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Resumo. O propósito desse artigo é avaliar os efeitos da concentração de tensões e deformações 
em componentes estruturais que apresentam descontinuidades geométricas. Para uma boa análise 
dos danos causados em pontos onde a tensão atuante excede a tensão limite de escoamento e onde 
as deformações plásticas são dominantes, torna-se necessário uma análise elastoplástica. Neste 
estudo, foram estimados os níveis de tensão e deformação atuantes em uma placa plana com furo 
central e em um corpo de prova com duplo entalhe em U. Os materiais avaliados foram o aço USS 
T1 Steel e a liga de alumínio Al 2024 T351. Foram utilizados na análise os modelos elastoplásticos 
de Neuber e Glinka, acoplados à equação constitutiva de Ramberg-Osgood, e uma solução 
numérica baseada na técnica de elementos finitos. Os valores estimados foram comparados com 
resultados experimentais obtidos da literatura apropriada. Análises foram realizadas de forma a 
prever desvios percentuais em termos de vida dos componentes estruturais e relacionados à 
utilização das diversas técnicas avaliadas. Com base nos resultados obtidos pôde-se realizar uma 
comparação entre as técnicas mais utilizadas e avaliar o domínio de aplicabilidade dos modelos a 
situações reais da integridade estrutural de componentes. 
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1.INTRODUÇÃO 
 

Componentes estruturais intensamente solicitados podem apresentar escoamento localizado em 
pontos de concentração de tensões, tais como, furos, entalhes, mudanças bruscas de seção, rasgos de 
chaveta, etc (Peterson, 1974; Schijve, 1980). Sob condições de carregamentos cíclicos, a presença 
de plasticidade pode induzir a condições de iniciação de trincas de fadiga, redistribuição de tensões, 
degradação das propriedades do material e aparecimentos de elevados gradientes de tensão e 
deformação, podendo culminar em acidentes e/ou prejuízos financeiros, explicando a relevância 
deste estudo (Fillippini, 2000; Visvanatha et al, 2000). Desta forma, para uma boa análise dos danos 
causados em pontos onde a tensão atuante excede a tensão limite de escoamento e onde as 
deformações plásticas são dominantes, torna-se necessário uma análise elastoplástica. Entretanto, 
para estórias de carregamentos longos e arbitrários, cálculos precisos das tensões e deformações 
atuantes nestas descontinuidades podem se tornar difíceis, dispendiosos e demorados. Desta forma, 
devido ao reduzido esforço computacional necessário, métodos aproximados que levam em 
consideração abordagens de deformação local são muito utilizados na engenharia. Dentre estes 
métodos, o mais utilizado é a regra de Neuber, apesar de ter sido deduzida para geometria e 
carregamento específico (Neuber, 1961). Diversos outros pesquisadores, tais como Topper et all 



 

 

(1969), Seeger et al (1980), Glinka (1985) e Ye (2003) propuseram métodos alternativos e/ou 
complementares. Entretanto, o maior inconveniente do uso dessas abordagens reside na 
impossibilidade de avaliar a redistribuição das tensões associadas ao escoamento e a variações 
geométricas localizadas. Apesar do elevado esforço computacional, uma forma de contornar esse 
problema consiste na utilização de elementos finitos considerando não linearidades geométricas e 
comportamento elastoplástico do material. Desta forma, o presente trabalho tem como principal 
objetivo à utilização de elementos finitos bidimensionais e resultados experimentais para avaliação da 
capacidade preditiva das abordagens de deformação local propostas principalmente por Neuber e 
Glinka para situações específicas da integridade de componentes entalhados. 
  
1.1.Modelo de Neuber 
 

O modelo de Neuber, apesar de ter sido formulado para uma geometria específica (Neuber, 
1961), consiste em um dos mais utilizados na descrição de tensões e deformações atuantes em 
descontinuidades geométricas. Este método parte da premissa básica que o fator teórico de 
concentração de tensões teórico, Kt utilizado para relacionar tensões e deformações nominais com 
tensões e deformações locais permanece constante até o início do escoamento. Após este ocorrido, 
as tensões e deformações locais não mais se relacionam linearmente com as tensões e deformações 
nominais através do fator Kt, mas sim, através do fator de concentração de tensões, Kσ, e do fator de 
concentração de deformações, Kε . Esta resposta local deve-se principalmente à tensões residuais 
desenvolvidas como resultado do escoamento localizado na raiz da descontinuidade geométrica 
(Neuber, 1961) e pode ser expressa pela Eq. (1). 
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onde σ, S, ε, e representam a tensão local, tensão nominal, deformação local e deformação nominal, 
respectivamente. 

Assumindo condições nominais elásticas e admitindo que a relação tensão deformação sob 
condições elastoplásticas é descrita pela equação de Ramberg-Osgood, Eq. (2), a relação entre a 
tensão nominal e a tensão na raiz do entalhe é representada pela Eq. (3). 
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onde ep e eel representam, respectivamente a deformação plástica e elástica e, n e K representam, 
respectivamente, o expoente de encruamento e o coeficiente de resistência do material. 

Segundo Seeger et al (1977) e Amstutz (1978), o modelo descrito por Neuber fornece 
estimativas conservadoras para a deformação na raiz do entalhe e sua precisão independe de Kt e do 
material. A Eq. (3) só é válida até o início do escoamento na raiz de entalhe. Entretanto, se existe 
necessidade de levar em consideração escoamento generalizado na seção da descontinuidade 
geométrica dispõe-se da generalização do modelo de Neuber, proposta por Seeger e Heuler (Seeger 
et al, 1980) e apresentada na Eq. (4).  
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 Na presença de carregamentos cíclicos, a Eq. (4) pode ser reescrita da forma apresentada na Eq. 
(5), onde ∆σ, ∆S, ∆ε, ∆e representam as gamas de tensão local, tensão nominal, deformação local e 
deformação nominal, respectivamente. 
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 A avaliação dos níveis de tensão local é obtida da equação anterior conhecendo-se o Kt fator e a 
gama de tensão nominal. A determinação da gama de deformação local é obtida associando-se a Eq. 
(5) com a relação de Ramberg-Osgood (Bannantine, 1998; Dowling, 1999) para cargas cíclicas.  
 
1.2.Modelo Baseado na Energia de Deformação Equivalente 
 

Foi devidamente comprovado que, em casos de escoamento localizado, a densidade de energia 
na zona plástica é aproximadamente igual à observada em materiais linearmente elásticos. Isto 
significa que na presença de plasticidade de pequena escala, a preponderância de material com 
comportamento elástico ao redor da pequena região de plasticidade controla as deformações da 
zona plástica (Hutchinson, 1968; Walker, 1974). Desta maneira, a densidade de energia 
elastoplástica, ψ σ , mostra-se igual à calculada com base na solução elástica, ψ s.  
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Mediante estados planos de tensões e para casos totalmente elásticos, a tensão na raiz do entalhe 
pode ser calculada com base na tensão nominal e no valor do fator teórico de concentração de 
tensões. Desta forma, a equação anterior pode ser reescrita na forma da Eq. (7), significando que a 
densidade de energia na deformação elástica, ψ S na raiz do entalhe é igual ao produto da densidade 
de energia proveniente da tensão nominal, ψ Sn e do quadrado de Kt. 
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Assumindo comportamento nominal dentro do limite linear elástico, ψ Sn pode ser calculado 

com respeito à área sob a reta linear elástica nominal do material, ou seja, ½ Se, como observado na 
Fig. (1a). Desta forma tem-se: 
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Glinka (1985) desenvolveu uma intensa pesquisa a respeito desta abordagem energética para 

estimativas de níveis de tensão e deformação inelástica na raiz de corpos entalhados. Computando-
se a densidade de energia elastoplástica como a área sob a curva tensão-deformação, ou seja,       
ψ σ  = ψ el + ψ p = ½ σε  + [1/(1+n)] σε pl , como observado na Fig. (1b), pode-se demonstrar que:  
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Esta última equação é válida para escoamento localizado na raiz da descontinuidade geométrica, 

possibilitando o calculo das tensões e deformações locais, conhecidas a tensão nominal e o Kt. Foi 
demonstrado que o método da densidade de energia pode ser utilizado para os estados planos de 



 

 

tensões e deformações, além de mostra-se verdadeira para níveis de tensão próximos ao escoamento 
generalizado da seção da descontinuidade (Glinka, 1985).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 
 

Figura 1. a)Diagrama tensão-deformação nominal elástica; b) Diagrama σ-ε. 
 
Caso haja necessidade de levar em consideração escoamento generalizado na seção da 

descontinuidade geométrica e em casos onde existam apenas tensões trativas ou prevaleçam as 
tensões trativas sobre as de flexão (Glinka, 1985), dispõe-se da generalização do modelo de Glinka 
apresentada na Eq. (9), para o caso de carregamentos cíclicos. 
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 Da mesma maneira que apresentado para o modelo de Neuber, a avaliação dos níveis de tensão 
local é obtida da equação anterior conhecendo-se o Kt  e a gama tensão nominal. A determinação da 
gama de deformação local é obtida associando-se a Eq. (9) com a relação de Ramberg-Osgood. 
 
1.3.Relação entre os Modelos de Neuber e Glinka          
 

Considere o diagrama tensão-deformação monotônico de um material apresentado na Fig. (2a).  
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

Figura 2. (a) Diagrama σ-ε monotônico; (b) Laço de histerese. 
Experimentos com materiais metálicos comprovam que mediante deformações plásticas, parte 

da energia de deformação cedida a um sistema elastoplástico é dissipada na forma de calor, ψq e 
parte é consumida pelas mudanças na energia armazenada no sistema, principalmente associadas 
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com tensões residuais, ψs (Ye et all, 2003). Um método para se calcular a energia armazenada 
utilizando-se a curva tensão deformação verdadeira de um material pode ser visualizado na Fig. (2a) 
(Aravas, 1990). Desta forma, computada a parcela de energia armazenada e a energia plástica total, 
ψp, pode-se observar que a energia dissipada na forma de calor é obtida facilmente da Eq. (12). 
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Da Fig. (2a) nota-se que a densidade de energia elastoplástica pode também ser calculada por: 
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Associando-se a Eq. (13) à Eq. (8)   
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Observa-se facilmente que a Eq. (14) é apenas uma forma alternativa do método baseado na 

densidade de energia de Glinka. Esta equação pode ser explicada de forma que o trabalho teórico 
sofrido por um elemento de material localizado na raiz da descontinuidade geométrica devido a uma 
tensão nominal S, representado pelo lado esquerdo da Eq. (14), é transformado na energia de 
deformação total (σ.ε) e parcialmente dissipado na forma de calor (ψq) durante a deformação 
plástica. Comparando-se esta equação com o modelo proposto por Neuber, Eq. (1), observa-se 
facilmente que as mesmas diferem simplesmente pela presença do termo dissipativo de calor. 
Avaliando-se as parcelas destas duas equações conclui-se que teoricamente o modelo de Neuber 
superestima os níveis de tensão e deformação na raiz das descontinuidades geométricas em relação 
ao Modelo de Glinka visto que não leva em conta o termo dissipativo (termo este sempre positivo) e 
que toda a energia inserida no sistema pelo trabalho da tensão nominal é transformado na energia de 
deformação total (σ.ε). 
 Para casos de carregamentos cíclicos, como exemplificado na Fig. (2b), observa-se facilmente 
da Eq.(8) que a forma alternativa do modelo de Glinka pode ser expresso pela Eq.(15). 
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Observando a Fig. (2b) para casos de padrões simétricos de carregamentos e descarregamentos, 

pode-se facilmente computar que:  
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Analisando o lado direito da equação anterior e comparando-o à área referente a ∆Wσ na 

Fig.(2a) pode-se facilmente deduzir que a forma alternativa do modelo de Glinka pode ser 
representado da seguinte maneira: 
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Assim como apresentado para casos monotônicos, o lado esquerdo desta última equação pode 

ser interpretado como o trabalho teórico sofrido por um elemento de material localizado na raiz da 
descontinuidade geométrica devido a uma gama de tensão nominal ∆S. Do lado direito estão 
representadas as parcelas de energia de deformação total (∆σ.∆ε) e a energia de deformação plástica 
(∆ψp=∆ψq+∆ψS). Comparando-se A Eq. (17), modelo de Glinka para carregamentos cíclicos, com 
a Eq. (1) devidamente modificada para carregamentos cíclicos, observa-se novamente que 



 

 

teoricamente o modelo de Neuber para carregamentos cíclicos superestima teoricamente os níveis 
de tensão e deformação na raiz das descontinuidades geométricas em relação ao modelo de Glinka 
visto que não computa o termo ∆ψp e que toda a energia inserida no sistema pela trabalho da tensão 
nominal é transformado na energia de deformação total (σ.ε). 

Uma interessante modificação foi inserida ao modelo de Glinla por Ye et all (2003) pela 
substituição do termo ∆ψp na Eq.(17) pelo termo ∆ψq. Esta substituição está embasada na 
observação de que durante um ciclo de deformação plástica, a maioria da energia do laço de 
histerese é convertida em calor dissipado e o restante armazenado no material e associada com 
tensões residuais. Desta forma, apenas uma parte de ∆ψp na Eq.(17), ou seja, ∆ψS, contribuiria com 
as gamas de tensão e deformação na descontinuidade geométrica. Com esta substituição e com o 
auxílio da Fig. (2b) pode-se facilmente obter o modelo de glinka modificado proposto por Ye et all 
(2003) válido para tensões nominalmente plásticas. 
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 Desta maneira, conhecidos os valores da gama de tensão nominal e do fator Kt pode-se 
determinar as gamas de tensão e deformação para a raiz da descontinuidade geométrica. 
  
1.4.Relação Deformação-Vida 
 
 As técnicas de projetos de componentes mecânicos que consideram a falha por fadiga são 
baseadas em critérios que podem ser classificados como: critérios de iniciação de trincas onde a 
vida é estimada em termos do número de ciclos necessário para que se observe a nucleação de 
trincas; e critérios de propagação de trincas onde a vida útil é estimada em termos do número de 
ciclos necessário para a propagação da trinca e inutilidade do componente. O interesse neste 
trabalho está na avaliação das deformações locais e sua associação com a vida de fadiga até o 
momento do aparecimento das trincas. O SAE Fatigue Design and Evaluation Steering Committee, 
em seu relatório de 1975 determinou a validade da obtenção da vida em ciclos até a iniciação de 
falha por meio da amplitude de deformação e da relação de Coffin-Manson apresentada na Eq. (19). 
  

( ) ( )c
f

bf NN
E

22
2

′+
′

=
∆ ε

σε                    (19) 
 
onde ′

fσ , ′
fε , b, c e N representam as propriedade de fadiga: coeficiente de resistência, coeficiente 

de ductilidade, expoente de resistência, expoente de ductilidade e vida em ciclos, respectivamente. 
 
2.MATERIAIS E MÉTODOS 
 

Nesse tópico são apresentados os materiais e geometrias utilizadas neste estudo, assim como os 
procedimentos seguidos para suas análises. 
 
2.1.Descrição do Material e da Geometria 
 

Os materiais analisados foram a liga de alumínio Al 2024-T351 o aço estrutural USS T1 steel. 
Tais materiais foram selecionados por serem materiais amplamente utilizados em engenharia, pela 
disponibilidade de dados referentes a ensaios experimentais apresentados na literatura e por 
possuírem curvas de tensão deformação apresentando baixa magnitude do expoente de 
encruamento, n, ou seja, materiais com elevada plasticidade. As propriedades mecânicas e as curvas 
tensão-deformação desses materiais são apresentadas, respectivamente, na Tab. (1) e na Fig. (3). 



 

 

 
Tabela 1. Propriedades Mecânicas dos Materiais.  

Material Fonte n’ K’ [MPa] ,
yS [MPa] E [GPa] εf σf [MPa] c b 

2024-T351 SAE AE10 0,065 655 427 73 0,22 1103 -0,59 -0,124 
USS Steel T1 SAE AE10 0,088 1503 792,9 207 1,08 1213,6 -0,69 -0,06 
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Figura 3. Curva Tensão-deformação dos materiais utilizados. 

 
As características geométricas dos entalhes analisados são apresentadas na Fig. (4). As relações 

dimensionais e o material associados a cada entalhe são apresentados na Tab. (2). 
 
 
 
 
 
                         (a)                          (b) 

Figura 4. Geometria do entalhe: (a) Placa com dois entalhes simétricos, (b) Furo central. 
 

Tabela 2 – Relações dimensionais dos Entalhes e Materiais Utilizados  
Material Entalhe h

R  
H

h  Kt 
US Steel T1 (a) 0,11 0,5 2,96 
2024-T351 (b) 0,18 *** 2,58 

 
2.2.Análise de Elementos Finitos 
 

A simulação numérica por elementos finitos foi realizada utilizando modelos planos. A simetria 
das geometrias e das condições de contorno dos modelos analisados permitiu considerar um quarto 
do componente e otimização da convergência dos resultados. As malhas selecionadas para análise 
elastoplástica foram obtidas após um estudo de convergência e adequação do Kt aos valores 
encontrados na literatura. Nas analises realizadas foram estudadas condições de estado plano de 
tensões, EPT, simulando a superfície do componente, e de estado plano de deformações, EPD, 
aproximando a condição experimentada pela metade de sua espessura. Uma curva constitutiva 
multilinear foi utilizada para a análise elastoplástica dos diferentes materiais, como as representadas 
na Fig.(3). Os modelos foram carregados de zero até a tensão de escoamento do material e 
analisados os níveis de tensão e deformação na raiz da descontinuidade geométrica, assim como a 
vida dos componentes segundo a equação de Coffin-Manson. 
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2.2.Análise Numérica – Modelos Elastoplásticos 
 

Na análise numérica, os níveis de tensão e deformação atuantes na raiz da descontinuidade 
geométrica para os materiais analisados foram estimados segundo as teorias de Neuber e de Glinka 
e a mais recente modificação do modelo de Glinka proposta por Ye et all (2003). Estas equações 
foram resolvidas utilizando-se métodos numéricos e técnicas de iteração. A equação constitutiva de 
Ramberg-Osgood e os fatores teóricos de concentração de tensões, apresentados na Tab.(2) foram 
utilizados com o intuito de computar a deformação total, assim como, suas parcelas plástica e 
elástica. Da mesma forma, pôde-se avaliar os níveis de tensão e de deformação nas raízes dos 
entalhes, assim como a vida dos componentes.   

 
3.RESULTADOS E DISCUSSÕES 
 

Nas Fig. (3a) e (3b) são apresentados, respectivamente, para o Aço USS T1 e para a liga Al 
2024 T351, gráficos correlacionando o produto entre fator teórico de concentração de tensões, Kt, e 
a tensão nominal na seção entalhada, S ou ∆S/2,  com as deformações na raiz do entalhe, εt ou ∆εt/2, 
obtidas pelas regras de Neuber, Glinka, Glinka modificado, elementos finitos e experimentalmente. 
Além disto são apresentadas também as curvas de tensão-deformação verdadeira dos materiais.  
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Figura 3. Estimativa da deformação para: (a) Aço USS T1 steel, (b) Al 2024 T351. 
 

Considerando os resultados obtidos para os materiais e geometrias analisadas puderam-se 
verificar uma excelente correlação entre os resultados experimentais e os simulados segundo a 
técnica de elementos finitos com hipótese de estado plano de tensões. Com relação às soluções 
analíticas verificou-se que, para os materiais e geometrias avaliados, o modelo energético de Glinka 
pode subestimar as deformações na raiz do entalhe enquanto que o modelo de Neuber superestima 
as mesmas. Comparando-se o modelo de Glinka com a proposta de modificação de Ye (2003) 
observam-se melhoras para os dois materiais com relação às estimativas de deformação local, sendo 
as mesmas mais evidentes para o USS T1 Steel. 

Nas Fig.(4a) e (4b) são apresentados, respectivamente, para o Aço USS T1 e para a liga Al 2024 
T351, gráficos dos desvios percentuais da vida estimada pelos diversos modelos em relação aos 
dados experimentais de deformação. Ao longo da abscissa encontram-se os valores crescentes do 
produto do fator teórico de concentração de tensões e a tensão nominal aplicada.  
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Figura 4. Desvios percentuais de vida: (a) Aço USS T1 steel, (b) Al 2024 T351. 
 

Considerando os resultados obtidos pôde-se verificar que o modelo de Neuber oferece 
estimativas de vida seguras para a grande maioria dos valores avaliados atingindo, entretanto, 
valores relativamente elevados (∼30%) para níveis de tensão próximos ao escoamento generalizado. 
Dos casos avaliados observou-se que o modelo de Glinka oferece uma estimativa não conservadora 
da vida, podendo atingir valores relativamente elevados (∼25%). Com a utilização do modelo de 
Glinka modificado pôde-se melhorar as estimativas aproximando-as dos resultados experimentais. 
Com base nos resultados obtidos via elementos finitos pôde-se estimar de maneira eficiente a vida, 
com desvios percentuais positivos (≤ 8%). Entretanto, a flutuação destes valores ao redor da origem 
é comparável à dispersão experimental validando a utilização de tal técnica simplificada. 
 
4. CONCLUSÕES 
 

Neste trabalho, o método dos elementos finitos e os modelos elastoplásticos foram utilizados 
com o objetivo de verificar a validade das abordagens de deformação local. Com base nas soluções 
obtidas por meio do método dos elementos finitos pôde-se avaliar os estados planos de tensão 
(superfície do componente) e de deformação (interior do componente) e concluir que nos casos 
analisados a simplificação bidimensional é válida e otimiza os cálculo, reduzindo o tempo de 
processamento. Comparando os resultados experimentais com os obtidos pelos modelos analíticos 
pôde-se verificar que o modelo de Glinka pode subestimar as deformações na raiz do entalhe, 
mostrando-se um modelo pouco conservativo, e acarretando superestimativas da vida dos 
componentes. A modificação proposta por Ye et all melhora as estimativas de deformação e vida, 
porém, de maneira significativa somente para um dos casos analisados. Já o modelo de Neuber pode 
superestimar os níveis de deformação, acarretando estimativas conservadoras e seguras da vida dos 
componentes. Dessa forma, considerando as condições analisadas, conclui-se que o método dos 
elementos finitos bidimensional permite avaliar de forma consistente as medidas de deformação na 
raiz de entalhes e vida dos componentes e que na falta de uma ferramenta numérica, o uso da regra 
de Neuber sempre resulta em previsões seguras de deformação e vida ao contrário do que se 
observaria com o uso do modelo de Glinka e sua modificação. 
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FATIGUE LIFE ANALYSIS OF COUPONS SUBJECTED TO UNIAXIAL 
LOADS - A COMPARATIVE STUDY 
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Abstract. The main purpose of this paper is to evaluate the effects of stress and strain concentration at 
geometrical discontinuities. At these locations, if the stress levels exceed the yield stress, the strain will 
become the dominant factor to control the cracking initiation process and an elastoplastic analysis will 
be necessary in order to determine the actual stress and strain values. In the present work the finite 
element 2D analysis and the models proposed by Neuber(1961) and Glinka(1985) were used to assess 
the validity of the local strain approach in the estimation of the stress and strain levels on notched 
components. The Aluminum alloy Al 2020-T351 and the USS T1 Steel were used to study possible effects 
of stress-strain curve behaviour on the stress distribution of a plane plate with central circular hole and 
a plate with a double U symmetric notch. Analyses were performed in order to predict percentage 
deviations of life associated to the use of the various techniques. The numerical and analytical 
approximate results were compared with experimental data obtained form the literature and it was 
possible to evaluate the applicability of the models analysed.  
 
Keywords. Reliability, Fatigue, Stress Analyses, Life prediction, Notches. 


