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Resumo. Neste artigo é apresentada uma metodologia para a avaliação do dano causado pela
fadiga em estruturas offhore e a sua aplicação na orientação da inspeção e reparo em plataformas
de produção de petróleo. Através de medições de deslocamento e de redes neurais artificiais, a
estimativa do dano causado pela fadiga é feita em tempo real, utilizando-se um sistema de
aquisição e processamento de sinais instalado na plataforma. Este procedimento para estimar o
dano acumulado de fadiga pode ser estendido para outros tipos de estruturas submetidas a
carregamentos aleatórios, considerando que as características de comportamento dinâmico sejam
avaliadas sob o enfoque numérico-experimental.
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1. INTRODUÇÃO

As incertezas existentes na previsão do dano de fadiga tornam os procedimentos de inspeção, de
estruturas offshore em operação, extremamente importantes para a garantia da sua integridade
estrutural. Em virtude da complexidade deste tipo de estrutura, o tempo e o custo envolvidos nos
procedimentos de inspeção são elevados. A utilização de técnicas de Inteligência Artificial tem
permitido um tratamento mais abrangente para esta classe de problemas. Em particular, as redes
neurais artificiais permitem a obtenção de informações a partir de uma descrição numérica
apropriada, conforme Kosko (1992).

Uma alternativa que pode ser viabilizada com a utilização de redes neurais é a otimização dos
procedimentos de inspeção, feita através do estabelecimento da prioridade da inspeção, utilizando
também a identificação das juntas mais críticas, com o auxílio de um sistema de monitoração de
fadiga instalado a bordo da plataforma, de acordo com (Macguire, 2000  e Ebecken, 1997).

2. MODELO ESTOCÁSTICO DE FADIGA

No caso da distribuição de tensões para um processo estocástico de banda larga, a técnica
utilizada para a contagem dos ciclos e identificação dos picos é extremamente importante para a
precisão da estimativa do dano de fadiga. A partir da expressão da densidade espectral de tensões é
possível a determinação do dano de fadiga para processos aleatórios de banda larga, visto que as
propriedades estatíticas destes processos são representadas de forma adequada pelos momentos de
ordem n das densidades espectrais, fornecidos pela Eq. (1):
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onde ω é a frequência em rad/s e Sten (ω) é a função densidade espectral de resposta em tensão.
Considerando-se (Chaudhury, 1985 e Lassen, 2002), a expressão do dano de fadiga, no período

de tempo T, pela Regra de Miner, pode ser expressa pela Eq. (2):
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onde ε é o parâmetro de largura de banda, α  é o fator de irregularidade, β é o parâmetro de tensão,
Γ é a função gama e  A ,  m  e  fc  são os parâmetros da curva S-N. Considerando-se (Kam, 1987,
Ritchie, 1994 e Etube, 1998), uma expressão semelhante para o cálculo do dano de fadiga pela
mecânica da fratura linear pode ser obtida.

O dano causado pela fadiga é geralmente calculado em 8 pontos igualmente espaçados,
conforme indicado na Fig. (1).

            
Figura 1. Locais considerados na junta

3. REDES NEURAIS ARTIFICIAIS

A identificação do comportamento de sistemas lineares é normalmente realizada pela estimativa
de parâmetros, conforme pode ser verificado na extensa literatura disponível sobre o assunto. A
relação entrada-saída para um sistema de ordem n pode ser obtida por meio da expressão recursiva
descrita na Eq. (3):
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onde ai e bi são determinados a partir dos dados conhecidos.
O problema se torna mais complexo no caso de sistemas não lineares, sendo impraticável a sua

identificação através da utilização de modelos selecionados de forma arbitrária. Assim sendo, para
se aplicar a adaptatividade das redes neurais artificiais na identificação de sistemas dinâmicos não
lineares, deve ser adotado um modelo apropriado que, teoricamente, satisfaça as relações entrada-
saída disponíveis.

O termo neurônio ou elemento processador é referente ao operador que mapeia R RN →  e é
descrito pela Eq. (4) apresentada a seguir:
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onde u é o vetor de entrada do neurônio i, wi é o vetor peso associado ao neurônio i, wio é o bias,
G(.) é a função de ativação e vi é a saída do neurônio i.

O modelo matemático do neurônio geralmente inclui uma função de ativação ou transferência
não linear G(.). A função de ativação deve ser continuamente diferenciável, sendo muito empregada
a função logística, pertencente ao conjunto das funções sigmóides. Este tipo de função é justificado
sob o aspecto biológico, visto que satisfaz propriedades de comportamento dos neurônios reais.

Uma rede neural artificial é criada por um conjunto de neurônios conectados parcialmente ou
totalmente entre si. Assumindo que os neurônios estão organizados em camadas l = 0,1,....,L  e que
um neurônio da camada  l  recebe o sinal de entrada dos neurônios da camada (l-1) ou anteriores, a
rede neural é denominada feedforward. Esta arquitetura tem como característica a estabilidade de
operação. O ensino supervisionado tem como objetivo estimar uma função desconhecida  f : X → Y
por meio de amostras de vetores aleatórios (x1,y1), (x2,y2),...,(xm,ym), minimizando o valor esperado
de um funcional de erro ( )[ ]E J w , que define uma superfície média de erro. O erro é definido como
o desempenho desejado menos o desempenho real, originando um parâmetro de avaliação para a
regra de aprendizado. A saída desejada yk menos a saída real $( )y xk  da rede neural define o erro
instantâneo. A Equação (5) define o valor esperado do erro quadrático, para a amostra (xk,yk).

[ ]ε k k k k k= − −E T(( $( ))(( $( ))y y x y y x     (5)

4. MODELO DA PLATAFORMA

O modelo simples da plataforma fixa está mostrado na Fig. (2). A sua altura total é de 75m, a
largura na face A é de 16m e a largura na face B é de 20m. As mesas, no total de 4, estão
igualmente espaçadas, sendo a superior correspondente aos conveses de uma plataforma típica de
produção de petróleo e as outras 3 mesas pertencentes à jaqueta da plataforma. A lâmina d’água é
de 55m.
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Figura 2. Modelo simplificado da plataforma



Neste trabalho, tendo em vista que parâmetros extraídos do espectro de deslocamento serão as
entradas da rede neural, a densidade espectral de resposta foi dividida em quatro regiões, conforme
indicado na Fig. (3). A região A está associada à resposta não amplificada da estrutura. As regiões
B, C e D correspondem às respostas no entorno das frequências naturais. Áreas e momentos
espectrais foram utilizados para gerar os dados de entrada para a rede neural.

  

       Densidade espectral (deslocamento)
 B

        A

      D

           C

        Frequência
         f1    f2  f3       f4   f5

Figura 3. Densidade espectral de resposta em deslocamento

Os valores são referentes a um determinado espectro de mar e direção de onda, visto que o
carregamento dinâmico que atua na plataforma, produzido pela ação das ondas, é função da sua
distribuição de energia no domínio da frequência e da direção predominante da incidência das
ondas na plataforma. Os dados para o treinamento da rede neural foram preparados por um
programa de elementos finitos, considerando-se a ocorrência de diversos espectros de mar e
direções de incidência de onda.

Visto que a combinação das tensões ao longo da seção de uma junta e a operação destas tensões
com o expoente  m geralmente fornece resultados com diferenças de uma ou mais ordens de
grandeza para os diversos valores de dano calculados, a conversão destes valores para outra outra
escala, como a escala logarítmica, tornaria a operação com estes valores mais fácil de ser realizada.
Desta forma, os valores indicados no gráfico da Fig. (4) estão sendo representados através de uma
conversão feita pelo logaritmo neperiano, considerando o seu valor absoluto, uma vez que o dano
de fadiga é um valor menor do que 1.
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Figura 4. Danos de fadiga em escala logarítmica



5. AVALIAÇÃO DO DANO DE FADIGA

O processo de cálculo do dano causado pela fadiga em estruturas offshore, no domínio da
frequência, a partir do conhecimento das funções de densidade espectral de deslocamento,
corresponde uma função não linear que pode ser determinada numericamente por meio de um
programa de elementos finitos, com capacidade de análise dinâmica aleatória, e de expressões do
tipo definido na Eq. (2). O tempo necessário para a realização dos cálculos tornaria impossível a
determinação do dano de fadiga em tempo real através de  microcomputadores. Este fato justifica a
aplicação das redes neurais, pela sua grande capacidade de representar funções não lineares e pelo
tempo extremamente rápido de resposta.

A rede neural a ser utilizada para a simulação do dano de fadiga, além de representar bem os
dados utilizados para o treinamento, deve possuir uma boa capacidade para generalizar. Em uma
situação real, a maior parte dos dados de entrada não irá coincidir com os dados usados no
treinamento e, desta forma, a rede neural deverá “interpolar” para fornecer a resposta para cada
novo conjunto de parâmetros de entrada.

Após uma série de avaliações de diversas topologias, nas quais o conjunto inicial de dados foi
dividido em conjuntos de treino e de teste e foi considerado o critério de interromper o treinamento
a partir da não convergência do conjunto de teste, a rede neural ótima foi definida, uitlizando-se o
algoritmo apresentado em Islam (2002). No gráfico da Fig. (5) está representada a sua topologia.
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Figura 5. Topologia da rede neural ótima

As redes neurais utilizadas para a simulação do dano de fadiga, que apresentaram os menores
erros, são do tipo feedforward totalmente conectadas, com função de ativação sigmóide logística,
com duas camadas de neurônios intermediários e com técnica de treinamento supervisionado tipo
backpropagation. Para a realização do treinamento da rede foi utilizado um conjunto de treino com
63 elementos e um conjunto de teste com  9 elementos. Os programas de computador atualmente
disponíveis permitem a otimização do desempenho de uma rede neural.

O histograma correspondente aos valores dos erros de todas as juntas, sem considerar a
otimização das redes quando houver a ocorrência de erro máximo > 1%,  está apresentado na
Fig. (6). Na tabela estão indicadas as classes, o valor central de cada classe (corresponde ao valor
do erro em %) e o número de ocorrências de cada classe considerada.



A distribuição da Fig. (6) é referente aos valores absolutos do erros, onde o centro da primeira
clase tem o valor 0.05 e o espaçamento entre as classes é de 0.10 . No caso de se considerar os
valores positivos e negativos dos erros, o valor médio da distribuição seria próximo de zero e a sua
dispersão poderia ser avaliada através do desvio padrão. Conhecendo-se estes valores, a propagação
dos erros poderia ser avaliada de forma precisa.

Figura. 6. Histograma dos erros das 12 juntas

Um sistema de aquisição e processamento de sinais digitais, contendo oito transdutores de
aceleração, instalados na plataforma fixa, pode gerar as informações necessárias para o acesso ao
dano de fadiga em tempo real, a partir da disponibilidade de redes neurais que transformem os
dados de deslocamentos medidos no convés da plataforma no dano de fadiga correspondente nas
diversas juntas. Neste caso, os sinais de aceleração são adquiridos, calculadas as suas densidades
espectrais de potência e estimado o dano de fadiga em oito locais de cada seção, por meio rotinas
geradas pelo programa de treinamento de redes neurais. Este sistema poderá gerar relatórios
periódicos, que serão utilizados como subsídio para orientar a inspeção.

O acesso ao dano causado pela fadiga, para posterior cálculo do dano acumulado, deve ser feito
em tempo real, visto que a fadiga é um processo contínuo de deterioração da condição de
integridade estrutural das juntas soldadas. O termo tempo real, que está sendo utilizado neste
trabalho, deve ser entendido de forma mais flexível e sem o rigor normalmente existente nos
processos  de aquisição e processamento de sinais de alta frequência.

6. CONCLUSÕES

Pode ser verificado que o mesmo valor de erro relativo (em %) do logaritmo do dano irá
produzir erros propagados distintos, conforme exemplificado na Tab. (1). Visto que os maiores
valores do logaritmo do dano - vforn - estão relacionados a valores muito pequenos de dano, o
fato de possuirem os maiores erros afetará pouco, na prática, o cálculo do dano acumulado nas
juntas selecionadas da plataforma.

Tabela 1. Erros propagados

vforn Dano e vforn( )− Erelativo Epropagado

10 4.539*10-5 0.5% 1.05
20 2.061*10-9 0.5% 1.10
30 9.356*10-14 0.5% 1.16
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Através destes resultados, podemos concluir que, sob o ponto de vista prático, o dano de fadiga
estimado pelas redes neurais permitiria classificar as juntas, com precisão aceitável, de acordo com
o dano de fadiga acumulado.

A transformação logarítmica efetuada nos valores originais teve grande influência no erro
produzido pelas redes neurais, causando uma grande redução nos seus valores e viabilizando a
aplicação prática da proposta deste trabalho. O autor considera que esta transformação poderia ser
otimizada, de forma a reduzir ainda mais o erro propagado.

A maior incerteza no cálculo do dano de fadiga em plataformas - a determinação do
carregamento - está praticamente eliminada. As outras incertezas, características deste tipo de
problema, foram assumidas semelhantes para todas as juntas e, desta forma, não foram consideradas
de forma explícita neste trabalho.

Um fator importante, que muitas vezes não é considerado na avaliação de erros, é a utilização do
computador digital para implementar as redes neurais. Em Wray (1995) é demonstrado que os
resultados da teoria da aproximação não podem ser utilizados indiscriminadamente, sem
considerações sobre os limites de precisão dos algoritmos computacionais, e como estas limitações
reduzem sensivelmente a capacidade de aproximação das redes neurais. Este autor também
demonstra que a rede neural tipo Radial Basis Function produz uma aproximação global dos dados
de treinamento por um somatório de aproximações locais e, desta forma, deve possuir uma precisão
numérica superior ao tipo de rede utilizada neste trabalho. Um procedimento alternativo,
apresentado por Fujimoto (1998), baseado em algoritmos genéticos, pode ser também avaliado com
o objetivo de reduzir mais o erro associado às redes neurais.

No caso do carregamento produzido pelas ondas do mar, a incerteza está associada tanto à sua
amplitude quanto à sua  direção, fato este que torna as hipóteses de projeto mais críticas, visto que
são baseadas em uma estatística de mar que geralmente não ocorre durante a vida útil da
plataforma.

A metodologia desenvolvida pode ser aplicada, a princípio, para outros tipos de sistemas
submetidos a carregamentos aleatórios. Analogamente à abordagem considerada neste trabalho, a
partir do conhecimento das características do carregamento é possível o desenvolvimento de um
simulador (modelo computacional) calibrado do sistema e a geração dos dados necessários para o
treinamento da rede neural de avaliação do dano de fadiga. O simulador não poderá ser
desenvolvido caso não se disponha das características do carregamento e, desta forma, a alternativa
para a obtenção dos dados para o treinamento da rede neural é a realização de medições em escala
real das variáveis de referência e das tensões nos locais críticos da estrutura, para um número
significativo de condições de carregamento.

Este tipo de metodologia pode ser considerado como um supervisor de integridade estrutural de
sistemas submetidos à excitação aleatória, visto que as informações geradas têm como objetivo
permitir que se disponha de uma alternativa de avaliação do dano de fadiga baseada no
carregamento real que está atuando no sistema em complemento aos dados de inspeção.
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Abstract. This paper presents a methodology for fatigue damage computation and advicing for
inspection and repair of fixed offshore platforms. Based on measurements of displacements and on
a feedforward backpropagation neural networks, the calculation of fatigue damage is performed in-
time. The accumulated fatigue damage, caused by actual loading condition, is assessed through a
data acquisition and processing system installed onboard. This approach can be extended to other
systems if the random dynamic behaviour is possible to be achieved.
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