
UTILIZAÇÃO DE SISTEMAS NEURAIS NA DETERMINAÇÃO DA 
LOCALIZAÇÃO DE FALHAS EM ESTRUTURAS 

 
José Guilherme Cerqueira da Guia 
Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Departamento de 
Engenharia Mecânica, Av. Aprígio Veloso, 882, Bodocongó, C.P. 10.069, Campina Grande, PB 
e-mail: jgguia@yahoo.com.br  
 
José Luis do Nascimento 
Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Departamento de 
Engenharia Mecânica, Av. Aprígio Veloso, 882, Bodocongó, C.P. 10.069, Campina Grande, PB 
e-mail: anpjoseluis@yahoo.com.br  
 
Marcos Antônio da Silva Irmão 
Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Departamento de 
Engenharia Mecânica, Av. Aprígio Veloso, 882, Bodocongó, C.P. 10.069, Campina Grande, PB 
e-mail: mirmao@yahoo.com  
 
Antonio Almeida Silva 
Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Departamento de 
Engenharia Mecânica, Av. Aprígio Veloso, 882, Bodocongó, C.P. 10.069, Campina Grande, PB 
e-mail: almeida@dem.ufpb.br  
 
Resumo. Na indústria do petróleo, a questão da integridade estrutural exige um acompanhamento 
rigoroso das condições operacionais, principalmente em dutos e estruturas offshore. Tendo em 
vista os prejuízos que um acidente, nesta situação, pode causar, é de interesse comum que se 
desenvolvam sistemas de detecção de falhas nessas estruturas. Além das técnicas usuais de END 
(Ultra-som, PIGs, etc.) está a análise modal clássica baseada na mudança da resposta dinâmica da 
estrutura. Paralelamente, muitos pesquisadores têm verificado a eficiência de Redes Neurais 
Artificiais (RNA) no diagnóstico das falhas estruturais. Este trabalho investiga os efeitos da 
mudança de posição e severidade da falha sobre as freqüências naturais de estruturas obtidas a 
partir de modelos computacionais e testes experimentais. É analisada a eficiência de dois tipos de 
RNA desenvolvidos para localizar este defeito nos resultados experimentais. Foi constatado que as 
RNA são ferramentas eficientes na determinação da posição de falhas na estrutura estudada, tendo 
sido localizados as posições das falhas em tempos inferiores a 5 segundos, com erros quadráticos 
médios em torno de 10-4, o que sugere a capacidade das RNA de realizarem um rápido e preciso 
diagnóstico de falhas presentes em estruturas mecânicas reais. 
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1. INTRODUÇÃO 

 
Nas instalações industriais de médio e grande porte, a exemplo das plantas da indústria 

petrolífera, a questão da integridade estrutural vem exigindo cada vez mais um rigoroso 
monitoramento das condições operacionais, principalmente em plataformas offshore, onde uma 
falha é uma fonte potencial de riscos operacionais e de prejuízos financeiros e ambientais. Nestas 
instalações, a situação é tão delicada que não apenas as tubulações, mas também simples estruturas 
como vigas e barras devem ter as suas condições monitoradas para se evitar um acidente. A 
detecção eficiente de falhas nestas estruturas pode representar a diferença entre elevadas perdas e a 
preservação de uma plataforma. 

Como todo sistema mecânico, as estruturas da industria do petróleo sofrem desgaste e este é em 
função do tempo, do meio onde estão alocados e das cargas sobre as quais estão sujeitos. 
Geralmente essas falhas se iniciam com uma pequena trinca na estrutura que vai aumentando, 
comprometendo a integridade estrutural, levando-a ao rompimento. Por uma questão de segurança e 
de redução de custos tem-se o interesse de detectar uma falha antes que ela cause o colapso da 
estrutura. Com isso existe o interesse no desenvolvimento de sistemas capazes de verificar a 
existência de falha em uma estrutura e de caracterizá-la, denominados de “Sistemas de 
Diagnóstico”. Estes sistemas são um conjunto de técnicas de análise de sinais provenientes de 
sensores de monitoramento instalados em equipamentos ou estruturas cujo objetivo principal é a 
detecção de falhas bem como a possível determinação de sua localização e de sua severidade. 
Embora seja uma definição bastante simples de ser compreendida, a implementação dela na prática 
é algo bastante complexo. 

Em se tratando da presença de falhas em sistemas mecânicos, os modelos usuais que já 
apresentam simplificações para permitir uma abordagem matemática são transformados pelas falhas 
em sistemas não-lineares, o que dificulta muito o tratamento analítico de sistemas com falhas. Se o 
problema direto se torna complexo na presença de falhas, o problema inverso se torna crítico com a 
presença delas. Por problema inverso define-se ter as respostas de um sistema e determinar o que 
está causando aquelas respostas. 

Este Trabalho se propõe a investigar os efeitos da mudança de posição de uma falha introduzida, 
sobre as freqüências naturais de um elemento estrutural a partir de uma modelagem pelo método 
dos Elementos Finitos. Em seguida, a partir de resultados experimentais obtidos de forma 
controlada, se procura determinar a localização da falha através da utilização de dois tipos de Redes 
Neurais Artificiais (Redes Probabilísticas e Rede de Regressão Generalizada.) e estabelecer um 
comparativo da eficiência de cada uma destas RNA na detecção daquela falha na estrutural real. 

 
2. A ANÁLISE MODAL 

 
Dentre os ensaios baseados na análise de vibração destaca-se a análise modal clássica. Por essa 

análise utilizam-se as propriedades físicas (massa, rigidez, amortecimento, etc.) de uma estrutura 
como indicadores de parâmetros de avaliação, uma vez que uma falha modifica pelo menos uma 
dessas propriedades que, por sua vez, vai modificar alguma característica dinâmica da estrutura, 
como as freqüências naturais e os modos de vibração da mesma. 

Seja um sistema estrutural discreto modelado como sendo um conjunto massa-mola-
amortecedor viscoso. O sistema de equações do movimento vibratório deste sistema pode ser 
descrito conforme notação de Meirovitch (1986) apresentada na Eq. (1). 
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onde m, c, e k são as massas concentradas, amortecimento e rigidez do sistema, 

respectivamente, e n é o número de graus de liberdade (GDL). Trata-se de um sistema de n 



equações diferenciais ordinárias de segunda ordem simultâneas para a coordenada uj(t) (j=1, 2,..., 
n). Colocando na forma matricial usual, a Eq. (1) é descrita como mostra a Eq. (2). 
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No limite, quando ∞→n , a resposta do modelo discreto deve convergir para a resposta do 

modelo contínuo. Considerando o caso de um sistema não-amortecido, conforme a Fig. (1), cuja 
solução pode ser obtida através da superposição modal, chega-se à Eq. (3). 
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onde {Φ}i corresponde ao vetor modal do modo de vibrar i e ωi à freqüência natural relativa a 

este modo. Ao se observar a Eq. (3) percebe-se claramente a influência da massa e da rigidez sobre 
os modos de vibração Φi e sobre suas freqüências naturais ωi. 

 

 
 

Figura 1. Sistema discreto não amortecido. 
 

O surgimento da análise modal está intimamente ligado à indústria do Petróleo (Alves, 1997). 
Isto aconteceu porque boa parte dos ensaios não destrutivos apresentavam limitações devido a alta 
complexidade das estruturas envolvidas como as plataformas offshore, o que levou a necessidade de 
se desenvolver novas técnicas que permitissem analisar a integridade estrutural destas plataformas. 
A análise modal começou a ser desenvolvida na década de 70. 

O trabalho mais antigo encontrado foi o de Vandiver (1975) onde a análise modal foi proposta 
como método de detecção de defeitos em plataformas fixas de exploração de petróleo. A 
metodologia proposta apenas indicava a presença de defeitos a partir de mudanças nas freqüências 
naturais. Caso alguma anomalia fosse detectada, então era acionada a equipe de mergulhadores era 
acionada para localizar a falha por inspeção visual. A metodologia foi implementada com sucesso. 

Owolabi et al (2003) realizou um estudo experimental do efeito da localização e severidade de 
uma falha em barras de alumínio bi-engastadas e em outras simplesmente apoiadas e propuseram a 
utilização de curvas de nível de variação de freqüências e pela mudança nas amplitudes das funções 
de resposta em freqüências para localizar e determinar a severidade de falhas. 
 
3. REDES NEURAIS ARTIFICIAIS 
 

Em sua definição clássica Haykin (2001) afirma que “uma rede neural pode ser definida como 
um processador maciçamente e paralelamente distribuído constituído de unidades de processamento 
simples (neurônios) que têm a propensão natural para armazenar conhecimento experimental e 
torná-lo disponível para uso (futuro)”. Assim, uma Rede Neural Artificial (RNA) é um sistema que 
é projetado para modelar a maneira como o cérebro realiza uma tarefa particular ou função de 
interesse. 

O uso de redes neurais é comumente aplicado ao reconhecimento de padrões dado o potencial 
de aprendizado do sistema. Uma de suas grandes vantagens com relação a outras técnicas de análise 
é a sua capacidade de tratar sistemas complexos sem a necessidade de utilizar um algoritmo 
complexo, bastando apenas um conjunto de exemplos para ela “aprender” como associar esses 
dados. 
 



3.1. A Aplicação de RNA na Detecção de Falhas 
 

Nos últimos anos, a busca por um meio de realizar uma rápida identificação de falhas antes que 
ela cause um colapso da estrutura, tem levado muitos pesquisadores a verificar a eficiência de redes 
neurais artificiais em sistemas de diagnóstico de falhas. Vários trabalhos sobre a aplicação de Redes 
Neurais Artificiais na detecção e diagnósticos de falhas são encontrados na literatura (Wu et al., 
1992; Alves Jr. et al., 2001). Será apresentado a seguir um resumo do histórico da aplicação de 
redes neurais na detecção de falhas. 

O mais antigo trabalho encontrado envolvendo RNA e a detecção de falhas foi o de Udpa e 
Udpa (1991) que utilizou as RNA na interpretação de sinais provenientes de transdutores 
eletromagnéticos usados em END do tipo “Eddy-current” para detectar a presença de defeitos na 
estrutura. 

Em 1992, Wu et al. utilizaram redes neurais para indicar a perda de rigidez de elementos 
estruturais, a partir do espectro da freqüência, como um meio de automatizar ensaios de vibração 
para a detecção de danos estruturais.  

Em 1995, Kaminski estudou o uso de RNA para determinar a localização de defeitos em 
estruturas a partir das freqüências naturais. Ele propôs uma metodologia de pré-processamento que 
visava aumentar a capacidade de diagnóstico da RNA a partir das freqüências naturais. Esta 
metodologia foi usada neste trabalho com uma pequena modificação. 

Em 2001, Kaminski e Alves traçam um comparativo entre as redes Multi-Layer Perceptrons 
(MLP), Probabilísticas (PNN) e de Regressão Generalizada (GRNN), mostrando as vantagens das 
ultimas sobre a primeira. Também foi feito um estudo a partir de modelos de elementos finitos e de 
dados experimentais de Gomes e Silva (1990) sobre a eficiência destes três tipos de redes na 
detecção de falhas e na determinação da localização das mesmas na estrutura em questão. 

Padovese (2002) efetuou um estudo comparativo sobre a eficiência das redes MLP e PNN na 
detecção de falhas em rolamento e engrenagens, onde constatou o potencial das redes, em especial 
da rede PNN, para o desenvolvimento de sistemas automatizados de diagnóstico de falhas em 
plantas industriais. 

Guia et al. (2003) comparou o desempenho das redes MLP, PNN e GRNN na detecção e 
localização de defeitos em um modelo de um duto, alcançando bons resultados com todas as redes 
utilizadas, levantando a possibilidade do desenvolvimento de uma nova metodologia de detecção de 
falhas em tubulações a partir do uso de redes neurais artificiais na análise de sinais de vibração. 
 
3.2. Redes Neurais Utilizadas 
 
3.2.1. Rede Probabilística (PNN) 

 
A Rede Neural Probabilística (PNN) é uma adaptação da regra de decisão estatística Bayseana, 

ou seja, está baseada num modelo de estatístico de classificação. Foi Specht (1988) quem descobriu 
que poderia colocar o classificador de Bayes-Parzen na forma de uma rede neural, pois se 
informação suficiente está disponível num problema de classificação, a estratégia de decisão de 
Bayes-Parzen permite classificar um novo exemplo com uma máxima probabilidade de sucesso. 

A estrutura da rede PNN é composta por uma camada de entrada, cujo tamanho N é função da 
dimensão do vetor de entrada. Esta camada distribui o vetor de entrada a todos os neurônios da 
camada seguinte, cuja dimensão é igual ao número de exemplos no conjunto de treinamento, e é 
chamada de camada de padrões por ser formada pelos neurônios processadores que contem as 
funções de ponderação. A terceira camada é chamada de camada de adição que é o número de 
classes contidas no problema, cuja função é somar os valores vindos da camada de padrões, e ainda 
pode existir uma outra camada opcional chamada de camada de saída, que fornece o número da 
classe que possui o maior valor na camada de adição, ou seja, a classe para qual o vetor de entrada 
teve a maior densidade de probabilidade. 

 



3.2.2. Rede de Regressão Generalizada (GRNN) 
 
Este tipo de rede é normalmente usado como função aproximação. Dando o número apropriado 

de neurônios na camada intermediaria é possível demonstrar que as Redes Neurais de Regressão 
Generalizadas (GRNN) são capazes de aproximar uma função continua com uma precisão desejada 
(Wasserman, 1993). Este tipo de rede é baseada na teoria da regressão não linear e permite que uma 
forma apropriada da função densidade de probabilidade seja obtida experimentalmente a partir de 
um banco de dados de treinamento. 

Igualmente às PNN o vetor de entrada das GRNN possui o número de neurônios igual ao 
número de vetores de treinamento e não ao número de dados do vetor de treinamento. 
Diferentemente da PNN, o número de neurônios na camada oculta da GRNN não é igual ao número 
de exemplos do banco de treinamento, mas a uma quantidade restrita e significativa deste banco. 
Isto é particularmente vantajoso quando o banco de treinamento é relativamente grande, pois a rede 
GRNN não perde desempenho e nem apresenta problemas com a memória requerida do hardware 
do sistema, como a PNN. 
 
4. MODELAGEM E SIMULAÇÃO 
 

A estrutura que foi considerada neste estudo consiste de uma barra de aço livre-livre de seção 
transversal quadrada. Esta barra foi idealizada com as seguintes dimensões e propriedades 
mecânicas: Comprimento, L=0,8 m; aresta, a=0,03 m; densidade, ρ=7860 kg/m3; Coeficiente de 
Poisson – ν = 0,3; e módulo de elasticidade, E=210,0⋅109 N/m2. Foi adotada uma barra de seção 
transversal quadrada devido ao fato de que estruturas como esta são utilizadas em plataformas 
onshore e offshore variando as dimensões e o carregamento. Esta barra é mostrada na Figura (2). 

 

 
 

Figura 2. Esquema ilustrativo da barra em estudo. 
 

Esta barra foi modelada através do método dos elementos finitos utilizando o software ADINA 
System 7.4 900 Nodes® (Licensed from ADINA R&D, Inc.), adotando um modelo unidimensional, 
empregando elementos de viga para modelar a barra. Foi utilizada uma malha com 897 elementos. 

A introdução da falha neste modelo foi realizada considerando um entalhe na seção transversal 
da barra. Esta consideração foi feita porque estruturas similares foram ensaiadas e simuladas nestas 
condições (Gomes e Silva, 1990; Alves, 1997), possibilitando a calibração do modelo. Este entalhe 
foi simulado por um elemento com a altura da sua seção transversal diferente (menor) do restante da 
barra. 

 
Foram simulados entalhes para várias posições Li e profundidades pi. Com isso cada entalhe é 

identificado por dois valores numéricos. As posições relativas e as profundidades relativas 
utilizadas são descritas pelas Eqs. (4) e (5), respectivamente. 

 

0,5} 0,4; 0,3; 0,2;{0,1;  
L
Li =  (4) 



 

0,7} 0,6; 0,5; 0,4; 0,3; 0,2; {0,1;  
a
pi =  (5) 

 
onde, os valores da Eq. (5) representam as porcentagens relativas de redução da área transversal. 
Logo após a modelagem foram realizadas as simulações, obtendo-se as cinco primeiras 

freqüências naturais da barra sem defeito e da barra com cada entalhe simulado, totalizando 36 
simulações. Estas freqüências foram armazenadas em um banco de dados. 

Também foram utilizados resultados experimentais a partir de um banco de dados obtidos por 
Gomes e Silva (1990). O experimento foi realizado com vários tipos barras de aço, entre as quais 
estava a barra utilizada nas nossas simulações. Neste experimento, foram aquisitadas as 5 primeiras 
freqüências naturais em 40 barras, sendo 20 barras sem defeito e 20 barras com defeitos gerados 
através de testes de fadiga com três pontos de apoio em uma máquina universal de testes mecânicos 
(MTS) aplicando uma carga cíclica de 10 kN. As aquisições realizadas com as barras sem defeito 
foram utilizadas para se obter as 5 primeiras freqüências naturais médias da barras sem defeito. As 
medidas efetuadas nas barras com trincas foram realizadas com a trinca em 05 posições e 04 
profundidades diferentes. As posições relativas e as profundidades relativas utilizadas são descritas 
pelas Eqs. (4) e (6). 

 

0,66} 0,5; 0,33; {0,16;  
a
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Para utilizar as redes neurais para detectar os defeitos nas barras a partir das freqüências naturais 

da estruturas, deve-se primeiramente pré-processar estas freqüências. Este procedimento é 
obrigatório para alguns tipos de RNA (Alves, 1997). Apesar de as redes PNN e GRNN não 
exigirem o pré-processamento, opta-se por utilizá-lo, pois ele pode aumentar consideravelmente a 
capacidade de um banco de dados caracterizar o sistema em análise. 

No caso estudado, o pré-processamento utilizado foi proposto por Kaminski e Alves (2001) e 
consiste em criar dois parâmetros a partir das Freqüências naturais e utilizar o último como entrada 
das redes. O primeiro parâmetro, chamado nfri, é a diferença ponderada entre as freqüências 
naturais médias das barras sem defeito e as das barras defeituosas. Este parâmetro é calculado tanto 
para os dados do modelo numérico como para os dados dos experimentos. Aqui é criado um “elo” 
entre a simulação computacional e o experimento, pois os parâmetros nfri do modelo serão 
calculados levando em conta as freqüências naturais médias do experimento sem defeito. O 
parâmetro nfri é dado pela Eq. (7). 
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onde ω0i representa as freqüencias naturais média sem defeito, ωi as freqüências defeituosas e o 

subscrito “i” indica o modo de vibração em questão. Segundo Gomes e Silva (1990), este parâmetro 
é função tanto da posição do defeito como da severidade do mesmo. 

O segundo parâmetro consiste em normalizar o parâmetro nfri. Segundo Kaminski (1995), este 
parâmetro é função apenas da localização do defeito, não sendo influenciado por sua severidade. 
Este parâmetro, denominado nfrni , é dado pela Eq. (8). 
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5. RESULTADOS E DISCUSSÕES 
 

Para a utilização das redes PNN e GRNN faz-se necessário formar um banco de dados de teste e 
outro de treinamento, com este as RNA aprendem a associar as entradas com as saídas e com aquele 
testam-se as redes para verificar o aprendizado. Como o objetivo deste trabalho é detectar defeitos 
nas barras reais, utilizou-se os nfrni dos resultados do modelo numérico para treinar as redes e 
testaram-se as mesmas com os nfrni dos resultados experimentais. Isto é possível devido ao “elo” 
criado entre os resultados do modelo com os do experimento pelo pré-processamento através das 
Eqs. (7) e (8). 

Com isso o banco de dados de treinamento é composto por informações de 35 defeitos 
simulados por um modelo de elementos finitos enquanto que o banco de dados de teste é composto 
por informações de 20 defeitos em barras reais. Nas análises foi utilizado o Toolbox de Redes 
Neurais do Software Matlab 6.5® (The MathWorks, Inc) para realizar o processamento dos dados a 
fim de obter a localização de uma falha. Optou-se por utilizar o Matlab por ele trazer um pacote de 
redes neurais, o que facilita muito a implementação das RNA. 

Para comparar as redes utilizadas, foram utilizados dois parâmetros: o Erro Quadrático Médio 
(EQM) e o Erro Global Médio (EGM), que são definidos pelas Eqs. (9) e (10). 
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A Tabela (1) mostra os resultados obtidos pelas Redes PNN e GRNN na determinação da 

posição do defeito em comparação com a real posição do mesmo. Pode-se ver que os indicadores 
EQM e EGM apresentaram valores muito baixos, o que é um indício de que as redes implementadas 
alcançaram uma boa capacidade de generalização. 

 
Tabela 1. Resultados das RNA na determinação da localização das falhas. 

 
 PNN GRNN 

Tempo de 
processamento (s) 0,7 0,6 

Erro quadrático médio 1,0.10-3 3,2489.10-16 
Erro global médio 0,01 4,0304.10-9 

Erro global médio (*) 0,04 0,03 
(*) Fonte: Kaminski e Alves (2001). 

 
Também consta na Tabela (1) o EGM obtido por Kaminski e Alves (2001) ao trabalharem no 

mesmo banco de dados experimentais de Gomes e Silva (1990). Eles utilizaram uma outra 
modelagem por elementos finitos da barra em estudo e não correlacionaram no pré-processamento 
as freqüências obtidas pelo modelo com as da barra real. Também utilizaram mais elementos no 
banco de treinamento (dados de 100 casos diferentes). Contudo o desempenho de suas redes foi 
inferior ao das redes implementadas neste trabalho. Isso pode ter ocorrido devido a diferenças entre 
as modelagens da barra ou devido ao pré-processamento sem criar um elo entre os dados 
experimentais e do modelo. 

Na Tabela (1) também fica evidente o desempenho das redes com relação ao tempo de 
processamento. Vale ressaltar que o tempo indicado nesta tabela refere-se ao tempo de criação e 
ajuste da rede e ainda ao diagnóstico de 20 defeitos diferentes na barras reais. Portanto as redes 



PNN e GRNN se mostram como ferramentas de diagnóstico de falhas extremamente rápidas, o que 
é muito importante quando se trata do desenvolvimento de sistemas de monitoramento on-line. É 
bem verdade que a velocidade de processamento das redes é influenciada pelo hardware do 
computador em uso, por isso informamos que a configuração do computador utilizado é: Pentium® 
III 933 MHz com 512 Mb de RAM. 

A Figura 3 apresenta de forma gráfica o desempenho das redes PNN e GRNN na detecção de 
falhas nas barras estudadas. 

 

  
 

Figura 3. Resultados das Redes Probabilística e de Regressão Generalizada. 
 
Pode-se perceber que a rede GRNN forneceu um resultado melhor do que o obtido pela rede 

PNN. Na rede GRNN observou-se apenas um erro, tão desprezível que nem aparece nos resultados 
devido à quantidade de algarismos significativos utilizados. 

A rede PNN apresentou dois erros de 10% na determinação do defeito, o que corresponde a um 
erro a cada 10 testes. Esse desempenho pode ser considerado aceitável visto que no geral a rede 
PNN apresenta uma boa concordância com os resultados esperados. Pode-se supor ainda que o seu 
desempenho aumentará consideravelmente quando novos dados, numéricos ou experimentais, 
forem inseridos no banco de dados de treinamento, o que melhorará sua capacidade de classificação 
dos defeitos. Outra situação a ser considerada é a possibilidade de utilizar as duas redes (PNN e 
GRNN), simultaneamente, pois assim uma rede contorna os erros de classificação da outra. 
 
6. CONCLUSÕES 

 
Analisando os resultados obtidos pode-se afirmar que as redes neurais se mostraram eficientes 

na detecção de falhas em estruturas reais do tipo barra. Com isso espera-se que as redes neurais se 
mostrem adequadas ao desenvolvimento de sistemas automatizados de diagnóstico em estruturas 
mais complexas, sendo que estudos em estruturas mais complexas estão previstos. 

As redes apresentaram excelentes resultados nos testes experimentais, apesar de terem sido 
implementadas a partir de dados de modelos numéricos por elementos finitos, o que mostra a 
versatilidade destes sistemas para sair do “ambiente” da simulação para a realidade física sem 
comprometer tanto a sua capacidade de diagnóstico. Com isso conclui-se que a utilização de redes 
neurais artificiais permite o desenvolvimento de sistemas de monitoramento de falhas de alto 
desempenho e, com o auxílio de um software apropriado, de fácil implementação. 

Os poucos erros obtidos podem ser justificados pelo tamanho limitado do banco de dados de 
treinamento e ainda pela ausência de informações sobre defeitos reais neste banco de dados. A 
ampliação do banco de dados certamente aumentará a capacidade das redes de diagnosticar os 
defeitos existentes na estrutura em questão, especialmente se esta ampliação for a partir de dados 
experimentais. A introdução de dados experimentais no banco de dados de treinamento irá criar um 



“vínculo” maior entre as redes neurais e a realidade física, uma vez que a ligação entre as redes 
implementadas e os testes experimentais é muito tênue, formada apenas pela utilização das 
freqüências naturais dos experimentos sem defeito no pré-processamento dos dados referentes aos 
defeitos simulados. 
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Abstract: In the petroleum industry, the question of the structural integrity demands a rigorous 
accompaniment of the operational conditions, mainly in pipelines and offshore’ structures. 
Knowing the damages that an accident can cause, it is interesting that systems are developed for 
the detection of faults in those structures. Besides the usual techniques of NDT (Ultrasound, PIGs, 
etc.), it is the classic modal analysis based on the change of the dynamic answer of the structure. 
Parallel, many researchers have been verifying the efficiency of the Artificial Neural Networks 
(ANN) in the diagnosis of the structural faults. This work investigates the effects of the position 
and severity change of the fault on the natural frequencies of structures obtained starting from 
computational models and experimental tests. The efficiency of two types of ANN developed to 
locate this defect in the experimental results is analyzed. It was verified that ANN is efficient tools 
in the determination of the position of faults in the studied structure, having been located the 
positions of the faults in smaller times than 5 seconds, with medium quadratic errors around 10-4, 
what suggests the capacity of ANN of they accomplish a fast and precise diagnosis of faults in real 
mechanical structures. 
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