fato justifica a
aplicacdo das redes neurais, pela sua grande capacidade de representar fungdes nao lineares e pelo
tempo extremamente rapido de resposta.

A rede neural a ser utilizada para a simulagcdo do dano de fadiga, além de representar bem os
dados utilizados para o treinamento, deve possuir uma boa capacidade para generalizar. Em uma
situagdo real, a maior parte dos dados de entrada ndo ird coincidir com os dados usados no
treinamento e, desta forma, a rede neural deverd “interpolar” para fornecer a resposta para cada
novo conjunto de parametros de entrada.

Apds uma série de avaliagdes de diversas topologias, nas quais o conjunto inicial de dados foi
dividido em conjuntos de treino e de teste e foi considerado o critério de interromper o treinamento
a partir da ndo convergéncia do conjunto de teste, a rede neural 6tima foi definida, uitlizando-se o
algoritmo apresentado em Islam (2002). No grafico da Fig. (5) est4 representada a sua topologia.
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Figura 5. Topologia da rede neural 6tima

As redes neurais utilizadas para a simulagdo do dano de fadiga, que apresentaram os menores
erros, sdo do tipo feedforward totalmente conectadas, com fun¢do de ativacdao sigmodide logistica,
com duas camadas de neurdnios intermedidrios € com técnica de treinamento supervisionado tipo
backpropagation. Para a realizagao do treinamento da rede foi utilizado um conjunto de treino com
63 elementos e um conjunto de teste com 9 elementos. Os programas de computador atualmente
disponiveis permitem a otimizacdo do desempenho de uma rede neural.

O histograma correspondente aos valores dos erros de todas as juntas, sem considerar a
otimizagdo das redes quando houver a ocorréncia de | erro maximo | > 1%, esta apresentado na
Fig. (6). Na tabela estdo indicadas as classes, o valor central de cada classe (corresponde ao valor
do erro em %) ¢ o nimero de ocorréncias de cada classe considerada.



A distribuicao da Fig. (6) ¢é referente aos valores absolutos do erros, onde o centro da primeira
clase tem o valor 0.05 e o espagamento entre as classes ¢ de 0.10 . No caso de se considerar os
valores positivos e negativos dos erros, o valor médio da distribui¢do seria préximo de zero e a sua
dispersao poderia ser avaliada através do desvio padrdo. Conhecendo-se estes valores, a propagacao
dos erros poderia ser avaliada de forma precisa.
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Figura. 6. Histograma dos erros das 12 juntas

Um sistema de aquisicdo e processamento de sinais digitais, contendo oito transdutores de
aceleragdo, instalados na plataforma fixa, pode gerar as informagdes necessarias para o acesso ao
dano de fadiga em tempo real, a partir da disponibilidade de redes neurais que transformem os
dados de deslocamentos medidos no convés da plataforma no dano de fadiga correspondente nas
diversas juntas. Neste caso, os sinais de aceleracdo sdo adquiridos, calculadas as suas densidades
espectrais de poténcia e estimado o dano de fadiga em oito locais de cada se¢do, por meio rotinas
geradas pelo programa de treinamento de redes neurais. Este sistema podera gerar relatorios
periddicos, que serdo utilizados como subsidio para orientar a inspe¢ao.

O acesso ao dano causado pela fadiga, para posterior calculo do dano acumulado, deve ser feito
em tempo real, visto que a fadiga ¢ um processo continuo de deterioracdo da condicdo de
integridade estrutural das juntas soldadas. O termo tempo real, que esta sendo utilizado neste
trabalho, deve ser entendido de forma mais flexivel e sem o rigor normalmente existente nos
processos de aquisi¢do e processamento de sinais de alta frequéncia.

6. CONCLUSOES

Pode ser verificado que o mesmo valor de erro relativo (em %) do ‘logaritmo do dano| ira
produzir erros propagados distintos, conforme exemplificado na Tab. (1). Visto que os maiores
valores do |10garitmo do dano‘ - Viom - €stdo relacionados a valores muito pequenos de dano, o
fato de possuirem os maiores erros afetara pouco, na pratica, o calculo do dano acumulado nas
juntas selecionadas da plataforma.

Tabela 1. Erros propagados

Vforn Dano(e™"™) Erel_ativo EDropagado
10 | 4.539*107 0.5% 1.05
20 | 2.061%10°7 | 0.5% 1.10
30 | 935610 | 0.5% 1.16




Através destes resultados, podemos concluir que, sob o ponto de vista pratico, o dano de fadiga
estimado pelas redes neurais permitiria classificar as juntas, com precisao aceitavel, de acordo com
o dano de fadiga acumulado.

A transformacdo logaritmica efetuada nos valores originais teve grande influéncia no erro
produzido pelas redes neurais, causando uma grande reducdo nos seus valores e viabilizando a
aplicagdo pratica da proposta deste trabalho. O autor considera que esta transformagao poderia ser
otimizada, de forma a reduzir ainda mais o erro propagado.

A maior incerteza no calculo do dano de fadiga em plataformas - a determinagdo do
carregamento - estd praticamente eliminada. As outras incertezas, caracteristicas deste tipo de
problema, foram assumidas semelhantes para todas as juntas e, desta forma, ndo foram consideradas
de forma explicita neste trabalho.

Um fator importante, que muitas vezes ndo ¢ considerado na avaliag@o de erros, ¢ a utilizagao do
computador digital para implementar as redes neurais. Em Wray (1995) ¢ demonstrado que os
resultados da teoria da aproximagdo nao podem ser utilizados indiscriminadamente, sem
consideracdes sobre os limites de precisdo dos algoritmos computacionais, € como estas limitagdes
reduzem sensivelmente a capacidade de aproximacdo das redes neurais. Este autor também
demonstra que a rede neural tipo Radial Basis Function produz uma aproximagao global dos dados
de treinamento por um somatodrio de aproximagoes locais e, desta forma, deve possuir uma precisao
numérica superior ao tipo de rede utilizada neste trabalho. Um procedimento alternativo,
apresentado por Fujimoto (1998), baseado em algoritmos genéticos, pode ser também avaliado com
o objetivo de reduzir mais o erro associado as redes neurais.

No caso do carregamento produzido pelas ondas do mar, a incerteza estd associada tanto a sua
amplitude quanto a sua dire¢do, fato este que torna as hipoteses de projeto mais criticas, visto que
sdo baseadas em uma estatistica de mar que geralmente ndo ocorre durante a vida util da
plataforma.

A metodologia desenvolvida pode ser aplicada, a principio, para outros tipos de sistemas
submetidos a carregamentos aleatorios. Analogamente a abordagem considerada neste trabalho, a
partir do conhecimento das caracteristicas do carregamento ¢ possivel o desenvolvimento de um
simulador (modelo computacional) calibrado do sistema e a geracdo dos dados necessarios para o
treinamento da rede neural de avaliagdo do dano de fadiga. O simulador ndo podera ser
desenvolvido caso ndo se disponha das caracteristicas do carregamento e, desta forma, a alternativa
para a obtencdo dos dados para o treinamento da rede neural ¢ a realizacdo de medi¢des em escala
real das variaveis de referéncia e das tensdes nos locais criticos da estrutura, para um numero
significativo de condi¢des de carregamento.

Este tipo de metodologia pode ser considerado como um supervisor de integridade estrutural de
sistemas submetidos a excitagdo aleatdria, visto que as informacgdes geradas t€ém como objetivo
permitir que se disponha de uma alternativa de avaliagdo do dano de fadiga baseada no
carregamento real que estd atuando no sistema em complemento aos dados de inspecao.
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Abstract. This paper presents a methodology for fatigue damage computation and advicing for
inspection and repair of fixed offshore platforms. Based on measurements of displacements and on
a feedforward backpropagation neural networks, the calculation of fatigue damage is performed in-
time. The accumulated fatigue damage, caused by actual loading condition, is assessed through a
data acquisition and processing system installed onboard. This approach can be extended to other
systems if the random dynamic behaviour is possible to be achieved.
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