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Resumo. Na industria do petroleo, a questdo da integridade estrutural exige um acompanhamento
rigoroso das condig¢oes operacionais, principalmente em dutos e estruturas offshore. Tendo em
vista os prejuizos que um acidente, nesta situa¢do, pode causar, é de interesse comum que se
desenvolvam sistemas de detec¢do de falhas nessas estruturas. Além das técnicas usuais de END
(Ultra-som, PIGs, etc.) esta a andlise modal classica baseada na mudanga da resposta dinamica da
estrutura. Paralelamente, muitos pesquisadores tém verificado a eficiéncia de Redes Neurais
Artificiais (RNA) no diagnostico das falhas estruturais. Este trabalho investiga os efeitos da
mudanga de posi¢do e severidade da falha sobre as freqiiéncias naturais de estruturas obtidas a
partir de modelos computacionais e testes experimentais. E analisada a eficiéncia de dois tipos de
RNA desenvolvidos para localizar este defeito nos resultados experimentais. Foi constatado que as
RNA sdo ferramentas eficientes na determinagdo da posi¢do de falhas na estrutura estudada, tendo
sido localizados as posicoes das falhas em tempos inferiores a 5 segundos, com erros quadrdticos
médios em torno de 107, o que sugere a capacidade das RNA de realizarem um rdpido e preciso
diagnostico de falhas presentes em estruturas mecdnicas reais.

Palavras-chave: Modelos Computacionais, Valida¢do Experimental, Detec¢do de Falhas, Redes
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1. INTRODUCAO

Nas instalacdes industriais de médio e grande porte, a exemplo das plantas da industria
petrolifera, a questdo da integridade estrutural vem exigindo cada vez mais um rigoroso
monitoramento das condigdes operacionais, principalmente em plataformas offshore, onde uma
falha ¢ uma fonte potencial de riscos operacionais e de prejuizos financeiros e ambientais. Nestas
instalagdes, a situagdo ¢ tao delicada que nao apenas as tubulagdes, mas também simples estruturas
como vigas e barras devem ter as suas condi¢des monitoradas para se evitar um acidente. A
deteccao eficiente de falhas nestas estruturas pode representar a diferenca entre elevadas perdas e a
preservacao de uma plataforma.

Como todo sistema mecanico, as estruturas da industria do petroleo sofrem desgaste e este ¢ em
funcdo do tempo, do meio onde estdo alocados e das cargas sobre as quais estdo sujeitos.
Geralmente essas falhas se iniciam com uma pequena trinca na estrutura que vai aumentando,
comprometendo a integridade estrutural, levando-a ao rompimento. Por uma questdo de seguranga e
de redugdo de custos tem-se o interesse de detectar uma falha antes que ela cause o colapso da
estrutura. Com isso existe o interesse no desenvolvimento de sistemas capazes de verificar a
existéncia de falha em uma estrutura e de caracteriza-la, denominados de “Sistemas de
Diagnostico”. Estes sistemas sdo um conjunto de técnicas de andlise de sinais provenientes de
sensores de monitoramento instalados em equipamentos ou estruturas cujo objetivo principal ¢ a
deteccdo de falhas bem como a possivel determina¢do de sua localizacdo e de sua severidade.
Embora seja uma defini¢dao bastante simples de ser compreendida, a implementagdo dela na pratica
¢ algo bastante complexo.

Em se tratando da presenca de falhas em sistemas mecanicos, os modelos usuais que ja
apresentam simplificagdes para permitir uma abordagem matematica sdo transformados pelas falhas
em sistemas nao-lineares, o que dificulta muito o tratamento analitico de sistemas com falhas. Se o
problema direto se torna complexo na presenca de falhas, o problema inverso se torna critico com a
presenca delas. Por problema inverso define-se ter as respostas de um sistema e determinar o que
estd causando aquelas respostas.

Este Trabalho se propde a investigar os efeitos da mudanca de posi¢do de uma falha introduzida,
sobre as freqiiéncias naturais de um elemento estrutural a partir de uma modelagem pelo método
dos Elementos Finitos. Em seguida, a partir de resultados experimentais obtidos de forma
controlada, se procura determinar a localizagdo da falha através da utilizacdo de dois tipos de Redes
Neurais Artificiais (Redes Probabilisticas e Rede de Regressdao Generalizada.) e estabelecer um
comparativo da eficiéncia de cada uma destas RNA na deteccdo daquela falha na estrutural real.

2. A ANALISE MODAL

Dentre os ensaios baseados na analise de vibragdo destaca-se a analise modal classica. Por essa
analise utilizam-se as propriedades fisicas (massa, rigidez, amortecimento, etc.) de uma estrutura
como indicadores de pardmetros de avaliagdo, uma vez que uma falha modifica pelo menos uma
dessas propriedades que, por sua vez, vai modificar alguma caracteristica dinamica da estrutura,
como as freqiiéncias naturais e os modos de vibragcdo da mesma.

Seja um sistema estrutural discreto modelado como sendo um conjunto massa-mola-
amortecedor viscoso. O sistema de equagdes do movimento vibratorio deste sistema pode ser
descrito conforme notacdo de Meirovitch (1986) apresentada na Eq. (1).
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onde m, ¢, ¢ k s3o as massas concentradas, amortecimento e rigidez do sistema,
respectivamente, ¢ n ¢ o numero de graus de liberdade (GDL). Trata-se de um sistema de n



equagoes diferenciais ordindrias de segunda ordem simultdneas para a coordenada uj(t) =1, 2....,
n). Colocando na forma matricial usual, a Eq. (1) € descrita como mostra a Eq. (2).
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No limite, quando n — o, a resposta do modelo discreto deve convergir para a resposta do

modelo continuo. Considerando o caso de um sistema ndo-amortecido, conforme a Fig. (1), cuja
solucao pode ser obtida através da superposicao modal, chega-se a Eq. (3).
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onde {®}; corresponde ao vetor modal do modo de vibrar i e ®; a freqii€ncia natural relativa a
este modo. Ao se observar a Eq. (3) percebe-se claramente a influéncia da massa e da rigidez sobre
os modos de vibragdo ®; e sobre suas freqiiéncias naturais ;.
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Figura 1. Sistema discreto ndo amortecido.

O surgimento da andlise modal estd intimamente ligado a industria do Petrdleo (Alves, 1997).
Isto aconteceu porque boa parte dos ensaios nao destrutivos apresentavam limitagcdes devido a alta
complexidade das estruturas envolvidas como as plataformas offshore, o que levou a necessidade de
se desenvolver novas técnicas que permitissem analisar a integridade estrutural destas plataformas.
A analise modal comegou a ser desenvolvida na década de 70.

O trabalho mais antigo encontrado foi o de Vandiver (1975) onde a analise modal foi proposta
como método de deteccdo de defeitos em plataformas fixas de exploragdo de petroleo. A
metodologia proposta apenas indicava a presenca de defeitos a partir de mudancgas nas freqiiéncias
naturais. Caso alguma anomalia fosse detectada, entdo era acionada a equipe de mergulhadores era
acionada para localizar a falha por inspecao visual. A metodologia foi implementada com sucesso.

Owolabi et al (2003) realizou um estudo experimental do efeito da localizagdo e severidade de
uma falha em barras de aluminio bi-engastadas e em outras simplesmente apoiadas e propuseram a
utilizacdo de curvas de nivel de variacao de freqii€ncias e pela mudanga nas amplitudes das fungdes
de resposta em freqii€ncias para localizar e determinar a severidade de falhas.

3. REDES NEURAIS ARTIFICIAIS

Em sua defini¢ao classica Haykin (2001) afirma que “uma rede neural pode ser definida como
um processador macigamente e paralelamente distribuido constituido de unidades de processamento
simples (neurdnios) que t€ém a propensdo natural para armazenar conhecimento experimental e
torna-lo disponivel para uso (futuro)”. Assim, uma Rede Neural Artificial (RNA) ¢ um sistema que
¢ projetado para modelar a maneira como o cérebro realiza uma tarefa particular ou fungao de
interesse.

O uso de redes neurais ¢ comumente aplicado ao reconhecimento de padrdes dado o potencial
de aprendizado do sistema. Uma de suas grandes vantagens com relag@o a outras técnicas de analise
¢ a sua capacidade de tratar sistemas complexos sem a necessidade de utilizar um algoritmo

complexo, bastando apenas um conjunto de exemplos para ela “aprender” como associar esses
dados.



3.1. A Aplicaciao de RNA na Deteccido de Falhas

Nos ultimos anos, a busca por um meio de realizar uma rapida identifica¢do de falhas antes que
ela cause um colapso da estrutura, tem levado muitos pesquisadores a verificar a eficiéncia de redes
neurais artificiais em sistemas de diagnostico de falhas. Varios trabalhos sobre a aplicagdo de Redes
Neurais Artificiais na deteccdo e diagndsticos de falhas sdo encontrados na literatura (Wu et al.,
1992; Alves Jr. et al., 2001). Sera apresentado a seguir um resumo do histdérico da aplicagdo de
redes neurais na deteccao de falhas.

O mais antigo trabalho encontrado envolvendo RNA e a detec¢do de falhas foi o de Udpa e
Udpa (1991) que utilizou as RNA na interpretagdo de sinais provenientes de transdutores
eletromagnéticos usados em END do tipo “Eddy-current” para detectar a presenca de defeitos na
estrutura.

Em 1992, Wu et al. utilizaram redes neurais para indicar a perda de rigidez de elementos
estruturais, a partir do espectro da freqiiéncia, como um meio de automatizar ensaios de vibragao
para a detecgdo de danos estruturais.

Em 1995, Kaminski estudou o uso de RNA para determinar a localizacdo de defeitos em
estruturas a partir das freqiiéncias naturais. Ele propds uma metodologia de pré-processamento que
visava aumentar a capacidade de diagnostico da RNA a partir das freqii€ncias naturais. Esta
metodologia foi usada neste trabalho com uma pequena modificacao.

Em 2001, Kaminski e Alves tracam um comparativo entre as redes Multi-Layer Perceptrons
(MLP), Probabilisticas (PNN) e de Regressdo Generalizada (GRNN), mostrando as vantagens das
ultimas sobre a primeira. Também foi feito um estudo a partir de modelos de elementos finitos e de
dados experimentais de Gomes e Silva (1990) sobre a eficiéncia destes trés tipos de redes na
deteccao de falhas e na determinagdo da localizagdo das mesmas na estrutura em questao.

Padovese (2002) efetuou um estudo comparativo sobre a eficiéncia das redes MLP e PNN na
deteccao de falhas em rolamento e engrenagens, onde constatou o potencial das redes, em especial
da rede PNN, para o desenvolvimento de sistemas automatizados de diagnostico de falhas em
plantas industriais.

Guia et al. (2003) comparou o desempenho das redes MLP, PNN e GRNN na deteccdo e
localizacdo de defeitos em um modelo de um duto, alcangando bons resultados com todas as redes
utilizadas, levantando a possibilidade do desenvolvimento de uma nova metodologia de detecgdo de
falhas em tubulagdes a partir do uso de redes neurais artificiais na analise de sinais de vibragao.

3.2. Redes Neurais Utilizadas
3.2.1. Rede Probabilistica (PNN)

A Rede Neural Probabilistica (PNN) ¢ uma adaptacao da regra de decisdo estatistica Bayseana,
ou seja, esta baseada num modelo de estatistico de classificacdao. Foi Specht (1988) quem descobriu
que poderia colocar o classificador de Bayes-Parzen na forma de uma rede neural, pois se
informagdo suficiente estd disponivel num problema de classificacdo, a estratégia de decisdo de
Bayes-Parzen permite classificar um novo exemplo com uma maxima probabilidade de sucesso.

A estrutura da rede PNN ¢ composta por uma camada de entrada, cujo tamanho N ¢ fun¢do da
dimensdo do vetor de entrada. Esta camada distribui o vetor de entrada a todos os neurdnios da
camada seguinte, cuja dimensdo ¢ igual ao numero de exemplos no conjunto de treinamento, e ¢
chamada de camada de padrdes por ser formada pelos neurdnios processadores que contem as
funcdes de ponderacdo. A terceira camada ¢ chamada de camada de adigdo que ¢ o niimero de
classes contidas no problema, cuja fungdo ¢ somar os valores vindos da camada de padrdes, e ainda
pode existir uma outra camada opcional chamada de camada de saida, que fornece o nimero da
classe que possui o maior valor na camada de adigdo, ou seja, a classe para qual o vetor de entrada
teve a maior densidade de probabilidade.



3.2.2. Rede de Regressao Generalizada (GRNN)

Este tipo de rede ¢ normalmente usado como fung¢ao aproximag¢d@o. Dando o niimero apropriado
de neurdnios na camada intermediaria € possivel demonstrar que as Redes Neurais de Regressao
Generalizadas (GRNN) sdo capazes de aproximar uma fun¢do continua com uma precisdao desejada
(Wasserman, 1993). Este tipo de rede ¢ baseada na teoria da regressao nao linear e permite que uma
forma apropriada da fun¢do densidade de probabilidade seja obtida experimentalmente a partir de
um banco de dados de treinamento.

Igualmente as PNN o vetor de entrada das GRNN possui o nimero de neurdnios igual ao
nimero de vetores de treinamento e ndo ao numero de dados do vetor de treinamento.
Diferentemente da PNN, o nimero de neuronios na camada oculta da GRNN ndo ¢ igual ao numero
de exemplos do banco de treinamento, mas a uma quantidade restrita e significativa deste banco.
Isto ¢ particularmente vantajoso quando o banco de treinamento ¢ relativamente grande, pois a rede
GRNN nao perde desempenho e nem apresenta problemas com a memoria requerida do hardware
do sistema, como a PNN.

4. MODELAGEM E SIMULACAO

A estrutura que foi considerada neste estudo consiste de uma barra de aco livre-livre de se¢ao
transversal quadrada. Esta barra foi idealizada com as seguintes dimensdes e propriedades
mecanicas: Comprimento, L=0,8 m; aresta, a=0,03 m; densidade, p=7860 kg/m3 ; Coeficiente de
Poisson — v = 0,3; e modulo de elasticidade, E=210,0-109 N/m’. Foi adotada uma barra de secao
transversal quadrada devido ao fato de que estruturas como esta sdo utilizadas em plataformas
onshore e offshore variando as dimensoes e o carregamento. Esta barra ¢ mostrada na Figura (2).

Figura 2. Esquema ilustrativo da barra em estudo.

Esta barra foi modelada através do método dos elementos finitos utilizando o software ADINA
System 7.4 900 Nodes® (Licensed from ADINA R&D, Inc.), adotando um modelo unidimensional,
empregando elementos de viga para modelar a barra. Foi utilizada uma malha com 897 elementos.

A introducdo da falha neste modelo foi realizada considerando um entalhe na se¢do transversal
da barra. Esta consideragdo foi feita porque estruturas similares foram ensaiadas e simuladas nestas
condi¢des (Gomes e Silva, 1990; Alves, 1997), possibilitando a calibragdo do modelo. Este entalhe
foi simulado por um elemento com a altura da sua secao transversal diferente (menor) do restante da
barra.

Foram simulados entalhes para vérias posi¢des L e profundidades p;. Com isso cada entalhe ¢
identificado por dois valores numéricos. As posicdes relativas e as profundidades relativas
utilizadas sdo descritas pelas Eqgs. (4) e (5), respectivamente.
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onde, os valores da Eq. (5) representam as porcentagens relativas de reducao da area transversal.

Logo apds a modelagem foram realizadas as simulagdes, obtendo-se as cinco primeiras
freqiiéncias naturais da barra sem defeito e da barra com cada entalhe simulado, totalizando 36
simulacdes. Estas freqiiéncias foram armazenadas em um banco de dados.

Também foram utilizados resultados experimentais a partir de um banco de dados obtidos por
Gomes e Silva (1990). O experimento foi realizado com varios tipos barras de ago, entre as quais
estava a barra utilizada nas nossas simulagdes. Neste experimento, foram aquisitadas as 5 primeiras
freqiiéncias naturais em 40 barras, sendo 20 barras sem defeito e 20 barras com defeitos gerados
através de testes de fadiga com trés pontos de apoio em uma maquina universal de testes mecanicos
(MTS) aplicando uma carga ciclica de 10 kN. As aquisi¢des realizadas com as barras sem defeito
foram utilizadas para se obter as 5 primeiras freqliéncias naturais médias da barras sem defeito. As
medidas efetuadas nas barras com trincas foram realizadas com a trinca em 05 posicdes e 04
profundidades diferentes. As posigoes relativas e as profundidades relativas utilizadas sdo descritas
pelas Egs. (4) e (6).
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Para utilizar as redes neurais para detectar os defeitos nas barras a partir das freqiiéncias naturais
da estruturas, deve-se primeiramente pré-processar estas freqiiéncias. Este procedimento ¢
obrigatério para alguns tipos de RNA (Alves, 1997). Apesar de as redes PNN ¢ GRNN nao
exigirem o pré-processamento, opta-se por utiliza-lo, pois ele pode aumentar consideravelmente a
capacidade de um banco de dados caracterizar o sistema em analise.

No caso estudado, o pré-processamento utilizado foi proposto por Kaminski e Alves (2001) e
consiste em criar dois parametros a partir das Freqii€ncias naturais e utilizar o ultimo como entrada
das redes. O primeiro pardmetro, chamado nfr;, ¢ a diferenca ponderada entre as freqiiéncias
naturais médias das barras sem defeito e as das barras defeituosas. Este parametro ¢ calculado tanto
para os dados do modelo numérico como para os dados dos experimentos. Aqui ¢ criado um “elo”
entre a simulagdo computacional e o experimento, pois os parametros nfr; do modelo serdo
calculados levando em conta as freqiiéncias naturais médias do experimento sem defeito. O
parametro nft; € dado pela Eq. (7).

Q)O. — .
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(7)

onde y; representa as freqliencias naturais média sem defeito, m; as freqiiéncias defeituosas e o
subscrito “i” indica o modo de vibragdo em questdao. Segundo Gomes e Silva (1990), este parametro
¢ fung¢do tanto da posi¢cdo do defeito como da severidade do mesmo.

O segundo parametro consiste em normalizar o parametro nfr;. Segundo Kaminski (1995), este
parametro ¢ fun¢do apenas da localizacdo do defeito, ndo sendo influenciado por sua severidade.
Este parametro, denominado nfrn; , € dado pela Eq. (8).

nfrn. = <— (8)



5. RESULTADOS E DISCUSSOES

Para a utiliza¢ao das redes PNN e GRNN faz-se necessario formar um banco de dados de teste e
outro de treinamento, com este as RNA aprendem a associar as entradas com as saidas e com aquele
testam-se as redes para verificar o aprendizado. Como o objetivo deste trabalho ¢ detectar defeitos
nas barras reais, utilizou-se os nfrn; dos resultados do modelo numérico para treinar as redes e
testaram-se as mesmas com os nfrn; dos resultados experimentais. Isto € possivel devido ao “elo”
criado entre os resultados do modelo com os do experimento pelo pré-processamento através das
Egs. (7) e (8).

Com isso o banco de dados de treinamento ¢ composto por informacdes de 35 defeitos
simulados por um modelo de elementos finitos enquanto que o banco de dados de teste ¢ composto
por informagdes de 20 defeitos em barras reais. Nas analises foi utilizado o Toolbox de Redes
Neurais do Software Matlab 6.5® (The MathWorks, Inc) para realizar o processamento dos dados a
fim de obter a localizacao de uma falha. Optou-se por utilizar o Matlab por ele trazer um pacote de
redes neurais, o que facilita muito a implementagdo das RNA.

Para comparar as redes utilizadas, foram utilizados dois parametros: o Erro Quadratico Médio
(EQM) e o Erro Global Médio (EGM), que sdo definidos pelas Egs. (9) e (10).

2
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A Tabela (1) mostra os resultados obtidos pelas Redes PNN ¢ GRNN na determinagdao da
posicao do defeito em comparagdo com a real posicdo do mesmo. Pode-se ver que os indicadores
EQM e EGM apresentaram valores muito baixos, o que ¢ um indicio de que as redes implementadas
alcangaram uma boa capacidade de generalizagdo.

Tabela 1. Resultados das RNA na determinacdo da localizacdo das falhas.

PNN GRNN
Tempo de 0.7 0.6
processamento (s)
Erro quadratico médio 1,010 3,2489'10°"°
Erro global médio 0,01 4,0304'10”
Erro global médio (*) 0,04 0,03

(*) Fonte: Kaminski e Alves (2001).

Também consta na Tabela (1) o EGM obtido por Kaminski e Alves (2001) ao trabalharem no
mesmo banco de dados experimentais de Gomes e Silva (1990). Eles utilizaram uma outra
modelagem por elementos finitos da barra em estudo e ndo correlacionaram no pré-processamento
as freqiiéncias obtidas pelo modelo com as da barra real. Também utilizaram mais elementos no
banco de treinamento (dados de 100 casos diferentes). Contudo o desempenho de suas redes foi
inferior ao das redes implementadas neste trabalho. Isso pode ter ocorrido devido a diferengas entre
as modelagens da barra ou devido ao pré-processamento sem criar um elo entre os dados
experimentais e do modelo.

Na Tabela (1) também fica evidente o desempenho das redes com relacdo ao tempo de
processamento. Vale ressaltar que o tempo indicado nesta tabela refere-se ao tempo de criacdo e
ajuste da rede e ainda ao diagnostico de 20 defeitos diferentes na barras reais. Portanto as redes



PNN e GRNN se mostram como ferramentas de diagndstico de falhas extremamente rapidas, o que
¢ muito importante quando se trata do desenvolvimento de sistemas de monitoramento on-line. E
bem verdade que a velocidade de processamento das redes ¢ influenciada pelo hardware do
computador em uso, por isso informamos que a configuragao do computador utilizado ¢: Pentium®
I 933 MHz com 512 Mb de RAM.

A Figura 3 apresenta de forma grafica o desempenho das redes PNN e GRNN na deteccao de
falhas nas barras estudadas.
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Figura 3. Resultados das Redes Probabilistica e de Regressao Generalizada.

Pode-se perceber que a rede GRNN forneceu um resultado melhor do que o obtido pela rede
PNN. Na rede GRNN observou-se apenas um erro, tdo desprezivel que nem aparece nos resultados
devido a quantidade de algarismos significativos utilizados.

A rede PNN apresentou dois erros de 10% na determinacdo do defeito, o que corresponde a um
erro a cada 10 testes. Esse desempenho pode ser considerado aceitdvel visto que no geral a rede
PNN apresenta uma boa concordancia com os resultados esperados. Pode-se supor ainda que o seu
desempenho aumentard consideravelmente quando novos dados, numéricos ou experimentais,
forem inseridos no banco de dados de treinamento, o que melhoraré sua capacidade de classificacao
dos defeitos. Outra situagdo a ser considerada ¢ a possibilidade de utilizar as duas redes (PNN e
GRNN), simultaneamente, pois assim uma rede contorna os erros de classificagcdo da outra.

6. CONCLUSOES

Analisando os resultados obtidos pode-se afirmar que as redes neurais se mostraram eficientes
na detec¢ao de falhas em estruturas reais do tipo barra. Com isso espera-se que as redes neurais se
mostrem adequadas ao desenvolvimento de sistemas automatizados de diagnostico em estruturas
mais complexas, sendo que estudos em estruturas mais complexas estdo previstos.

As redes apresentaram excelentes resultados nos testes experimentais, apesar de terem sido
implementadas a partir de dados de modelos numéricos por elementos finitos, o que mostra a
versatilidade destes sistemas para sair do “ambiente” da simulacdo para a realidade fisica sem
comprometer tanto a sua capacidade de diagndstico. Com isso conclui-se que a utilizagao de redes
neurais artificiais permite o desenvolvimento de sistemas de monitoramento de falhas de alto
desempenho e, com o auxilio de um software apropriado, de facil implementagao.

Os poucos erros obtidos podem ser justificados pelo tamanho limitado do banco de dados de
treinamento e ainda pela auséncia de informacdes sobre defeitos reais neste banco de dados. A
ampliagdo do banco de dados certamente aumentara a capacidade das redes de diagnosticar os
defeitos existentes na estrutura em questao, especialmente se esta ampliagao for a partir de dados
experimentais. A introdu¢do de dados experimentais no banco de dados de treinamento ira criar um



“vinculo” maior entre as redes neurais e a realidade fisica, uma vez que a ligagdo entre as redes
implementadas e os testes experimentais ¢ muito ténue, formada apenas pela utilizagao das
freqiiéncias naturais dos experimentos sem defeito no pré-processamento dos dados referentes aos
defeitos simulados.
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Abstract: In the petroleum industry, the question of the structural integrity demands a rigorous
accompaniment of the operational conditions, mainly in pipelines and offshore’ structures.
Knowing the damages that an accident can cause, it is interesting that systems are developed for
the detection of faults in those structures. Besides the usual techniques of NDT (Ultrasound, PIGsg,
etc.), it is the classic modal analysis based on the change of the dynamic answer of the structure.
Parallel, many researchers have been verifying the efficiency of the Artificial Neural Networks
(ANN) in the diagnosis of the structural faults. This work investigates the effects of the position
and severity change of the fault on the natural frequencies of structures obtained starting from
computational models and experimental tests. The efficiency of two types of ANN developed to
locate this defect in the experimental results is analyzed. It was verified that ANN is efficient tools
in the determination of the position of faults in the studied structure, having been located the
positions of the faults in smaller times than 5 seconds, with medium quadratic errors around 107,
what suggests the capacity of ANN of they accomplish a fast and precise diagnosis of faults in real
mechanical structures.
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