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Resumo. Fadiga é conhecida como a maior causa de falha de componentes estruturais. Sob o ponto de 
vista da Mecânica da Fratura, o dano por fadiga de componentes submetidos a cargas dinâmicas pode 
ser quantificado pelo tamanho da trinca dominante e a falha ocorrerá quando essa trinca alcançar um 
tamanho crítico.Devido a natureza aleatória das propriedades mecânicas e dos esforços atuantes nos 
componentes mecânicos, o fenômeno de propagação de trincas é um fenômeno eminentemente 
aleatório, fazendo com que o mesmo só possa ser quantificado de maneira conveniente por meio de 
metodos probabilísticos. Esse trabalho tem como objetivo descrever o comportamento dos parâmetros 
que controlam o fenômeno de propagação de trincas e quantificar a influencia de tais parâmetros 
sobre a vida de componentes estruturais. Nesse sentido, os métodos de Monte Carlo, FOSM E ASM 
foram implementados e aplicados a um problema de integridade estrutural. 
 
Palavras Chaves. Confiabilidade, Fratura, Modelos Probabilísticos, Crescimento de  Trinca. 

 
1. INTRODUCÃO 

 
O procedimento clássico para o estudo da propagação de trincas de fadiga é realizado usando-se o 

diagrama que correlaciona a velocidade de propagação da trinca, da/dN, com a gama do fator de 
intensidade de tensões, ∆K, cuja definição é apresentada na Eq. (1).  

 

FaK ⋅⋅⋅∆=∆ πσ            (1) 
 

onde ∆σ é a gama de tensão, quantificada pela diferença entre os extremos de tensão atuantes no ponto 
analisado, isto é, minmax  - σ σ∆σ =  e F é um fator associado a geometria, ao tipo de carregamento e ao 
tamanho relativo da trinca.  

Conforme ilustrado na fig. (1), em escala logarítmica o diagrama (da/dN, ∆K) possui forma 
sigmoidal. Com base nesse diagrama verifica-se a existência de três regimes de propagação da trinca.  

O regime I é caracterizado pela reduzida ou insignificante taxa de propagação, sendo fortemente 
dependente do fator de intensidade de tensões, da carga média, das condições ambientais, da micro 
estrutura e de um parâmetro conhecido como limiar de propagação da trinca,  ∆Kth, para o qual pode ou 
não ocorrer a propagação da trinca. O parâmetro ∆Kth pode ser primariamente associado ao modulo de 
Young, E, à tensão de escoamento, σy, e a um parâmetro que caracteriza o tamanho de grão, l*, sendo 
relacionados pela seguinte Eq. (2).  

 
*

yth lσE  ∆K ⋅⋅=           (2) 



  

 
 

Figura 1. Comportamento Típico do Diagrama (da/dN, ∆K) (Suresh, 1998). 
 
O regime II caracteriza-se pela propagação da trinca ser controlada pelas deformações cíclicas 

atuantes em torno da ponta da trinca, apresentando-se pouco sensível à microestrutura, à carga média, à 
condições ambientais.  e pela baixa sensibilidade. Nessa região a relação (da/dN, ∆K), em escala 
logarítmica, possui derivada aproximadamente constante e a previsão do crescimento de trincas pode se 
realizada usando-se a lei de Paris (Paris et al., 1963) que na sua forma mais simples é representadas pela 
Eq. (3).  

 

( )mKC
dN
da

∆⋅=                          (3) 
 
onde da é o tamanho instantâneo da trinca, dN é a o número de ciclos aplicados na estrutura, C e m são, 
respectivamente, o coeficiente e o expoente de Paris. 
 

No regime III a derivada da relação da/dN versus ∆K é crescente até a propagação instável da trinca. 
Nesse regime a taxa de propagação é sensível à carga media, à condições ambientais, e a espessura da 
peça. Em materiais frágeis, admite-se que o regime III surge quando o valor máximo do fator de 
intensidade de tensões, FaK MaxMax ⋅⋅⋅= πσ , aproxima-se de um valor crítico, denominado 
tenacidade a fratura do material, Kc, provocando uma aceleração na propagação da trinca. Nesse sentido, 
um material poderá resistir sem fraturar de maneira frágil enquanto Kmax estiver abaixo do valor crítico 
Kc, Assim, baseando na Eq. (1) é possível escrever a Eq. (4) que permite prever o tamanho crítico que 
uma trinca alcançará para que sua propagação ocorra de forma instável. 
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Em materiais que, excessiva ductilidade, não apresente valores válidos de Kc, nas condições de 

ensaio, o regime II é dominante, mas sob condições de grandes deformações plásticas. 
Vários estudos (Khodadad et al., 2000;  Kozin et al., 1981; Dolinski, 1992; Wang, 1995; Shen et al., 

2001) reconhecem que o fenômeno propagação de trincas de fadiga apresenta um comportamento 
eminentemente aleatório. Sob o ponto de vista probabilístico, Shen et al. (2001) afirma que a taxa de 
propagação e o coeficiente de Paris são bem descritos por uma distribuição log-normal, conforme 
mostrado na Fig. (2a). Já o expoente de Paris é melhor descrito por uma distribuição normal, conforme 
ilustrado na Fig. (2b). Além disso, devido a dificuldades em se determinar de forma apropriada as 
condições de projeto, tais como : comportamento do material, carregamento atuantes na estrutura, uma 
previsão consistente da vida de fadiga só pode ser quantificada de forma apropriada utilizando-se 
ferramentas estatísticas e de análise probabilística. Nesse aspecto, o desenvolvimento de modelos que 
permitam realizar a previsão da vida média e estimar os níveis de confiabilidade associados a essa 
previsão  análises de confiabilidade de componentes submetidos falhas por fratura torna-se uma tarefa 
fundamental para o desenvolvimento de projetos confiáveis. 
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Figura 2. Distribuição dos Parâmetros de Paris – Constante C (2.a) e Expoente m (2b) (Shen et al, 2001). 
 

Tipicamente o desempenho de componentes estruturais sob uma condição específica de falha é 
definida por uma função conhecida como função de estado limite, G(X), onde X representa o vetor de 
variáveis aleatórias associadas às incertezas do sistema (níveis de carregamento, características do 
material, variações geométricas, etc). Assim, se X assumir uma configuração, por exemplo, X = (x1, 
x2,...,xn)T, então o valor de G(x1, x2,...,xn) definirá um possível estado de funcionamento do sistema 
(Harr, 1987). Para avaliar as condições de integridade do sistema três possíveis situações podem ser 
definidas:  

- G(X) > 0 ⇒ X está contida numa região segura, isto é, o sistema não falhará, 
- G(X) = 0 ⇒ X está contida na hiper superfície  que separa a condição de falha da integra, 
- G(X) < 0 ⇒ X está contida numa região de falha, isto é, o sistema falhará. 
Essas situações são representadas na Fig. (3), onde a função de estado limite é funcionalmente 

definida pela margem de segurança, ( ) 0=− DCg . Nesse sentido, se as variáveis aleatórias X puderem ser 
definidas por uma função de densidade de probabilidade f(X) então, a probabilidade de falha estrutural, 
Pf, poderá ser obtida por meio da Eq. (5). 

 

 ( )∫Ω ⋅= XX dfPf               (5) 
  

onde Ω representa o domínio de falha no espaço dos parâmetros de projeto, ou seja: X / G(X) ≤ 0.  
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Figura 3. Representação Gráfica dos Possíveis Estados de um Componente Estrutural 

 
Devido a complexidade que a função f(X) pode assumir e a incapacidade de definir precisamente o 

domínio de falha, a estimativa de Pf tem que ser realizada por meio de métodos alternativos (Harr, 1987). 



  

Considerando a qualidade das informações necessárias para descrever o modelo e a exatidão da resposta 
obtida, esses métodos são classificados em Exatos e Aproximados. De forma geral, pode-se definir os 
métodos exatos como aqueles que procuram determinar a probabilidade de falha por meio da integração da 
função de densidade de probabilidade conjunta das variáveis de estado do sistema. A integração analítica e 
a caracterização da função de densidade de probabilidade conjunta são fatores limitantes para a aplicação 
desse método.. O método de integração numérica e o método de Monte Carlo são classificados como 
pertencentes a essa categoria (Harr, 1987; Bilal et al., 1984). Tipicamente, para a executar tal integração é 
necessário assumir que as variáveis de estado possuem distribuição Gaussiana ou alguma distribuição que 
possa ser transformada em Gaussiana, por exemplo a distribuição log-normal. Já os métodos aproximados 
costumam ser usados para minimizar a carga computacional necessária para resolver os métodos exatos, 
para isso as relações funcionais entre as variáveis de estado do problema são simplificadas. Dessa forma, a 
probabilidade de falha estimada por esses métodos é apenas uma aproximação do seu valor real, estando a 
incerteza dessa aproximação relacionada a forma de construção do modelo (Ferreira, 2002). Os mais 
usados e conhecidos dessa categoria são denominados de FORM (First Order Reliability Method) e de 
ASM (Advanced Second Moment Method). Para  o desenvolvimento desses métodos somente os dois 
primeiros momentos  são usados, a média e a variância. A principal vantagem do uso desses métodos 
consiste na simplicidade dos modelos matemáticos. A maior dificuldade que se pode encontrar no uso dos 
métodos de primeira ordem está associada  a necessidade de expressar-se a função de estado limite de 
forma implícita. O objetivo desse trabalho é o de apresentar um conjunto de metodologias que permitem 
quantificar o dano médio e a probabilidade de falha em componentes estruturais sujeitos a condições de 
falha por fadiga quando a história de carregamento e o material apresentam comportamento aleatório.  
 
2. MÉTODOS DE CONFIABILIDADE 
  

A segurança absoluta de uma estrutura não pode ser garantida devido à imprevisibilidade de 
diversos fatores presentes em um projeto. A fim de contornar essa dificuldade são usados modelos de 
previsão de confiabilidade. Dos modelos existentes os mais comumente usados são abaixo apresentados.  
 
2.1. Método de Monte Carlo 

 
O termo Monte Carlo foi introduzido por John Von Neumann como um código de guerra associado 

ao seu trabalho em Los Alamos durante a Segunda Guerra Mundial. De uma maneira genérica são 
chamadas de métodos de Monte Carlos as técnicas de construção e simulação de modelos físicos ou 
matemáticos que usam recursos estocásticos. A utilização desse procedimento pe validade pela Lei dos 
Grandes Números. (Harr, 1987). Assim, com base no enunciado da Lei dos Grandes Números, se 
freqüência relativa de ocorrência de um evento, fa, for definida segundo a Eq. (6). 

n
nf a

a =             (6) 

onde na é o número de vezes que o evento acontece após n tentativas. Se P(A) = p for a probabilidade de 
ocorrência do evento A. Então, para todo número positivo ε, é possível demonstrar a seguinte 
desigualdade representada na Eq. (7). 
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ou seja: a medida que o número de tentativas n cresce, a freqüência relativa das das amostra, fa, tende ao 
valor exato da probabilidade do evento acontecer. (Meyer, 1983, Dachs, 1988) 

 
2.2. Método de Primeira Ordem Segundo Momento  - FOSM 

 
Nesse método, as estimativas da média e da variância da função de distribuição de G(X) são 

realizadas usando o vetor média e a matriz de covariâncias associadas as variáveis aleatórias do 
problema. Expandindo G(X) em série de Taylor em torno dos valores médios de X, X̂ , e limitando a 
série aos termos lineares, as aproximações de primeira ordem da média e da variância de G(X) serão 
definidas pelas Eqs. (3) e (4). Se G(X) for representada por uma distribuição de probabilidade qualquer, 



 
o risco de falha será quantificado pela probabilidade P(G(X)<E[G(X)]). Entretanto, assumindo que tal 
distribuição seja aproximadamente normal com média E[G(X)] e desvio padrão (Var[G(X])1/2, ou seja: 
G(X) ≈N[E[G(X)], (Var[G(X])1/2], o risco de falha será estimado pela diretamente pela distribuição 
normal reduzida, ou seja, através das Eqs. (8) a (10). 
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( )βΦ−= 1fP            (10) 

onde β é uma nova medida de risco de falha índice de confiabilidade, β, definida pela Eq. (11). 

( )[ ]
( )[ ]X

X
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GE
=β            (11) 

2.3. Método Avançado de Segundo Momento - ASM 
 

A aplicação do método de confiabilidade de primeira ordem segundo momento conduz a bons 
resultados quando as variáveis aleatórias envolvidas no problema forem normalmente distribuídas e a 
equação de estado limite for linear. Com o objetivo de evitar tais inconvenientes, recomenda-se a 
utilização do método avançado de segundo-momento. Nesse método a expansão em série de Taylor da 
função de estado limite é linearizada não em torno dos valores médios das variáveis aleatórias, mas em 
um ponto qualquer da superfície de falha ( )**

2
*
1 ,,, nxxx , denominado ponto de controle. Nesse método 

específico, o índice de confiabilidade, β, é definido como a menor distância entre a superfície de falha à 
origem do sistema de coordenadas reduzidas ( )nxxx 21 . Usando o sistema de coordenadas 
originais, os pontos de controle e o índice de confiabilidade serão determinados resolvendo-se 
iterativamente o sistema de Eqs. (12). 
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ixiii xx σβα ⋅⋅−= ˆ*                                  (12b) 

( ) 0* =XG                       (12c) 

De forma semelhante ao método de primeira-ordem segundo-momento, a relação entre a 
probabilidade de falha, Pf, e o índice de confiabilidade, β, é estimado segundo a Eq. (11).  

Em muitas situações reais, as variáveis que governam as funções de estado limite são não 
gaussianas. Rackwitz e Fiessler (Bilal, 1984) demonstram que funções de distribuição de probabilidades 
não gaussianas podem ser utilizadas nas Eqs. (13) desde que tais distribuições sejam transformadas em 
distribuições gaussianas equivalentes. Tipicamente, tal transformação é realizada aproximando-se as 
distribuições não gaussianas por gaussianas com mesmo valor médio e mesmo P-percentil. Paloheimos 
(1973) sugere adotar a probabilidade P associada à distribuição Gaussiana equivalente como igual à 
probabilidade de falha Pf se a variável for associada ao carregamento, ou (1 - Pf) se a mesma for 
associada à resistência. Já e Fiessler (1973) sugerem que as distribuições gaussianas equivalentes, 
definidas pelos parâmetros de média, N

ix , e de desvio-padrão equivalentes, N
iσ , sejam avaliados 

considerando as seguintes hipóteses: (i) A função de distribuição acumulada e a função de densidade de 
probabilidade das distribuições reais e das Gaussianas equivalentes devem ser iguais nos pontos de 



  

controle. (ii) Os desvios padrão e os valores médios associados às variáveis Gaussianas equivalentes 
sejam estimados segundo as Eqs. (13). 
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onde Fi e fi são, respectivamente, as funções de distribuição e de densidade de probabilidade de Xi, e 
Φ() e φ() são as funções de distribuição acumulada e densidade de probabilidade Gaussianas. 
 

3. CONSTRUÇÃO DA FUNÇÃO DE ESTADO LIMITE 
 

Tipicamente a condição de falha estrutural é definida pela equação de estado limite, cuja forma mais 
simples é a margem de segurança, apresentada na Eq. (14).  
 

( ) ( ) ( )dc DCG XXX −=                       (14) 
 
onde C(Xc) e D(Xd) são, respectivamente, funções associadas à capacidade do elemento estrutural 
suportar uma determinada solicitação e solicitação especificamente.  

Na análise de propagação de trinca, a função de demanda construída substituindo a Eq. (1) na Eq. 
(3), integrando a expressão resultante. Escrita em termos do número total de ciclos, Nf,  gastos para 
propagar a trinca de um tamanho inicial, ai, até um tamanho final, af, conforme apresentado na Eq. (15).  
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O tamanho inicial da trinca, ai, pode ser definido com base na distribuição estatística de trincas pré-

existentes, produzidas durante o processo de fabricação, ou pode ser avaliado considerando as variáveis 
que definem o limiar de propagação da trinca, o que resultará na Eq. (16).  
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O tamanho final da trinca, af, pode ser estimado em termos da Eq. (4). Considerando, a priori, que o 

componente estrutural deve ter um tempo de vida útil, a função de capacidade pode ser considerada uma 
variável randômica associada a um número específico de ciclos N. Dessa maneira, a equação de estado 
limite para a vida de um componente estrutural sujeito a propagação de uma trinca de fadiga pode ser 
definida de acordo com a Eq. (17).  
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4. METODOLOGIA DE VALIDAÇÃO DOS MODELOS DE CONFIABILIDADE 

 
Uma vez apresentados os modelos de confiabilidade e construída a função de estado limite do 

problema, a validação dos modelos de previsão será conduzida por meio da análise de propagação de 
uma trinca central atuante na placa apresentada na Fig. (3). Nessa análise os resultados estimados pelos 
métodos ASM e FOSM serão comparados aos obtidos segundo a técnica de Monte Carlo, visto que tal 
técnica enquadra-se na classe dos métodos exatos. As variáveis de estado usadas nessa análise serão os 
tamanhos inicial e final da trinca, respectivamente, 2ai e 2af, a largura da peça, 2b, o coeficiente e o 
expoente de Paris, respectivamente, C e m. Com relação ao comportamento estatístico dessas variáveis 
será assumido que as mesmas possuirão distribuição Gaussiana com valores médios apresentados na 
Tab. (1), com coeficientes de variação iguais a 5%. O fator de intensidade de tensões para o modo I de 
propagação, KI, é expresso segundo a Eq. (18).  



 
 

F(a/b)aπ σ K I ⋅⋅⋅=                       (18) 
 

onde o fator de forma será quantificado por meio da fórmula de Koiter modificada  (Tada, 1973), descrita 
pela Eq. (19).  
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Tabela 1. Características Básicas da Fratura 
 

Parâmetro Valor 
  Largura da Placa, 2b [m] 0,6 
  Tamanho Inicial da Trinca, 2ai [m] 2 x 10-3 
  Tensão Aplicada, σ [MPa] 120 
  Coeficiente de Paris, C [ mMPa ⋅ ] 6,87 x 10-12 
  Expoente de Paris, m 3 
  Tenacidade à Fratura, KIC [ mMPa ⋅ ] 55 

 
 

Figura 3. Placa com Furo Central. 
 
4.1. Implementação do Método de Monte Carlo 
 

Para a implementação do método de Monte Carlo as equações (17) e (19) foram discretizadas 
conforme apresentado nas Eqs. (20).  
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onde δi é a variação do tamanho da trinca a cada ciclo, sendo quantificada segundo as Eqs. (21) e (22), I 
é um parâmetro associado ao número de termos aleatórios que deverão ser gerados para a simulação do 
processo de crescimento da trinca (quanto maior o valor de I, maior a consistência da análise estatística) 
e J é o parâmetro associado ao número de passos dados durante a integração numérica (quanto maior o 
valor de J, maior preciso é a integração e maior é o tempo de integração).  
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Para a resolução numérica da integral utilizou-se o método de Simpson. Coma a intenção de avaliar 

o processo de integração e a consistência das previsões estatísticas gráficos correlacionando a estimativa 
média, o desvio padrão e o coeficiente de variação do número de ciclos para falha, N, em relação ao 
tamanho da amostra, I, foram construídos e analisados. 
 
5. RESULTADOS E DISCUSSÕES 

 
De forma a avaliar a consistência dos resultados obtidos segundo o método de Monte Carlo foi 

conduzida uma análise de convergência dos parâmetros estatísticos da vida de fadiga, N. Assim, com 
base nesses resultados foram construídos os gráficos apresentados na Fig. (5), que permitem verificar 
que as estimativas estatísticas para a média e para o desvio padrão obtidas segundo o método de Monte 
Carlo começam a ter consistência estatística quando o tamanho da amostra é da ordem de 105 elementos. 
Após a validação do modelo de Monte Carlo, a função de densidade de probabilidade foi estimada e 
verificou-se que o fenômeno de propagação de trinca possui um elevado nível de dispersão e assimetria, 
conforme ilustrado na Fig. (6).  
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Figura 5. Estimativas para a Média e para o Desvio Padrão em Função do Tamanho da Amostra, I 
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Figura 6. Aproximação da Função de Densidade de Probabilidade Baseado na Técnica de Monte Carlo. 



 
  

Na Fig. (7) são apresentadas as estimativas de confiabilidade para os métodos de Monte Carlo, 
FOSM e ASM. Com base nesses resultados pode-se verificar que as estimativas realizadas utilizando o 
método avançado de segundo momento, ASM, apresentaram os menores erros quando comparadas aos 
resultados obtidos por Monte Carlo. 
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Figura 7. Comparação entre os Métodos de Confiabilidade. 
 
6. CONCLUSÕES 

 
Esse trabalho apresentou três metodologias de previsão de confiabilidade aplicadas ao problema de 

propagação de trincas sob condições aleatórias.  Nesse sentido, os métodos de Monte Carlo, FORM e 
ASM foram implementados e aplicados na análise de um problema de propagação de uma trinca central 
em uma placa plana. O método de Monte Carlo permitiu verificar uma grande dispersão distribuição da 
vida de propagação da trinca. Comparando as previsões de confiabilidade obtidas segundo os métodos 
FORM e ASM verificou-se que somente o ASM produziu resultados comparáveis aos estimados 
segundo Monte Carlo, demonstrando a possibilidade de usar-se tal técnica para estimar a confiabilidade 
de componentes estruturais trincados. 
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Abstract. Fatigue is known to be a major cause of failure of a large number of structural components. 
From a fracture mechanics point of view, fatigue damage of a component subject to dynamic loading can 
be measured by the size of the dominant crack, and failure occurs when this crack reaches a critical size. 
It is widely recognized that fatigue crack growth is fundamentally a random phenomenon that can only be 
quantified in terms of probability and statistics. The two main reasons for the randomness in fatigue crack 
growth behavior are the random material resistance to fatigue crack growth and the random loading. The 
goal of this work is to describe the statistical behavior of the parameters that control the fatigue crack 
growth and quantifying the influence of such parameters on the life of the structural component. In this 
sense, the Monte Carlo method, FOSM and ASM methods were implemented and applied in a structural 
problem and the probability of failure was calculated. Since the Monte Carlo regards of an exact method, 
it was used to be compared with the rest of the methodologies. 
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