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Resumo. O proposito desse artigo é avaliar os efeitos da concentra¢do de tensoes e deformagoes
em componentes estruturais que apresentam descontinuidades geométricas. Para uma boa andlise
dos danos causados em pontos onde a tensdo atuante excede a tensdo limite de escoamento e onde
as deformagoes plasticas sdo dominantes, torna-se necessario uma analise elastoplastica. Neste
estudo, foram estimados os niveis de tensdo e deformacgdo atuantes em uma placa plana com furo
central e em um corpo de prova com duplo entalhe em U. Os materiais avaliados foram o ago USS
T1 Steel e a liga de aluminio Al 2024 T351. Foram utilizados na andlise os modelos elastoplasticos
de Neuber e Glinka, acoplados a equacgdo constitutiva de Ramberg-Osgood, e uma solu¢do
numeérica baseada na técnica de elementos finitos. Os valores estimados foram comparados com
resultados experimentais obtidos da literatura apropriada. Andlises foram realizadas de forma a
prever desvios percentuais em termos de vida dos componentes estruturais e relacionados a
utilizagdo das diversas técnicas avaliadas. Com base nos resultados obtidos pode-se realizar uma
comparagdo entre as técnicas mais utilizadas e avaliar o dominio de aplicabilidade dos modelos a
situagoes reais da integridade estrutural de componentes.

Palavras-chave. Confiabilidade Estrutural, Fadiga, Analise de Tensoes, Vida, Entalhes.
1.INTRODUCAO

Componentes estruturais intensamente solicitados podem apresentar escoamento localizado em
pontos de concentragdo de tensdes, tais como, furos, entalhes, mudangas bruscas de secdo, rasgos de
chaveta, etc (Peterson, 1974; Schijve, 1980). Sob condigdes de carregamentos ciclicos, a presenga
de plasticidade pode induzir a condi¢des de iniciacdo de trincas de fadiga, redistribuicdo de tensdes,
degradagdo das propriedades do material e aparecimentos de elevados gradientes de tensdo e
deformacdo, podendo culminar em acidentes e/ou prejuizos financeiros, explicando a relevancia
deste estudo (Fillippini, 2000; Visvanatha et al, 2000). Desta forma, para uma boa analise dos danos
causados em pontos onde a tensdo atuante excede a tensdo limite de escoamento e onde as
deformacgdes plasticas sdo dominantes, torna-se necessario uma analise elastoplastica. Entretanto,
para estorias de carregamentos longos e arbitrarios, célculos precisos das tensdes e deformacdes
atuantes nestas descontinuidades podem se tornar dificeis, dispendiosos e demorados. Desta forma,
devido ao reduzido esfor¢co computacional necessario, métodos aproximados que levam em
consideragao abordagens de deformagdo local sdo muito utilizados na engenharia. Dentre estes
métodos, o mais utilizado ¢ a regra de Neuber, apesar de ter sido deduzida para geometria e
carregamento especifico (Neuber, 1961). Diversos outros pesquisadores, tais como Topper et all



(1969), Seeger et al (1980), Glinka (1985) e Ye (2003) propuseram métodos alternativos e/ou
complementares. Entretanto, o maior inconveniente do uso dessas abordagens reside na
impossibilidade de avaliar a redistribui¢do das tensdes associadas ao escoamento e a variacoes
geométricas localizadas. Apesar do elevado esfor¢o computacional, uma forma de contornar esse
problema consiste na utilizagdo de elementos finitos considerando nao linearidades geométricas e
comportamento elastoplastico do material. Desta forma, o presente trabalho tem como principal
objetivo a utilizagao de elementos finitos bidimensionais e resultados experimentais para avaliacao da
capacidade preditiva das abordagens de deformagdo local propostas principalmente por Neuber e
Glinka para situacdes especificas da integridade de componentes entalhados.

1.1.Modelo de Neuber

O modelo de Neuber, apesar de ter sido formulado para uma geometria especifica (Neuber,
1961), consiste em um dos mais utilizados na descricdo de tensdes e deformacdes atuantes em
descontinuidades geométricas. Este método parte da premissa basica que o fator tedrico de
concentragdo de tensdes teorico, K, utilizado para relacionar tensdes e deformagdes nominais com
tensdes e deformagdes locais permanece constante até o inicio do escoamento. Apos este ocorrido,
as tensdes e deformacdes locais ndo mais se relacionam linearmente com as tensdes e deformagdes
nominais através do fator K,, mas sim, através do fator de concentragao de tensdes, K, e do fator de
concentracdo de deformacdes, K. . Esta resposta local deve-se principalmente a tensdes residuais
desenvolvidas como resultado do escoamento localizado na raiz da descontinuidade geométrica
(Neuber, 1961) e pode ser expressa pela Eq. (1).
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onde o, S, & e representam a tensao local, tensdo nominal, deformacao local e deformagao nominal,
respectivamente.

Assumindo condi¢cdes nominais eldsticas e admitindo que a relagdo tensdo deformacdo sob
condigdes elastoplasticas ¢ descrita pela equacdo de Ramberg-Osgood, Eq. (2), a relagao entre a
tensdo nominal e a tensdo na raiz do entalhe € representada pela Eq. (3).
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onde e, e e, representam, respectivamente a deformagao plastica e elastica e, n e K representam,
respectivamente, o expoente de encruamento e o coeficiente de resisténcia do material.

Segundo Seeger et al (1977) e Amstutz (1978), o modelo descrito por Neuber fornece
estimativas conservadoras para a deformagao na raiz do entalhe e sua precisao independe de K; e do
material. A Eq. (3) s6 ¢ valida até o inicio do escoamento na raiz de entalhe. Entretanto, se existe
necessidade de levar em consideracdo escoamento generalizado na se¢do da descontinuidade
geométrica dispde-se da generalizacdo do modelo de Neuber, proposta por Seeger ¢ Heuler (Seeger
et al, 1980) e apresentada na Eq. (4).
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Na presenga de carregamentos ciclicos, a Eq. (4) pode ser reescrita da forma apresentada na Eq.
(5), onde Ao, AS, Ag, Ae representam as gamas de tensdo local, tensdo nominal, deformacao local e
deformagdo nominal, respectivamente.
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A avaliagdo dos niveis de tensdo local ¢ obtida da equagao anterior conhecendo-se o K; fator e a
gama de tensdo nominal. A determinacdo da gama de deformacao local ¢ obtida associando-se a Eq.
(5) com a relagdo de Ramberg-Osgood (Bannantine, 1998; Dowling, 1999) para cargas ciclicas.

1.2.Modelo Baseado na Energia de Deformaciao Equivalente

Foi devidamente comprovado que, em casos de escoamento localizado, a densidade de energia
na zona plastica ¢ aproximadamente igual & observada em materiais linearmente elasticos. Isto
significa que na presenca de plasticidade de pequena escala, a preponderancia de material com
comportamento elastico ao redor da pequena regido de plasticidade controla as deformacgdes da
zona plastica (Hutchinson, 1968; Walker, 1974). Desta maneira, a densidade de energia
elastoplastica, ¥ ., mostra-se igual a calculada com base na solucao eléstica, y ;.
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Mediante estados planos de tensdes e para casos totalmente elésticos, a tensdo na raiz do entalhe
pode ser calculada com base na tensdo nominal e no valor do fator tedrico de concentragdo de
tensdes. Desta forma, a equagdo anterior pode ser reescrita na forma da Eq. (7), significando que a
densidade de energia na deformacao elastica, i s na raiz do entalhe ¢ igual ao produto da densidade

de energia proveniente da tensdo nominal, ¥ s, € do quadrado de K.
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Assumindo comportamento nominal dentro do limite linear eldstico, ¥ s, pode ser calculado

com respeito a area sob a reta linear eldstica nominal do material, ou seja, %2 Se, como observado na
Fig. (1a). Desta forma tem-se:
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Glinka (1985) desenvolveu uma intensa pesquisa a respeito desta abordagem energética para
estimativas de niveis de tensdo e deformacao inelastica na raiz de corpos entalhados. Computando-
se a densidade de energia elastopldstica como a area sob a curva tensdo-deformagdo, ou seja,
Voe=Wat y,="%ocs+[1/(1+n)] oep, como observado na Fig. (1b), pode-se demonstrar que:
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Esta ultima equacgao ¢ valida para escoamento localizado na raiz da descontinuidade geométrica,
possibilitando o calculo das tensdes e deformagdes locais, conhecidas a tensdo nominal e o K. Foi
demonstrado que o método da densidade de energia pode ser utilizado para os estados planos de



tensdes e deformagdes, além de mostra-se verdadeira para niveis de tensao proéximos ao escoamento
generalizado da se¢do da descontinuidade (Glinka, 1985).
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Figura 1. a)Diagrama tensdo-deformagao nominal eléstica; b) Diagrama o-¢.

Caso haja necessidade de levar em consideracdo escoamento generalizado na se¢do da
descontinuidade geométrica e em casos onde existam apenas tensdes trativas ou prevalecam as
tensOes trativas sobre as de flexdo (Glinka, 1985), dispde-se da generalizacdo do modelo de Glinka
apresentada na Eq. (9), para o caso de carregamentos ciclicos.
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Da mesma maneira que apresentado para o modelo de Neuber, a avaliagdo dos niveis de tensdo
local ¢ obtida da equacdo anterior conhecendo-se o K; e a gama tensdo nominal. A determinagdo da
gama de deformacao local ¢ obtida associando-se a Eq. (9) com a relagdo de Ramberg-Osgood.

1.3.Relac¢ao entre os Modelos de Neuber e Glinka

Considere o diagrama tensdo-deformagao monotonico de um material apresentado na Fig. (2a).
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Figura 2. (a) Diagrama c-& monotonico; (b) Laco de histerese.
Experimentos com materiais metalicos comprovam que mediante deformagdes plasticas, parte
da energia de deformacdo cedida a um sistema elastoplastico ¢ dissipada na forma de calor, y, €
parte ¢ consumida pelas mudangas na energia armazenada no sistema, principalmente associadas



com tensdes residuais, y; (Ye et all, 2003). Um método para se calcular a energia armazenada
utilizando-se a curva tensdo deformacdo verdadeira de um material pode ser visualizado na Fig. (2a)
(Aravas, 1990). Desta forma, computada a parcela de energia armazenada e a energia plastica total,
w,, pode-se observar que a energia dissipada na forma de calor ¢ obtida facilmente da Eq. (12).
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Da Fig. (2a) nota-se que a densidade de energia elastoplastica pode também ser calculada por:
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Associando-se a Eq. (13) a Eq. (8)
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Observa-se facilmente que a Eq. (14) é apenas uma forma alternativa do método baseado na
densidade de energia de Glinka. Esta equagdo pode ser explicada de forma que o trabalho tedrico
sofrido por um elemento de material localizado na raiz da descontinuidade geométrica devido a uma
tensdo nominal S, representado pelo lado esquerdo da Eq. (14), ¢ transformado na energia de
deformacdo total (o.¢) e parcialmente dissipado na forma de calor (y,) durante a deformacdo
pléastica. Comparando-se esta equacdo com o modelo proposto por Neuber, Eq. (1), observa-se
facilmente que as mesmas diferem simplesmente pela presenca do termo dissipativo de calor.
Avaliando-se as parcelas destas duas equacdes conclui-se que teoricamente o modelo de Neuber
superestima os niveis de tensdo e deformacdo na raiz das descontinuidades geométricas em relagao
ao Modelo de Glinka visto que ndo leva em conta o termo dissipativo (termo este sempre positivo) e
que toda a energia inserida no sistema pelo trabalho da tensdo nominal ¢ transformado na energia de
deformacao total (o).

Para casos de carregamentos ciclicos, como exemplificado na Fig. (2b), observa-se facilmente
da Eq.(8) que a forma alternativa do modelo de Glinka pode ser expresso pela Eq.(15).

Ktz -ASAe =20y (15)

Observando a Fig. (2b) para casos de padrdes simétricos de carregamentos e descarregamentos,
pode-se facilmente computar que:

Ag Ag
A v -y carrega v descarrega _ Id‘dé N j&d? (16)
o o o 0 0

Analisando o lado direito da equagdo anterior e comparando-o a area referente a AW, na
Fig.(2a) pode-se facilmente deduzir que a forma alternativa do modelo de Glinka pode ser
representado da seguinte maneira:

Ktz .ASAe = Achs + Ay, (17)

Assim como apresentado para casos monotdnicos, o lado esquerdo desta ultima equacdo pode
ser interpretado como o trabalho teérico sofrido por um elemento de material localizado na raiz da
descontinuidade geométrica devido a uma gama de tensdo nominal AS. Do lado direito estdo
representadas as parcelas de energia de deformacgao total (Ao.A¢g) e a energia de deformagdo plastica
(Ay,=Ay,+Ays). Comparando-se A Eq. (17), modelo de Glinka para carregamentos ciclicos, com
a Eq. (1) devidamente modificada para carregamentos ciclicos, observa-se novamente que



teoricamente o modelo de Neuber para carregamentos ciclicos superestima teoricamente os niveis
de tensdo e deformagdo na raiz das descontinuidades geométricas em relagdo ao modelo de Glinka
visto que ndo computa o termo Ay, € que toda a energia inserida no sistema pela trabalho da tensao
nominal ¢ transformado na energia de deformacao total (o ¢).

Uma interessante modificacdo foi inserida ao modelo de Glinla por Ye et all (2003) pela
substituicdo do termo Ay, na Eq.(17) pelo termo Ay,. Esta substitui¢do estd embasada na
observacdo de que durante um ciclo de deformacdo pléstica, a maioria da energia do laco de
histerese ¢ convertida em calor dissipado e o restante armazenado no material e associada com
tensoes residuais. Desta forma, apenas uma parte de Ay, na Eq.(17), ou seja, Ays, contribuiria com
as gamas de tensdo e deformagdo na descontinuidade geométrica. Com esta substituicdo e com o
auxilio da Fig. (2b) pode-se facilmente obter o modelo de glinka modificado proposto por Ye et all
(2003) valido para tensdes nominalmente plésticas.
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Desta maneira, conhecidos os valores da gama de tensdo nominal e do fator K; pode-se
determinar as gamas de tensdo e deformacdo para a raiz da descontinuidade geométrica.

1.4.Relacio Deformacio-Vida

As técnicas de projetos de componentes mecanicos que consideram a falha por fadiga sdo
baseadas em critérios que podem ser classificados como: critérios de iniciagdo de trincas onde a
vida ¢ estimada em termos do numero de ciclos necessario para que se observe a nucleagdo de
trincas; e critérios de propagacgdo de trincas onde a vida util é estimada em termos do nimero de
ciclos necessario para a propagacdo da trinca e inutilidade do componente. O interesse neste
trabalho esta na avaliagdo das deformacgdes locais e sua associagdo com a vida de fadiga até o
momento do aparecimento das trincas. O SAE Fatigue Design and Evaluation Steering Committee,
em seu relatorio de 1975 determinou a validade da obtengdo da vida em ciclos até a iniciagdo de
falha por meio da amplitude de deformacao e da relacdo de Coffin-Manson apresentada na Eq. (19).
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onde o, , &, , b, c e Nrepresentam as propriedade de fadiga: coeficiente de resisténcia, coeficiente

de ductilidade, expoente de resisténcia, expoente de ductilidade e vida em ciclos, respectivamente.
2.MATERIAIS E METODOS

Nesse topico sao apresentados os materiais e geometrias utilizadas neste estudo, assim como os
procedimentos seguidos para suas analises.

2.1.Descricao do Material e da Geometria

Os materiais analisados foram a liga de aluminio Al 2024-T351 o ago estrutural USS T1 steel.
Tais materiais foram selecionados por serem materiais amplamente utilizados em engenharia, pela
disponibilidade de dados referentes a ensaios experimentais apresentados na literatura e por
possuirem curvas de tensdao deformacdo apresentando baixa magnitude do expoente de
encruamento, #, ou seja, materiais com elevada plasticidade. As propriedades mecanicas e as curvas
tensao-deformacao desses materiais sao apresentadas, respectivamente, na Tab. (1) e na Fig. (3).



Tabela 1. Propriedades Mecénicas dos Materiais.

Material Fonte n’  K’[MPa] S;[MPa] E [GPa] g of[MPa] ¢ b
2024-T351 SAE AEI10 0,065 655 427 73 0,22 1103 -0,59 -0,124
USS Steel T1 SAE AE10 0,088 1503 7929 207 1,08 1213,6 -0,69 -0,06
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Figura 3. Curva Tensao-deformacao dos materiais utilizados.

As caracteristicas geométricas dos entalhes analisados sdo apresentadas na Fig. (4). As relagdes

dimensionais e o material associados a cada entalhe sdo apresentados na Tab. (2).
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Figura 4. Geometria do entalhe: (a) Placa com dois entalhes simétricos, (b) Furo central.

Tabela 2 — RelagOes dimensionais dos Entalhes e Materiais Utilizados

Material Entalhe % %1 K,
US Steel T1 (a) 0,11 0,5 2,96
2024-T351 b) 0,18 ok 2,58

2.2.Analise de Elementos Finitos

A simulag@o numérica por elementos finitos foi realizada utilizando modelos planos. A simetria
das geometrias e das condigdes de contorno dos modelos analisados permitiu considerar um quarto
do componente e otimiza¢do da convergéncia dos resultados. As malhas selecionadas para analise
elastopléastica foram obtidas apos um estudo de convergéncia e adequagdo do K; aos valores
encontrados na literatura. Nas analises realizadas foram estudadas condigdes de estado plano de
tensdes, EPT, simulando a superficie do componente, ¢ de estado plano de deformacdes, EPD,
aproximando a condicdo experimentada pela metade de sua espessura. Uma curva constitutiva
multilinear foi utilizada para a analise elastoplastica dos diferentes materiais, como as representadas
na Fig.(3). Os modelos foram carregados de zero até a tensdo de escoamento do material e
analisados os niveis de tensdo e deformacao na raiz da descontinuidade geométrica, assim como a

vida dos componentes segundo a equacao de Coffin-Manson.



2.2.Analise Numérica — Modelos Elastoplasticos

Na andlise numérica, os niveis de tensdo e deformacgdo atuantes na raiz da descontinuidade
geométrica para os materiais analisados foram estimados segundo as teorias de Neuber e de Glinka
e a mais recente modificacdo do modelo de Glinka proposta por Ye et all (2003). Estas equagdes
foram resolvidas utilizando-se métodos numéricos e técnicas de iteragdo. A equacdo constitutiva de
Ramberg-Osgood e os fatores tedricos de concentragdo de tensdes, apresentados na Tab.(2) foram
utilizados com o intuito de computar a deformacao total, assim como, suas parcelas plastica e
elastica. Da mesma forma, pode-se avaliar os niveis de tensdo e de deformacdo nas raizes dos

entalhes, assim como a vida dos componentes.

3.RESULTADOS E DISCUSSOES

Nas Fig. (3a) e (3b) sdo apresentados, respectivamente, para o A¢o USS T1 e para a liga Al
2024 T351, graficos correlacionando o produto entre fator tedrico de concentragdo de tensdes, Ky, e
a tensao nominal na se¢do entalhada, S ou AS/2, com as deformacdes na raiz do entalhe, & ou Agy/2,
obtidas pelas regras de Neuber, Glinka, Glinka modificado, elementos finitos e experimentalmente.

Além disto sdo apresentadas também as curvas de tensdo-deformagado verdadeira dos materiais.

2500

Kt .S

1500

1000

Tensao Normalizada
T

USS T1 Steel
Experimental
Neuber
Glinka
Glinka modificado
MEF - EPT

Tensao-Deformagao

7K

Considerando os resultados obtidos para os materiais e geometrias analisadas puderam-se
verificar uma excelente correlacdo entre os resultados experimentais € os simulados segundo a
técnica de elementos finitos com hipdtese de estado plano de tensdes. Com relagdo as solucdes
analiticas verificou-se que, para os materiais e geometrias avaliados, o0 modelo energético de Glinka
pode subestimar as deformagdes na raiz do entalhe enquanto que o modelo de Neuber superestima
as mesmas. Comparando-se o modelo de Glinka com a proposta de modificacdo de Ye (2003)
observam-se melhoras para os dois materiais com relagdo as estimativas de deformacao local, sendo
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Figura 3. Estimativa da deformacao para: (a) Ago USS T1 steel, (b) Al 2024 T351.

as mesmas mais evidentes para o USS T1 Steel.

Nas Fig.(4a) e (4b) sdo apresentados, respectivamente, para o A¢o USS T1 e para a liga Al 2024
T351, graficos dos desvios percentuais da vida estimada pelos diversos modelos em relagdao aos
dados experimentais de deformacdo. Ao longo da abscissa encontram-se os valores crescentes do

produto do fator tedrico de concentragdo de tensdes e a tensao nominal aplicada.

total

0.020
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Figura 4. Desvios percentuais de vida: (a) Ago USS T1 steel, (b) Al 2024 T351.

Considerando os resultados obtidos pdde-se verificar que o modelo de Neuber oferece
estimativas de vida seguras para a grande maioria dos valores avaliados atingindo, entretanto,
valores relativamente elevados (~30%) para niveis de tensdo proximos ao escoamento generalizado.
Dos casos avaliados observou-se que o modelo de Glinka oferece uma estimativa nao conservadora
da vida, podendo atingir valores relativamente elevados (~25%). Com a utilizagdo do modelo de
Glinka modificado pode-se melhorar as estimativas aproximando-as dos resultados experimentais.
Com base nos resultados obtidos via elementos finitos pode-se estimar de maneira eficiente a vida,
com desvios percentuais positivos (< 8%). Entretanto, a flutuacdo destes valores ao redor da origem
¢ comparavel a dispersao experimental validando a utilizacao de tal técnica simplificada.

4. CONCLUSOES

Neste trabalho, o método dos elementos finitos e os modelos elastoplasticos foram utilizados
com o objetivo de verificar a validade das abordagens de deformacao local. Com base nas solugdes
obtidas por meio do método dos elementos finitos pode-se avaliar os estados planos de tensdo
(superficie do componente) e de deformagdo (interior do componente) e concluir que nos casos
analisados a simplificagdo bidimensional ¢ valida e otimiza os calculo, reduzindo o tempo de
processamento. Comparando os resultados experimentais com os obtidos pelos modelos analiticos
pdde-se verificar que o modelo de Glinka pode subestimar as deformacdes na raiz do entalhe,
mostrando-se um modelo pouco conservativo, e acarretando superestimativas da vida dos
componentes. A modificacdo proposta por Ye ef all melhora as estimativas de deformacdo e vida,
porém, de maneira significativa somente para um dos casos analisados. J4 o modelo de Neuber pode
superestimar os niveis de deformagao, acarretando estimativas conservadoras e seguras da vida dos
componentes. Dessa forma, considerando as condi¢des analisadas, conclui-se que o método dos
elementos finitos bidimensional permite avaliar de forma consistente as medidas de deformagao na
raiz de entalhes e vida dos componentes e que na falta de uma ferramenta numérica, o uso da regra
de Neuber sempre resulta em previsdes seguras de deformacdo e vida ao contrario do que se
observaria com o uso do modelo de Glinka e sua modificagdo.
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FATIGUE LIFE ANALYSIS OF COUPONS SUBJECTED TO UNIAXIAL
LOADS - A COMPARATIVE STUDY
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Abstract. The main purpose of this paper is to evaluate the effects of stress and strain concentration at
geometrical discontinuities. At these locations, if the stress levels exceed the yield stress, the strain will
become the dominant factor to control the cracking initiation process and an elastoplastic analysis will
be necessary in order to determine the actual stress and strain values. In the present work the finite
element 2D analysis and the models proposed by Neuber(1961) and Glinka(1985) were used to assess
the validity of the local strain approach in the estimation of the stress and strain levels on notched
components. The Aluminum alloy Al 2020-T351 and the USS T1 Steel were used to study possible effects
of stress-strain curve behaviour on the stress distribution of a plane plate with central circular hole and
a plate with a double U symmetric notch. Analyses were performed in order to predict percentage
deviations of life associated to the use of the various techniques. The numerical and analytical
approximate results were compared with experimental data obtained form the literature and it was
possible to evaluate the applicability of the models analysed.

Keywords. Reliability, Fatigue, Stress Analyses, Life prediction, Notches.



