APLICACAO DE MODELOS PROBABILISTICOS PARA A PREVISAO DO
CRESCIMENTO DE TRINCAS DE FADIGA

Jorge Luiz de Almeida Ferreira, Dr., jorge(@unb.br
Juliana Alcantara Andald, Eng. Mec., juliana@andalo.ecn.br

UnB — Universidade de Brasilia

Departamento de Engenharia Mecanica — ENM
Campus Universitario Darcy Ribeiro — Asa Norte
70910-900 — Brasilia - DF - Brasil

Resumo. Fadiga é conhecida como a maior causa de falha de componentes estruturais. Sob o ponto de
vista da Mecanica da Fratura, o dano por fadiga de componentes submetidos a cargas dinamicas pode
ser quantificado pelo tamanho da trinca dominante e a falha ocorrera quando essa trinca alcan¢ar um
tamanho critico.Devido a natureza aleatoria das propriedades mecdnicas e dos esforcos atuantes nos
componentes mecdnicos, o fenomeno de propagagdo de trincas é um fenomeno eminentemente
aleatorio, fazendo com que o mesmo so possa ser quantificado de maneira conveniente por meio de
metodos probabilisticos. Esse trabalho tem como objetivo descrever o comportamento dos parametros
que controlam o fenomeno de propagagdo de trincas e quantificar a influencia de tais parametros
sobre a vida de componentes estruturais. Nesse sentido, os métodos de Monte Carlo, FOSM E ASM
foram implementados e aplicados a um problema de integridade estrutural.
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1. INTRODUCAO

O procedimento classico para o estudo da propagacao de trincas de fadiga ¢ realizado usando-se o
diagrama que correlaciona a velocidade de propagagdo da trinca, da/dN, com a gama do fator de
intensidade de tensoes, AK, cuja defini¢ao € apresentada na Eq. (1).

AK =Ac-z-a-F (1)

onde Ac ¢ a gama de tensdo, quantificada pela diferenca entre os extremos de tensdo atuantes no ponto

analisado, isto ¢, 40 = o, -0, . e F ¢um fator associado a geometria, ao tipo de carregamento e ao
tamanho relativo da trinca.

Conforme ilustrado na fig. (1), em escala logaritmica o diagrama (da/dN, AK) possui forma
sigmoidal. Com base nesse diagrama verifica-se a existéncia de trés regimes de propagacao da trinca.

O regime I ¢ caracterizado pela reduzida ou insignificante taxa de propagagdo, sendo fortemente
dependente do fator de intensidade de tensdes, da carga média, das condigdes ambientais, da micro
estrutura e de um parametro conhecido como limiar de propagacao da trinca, AKy, para o qual pode ou
ndo ocorrer a propagacgdo da trinca. O parametro AKy, pode ser primariamente associado ao modulo de
Young, E, a tensdo de escoamento, o, € a um pardmetro que caracteriza o tamanho de grio, 1*, sendo

relacionados pela seguinte Eq. (2).

4K, = JE-o I ()
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Figura 1. Comportamento Tipico do Diagrama (da/dN, AK) (Suresh, 1998).

O regime II caracteriza-se pela propagagdo da trinca ser controlada pelas deformacdes ciclicas
atuantes em torno da ponta da trinca, apresentando-se pouco sensivel a microestrutura, a carga média, a
condi¢des ambientais. ¢ pela baixa sensibilidade. Nessa regido a relagdo (da/dN, AK), em escala
logaritmica, possui derivada aproximadamente constante e a previsao do crescimento de trincas pode se
realizada usando-se a lei de Paris (Paris et al., 1963) que na sua forma mais simples € representadas pela

Eq. (3).
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onde da ¢ o tamanho instantaneo da trinca, dN ¢ a o nimero de ciclos aplicados na estrutura, C e m sao,
respectivamente, o coeficiente e o expoente de Paris.

No regime III a derivada da relagdo da/dN versus AK ¢ crescente até a propagagdo instavel da trinca.
Nesse regime a taxa de propagacao ¢ sensivel a carga media, a condigdes ambientais, € a espessura da
peca. Em materiais frageis, admite-se que o regime III surge quando o valor maximo do fator de

intensidade de tensdes,K,, =0, ‘V7r-a-F, aproxima-se de um valor critico, denominado

tenacidade a fratura do material, K., provocando uma aceleragcdo na propagagao da trinca. Nesse sentido,
um material podera resistir sem fraturar de maneira fragil enquanto K.« estiver abaixo do valor critico
K., Assim, baseando na Eq. (1) é possivel escrever a Eq. (4) que permite prever o tamanho critico que
uma trinca alcangara para que sua propagacao ocorra de forma instavel.
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Em materiais que, excessiva ductilidade, ndo apresente valores validos de Kc, nas condigdes de
ensaio, o regime II ¢ dominante, mas sob condi¢des de grandes deformagdes plasticas.

Varios estudos (Khodadad et al., 2000; Kozin et al., 1981; Dolinski, 1992; Wang, 1995; Shen et al.,
2001) reconhecem que o fendmeno propagacdo de trincas de fadiga apresenta um comportamento
eminentemente aleatorio. Sob o ponto de vista probabilistico, Shen et al. (2001) afirma que a taxa de
propagagdo e o coeficiente de Paris sdo bem descritos por uma distribui¢ao log-normal, conforme
mostrado na Fig. (2a). J& o expoente de Paris ¢ melhor descrito por uma distribuicdo normal, conforme
ilustrado na Fig. (2b). Além disso, devido a dificuldades em se determinar de forma apropriada as
condigdes de projeto, tais como : comportamento do material, carregamento atuantes na estrutura, uma
previsdo consistente da vida de fadiga s6 pode ser quantificada de forma apropriada utilizando-se
ferramentas estatisticas e de analise probabilistica. Nesse aspecto, o desenvolvimento de modelos que
permitam realizar a previsdo da vida média e estimar os niveis de confiabilidade associados a essa
previsdo analises de confiabilidade de componentes submetidos falhas por fratura torna-se uma tarefa
fundamental para o desenvolvimento de projetos confiaveis.
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Figura 2. Distribui¢ao dos Pardmetros de Paris — Constante C (2.a) e Expoente m (2b) (Shen et al, 2001).

Tipicamente o desempenho de componentes estruturais sob uma condigdo especifica de falha ¢
definida por uma fun¢do conhecida como funcdo de estado limite, G(X), onde X representa o vetor de
variaveis aleatorias associadas as incertezas do sistema (niveis de carregamento, caracteristicas do
material, variagdes geométricas, etc). Assim, se X assumir uma configuracdo, por exemplo, X = (x;,
X2,....Xn) ", entdo o valor de G(x;, Xo,...,X,) definira um possivel estado de funcionamento do sistema
(Harr, 1987). Para avaliar as condi¢des de integridade do sistema trés possiveis situagdes podem ser
definidas:

- G(X) > 0 = X esta contida numa regido segura, isto ¢, o sistema nao falhara,

- G(X) = 0 = X esta contida na hiper superficie que separa a condi¢ao de falha da integra,

- G(X) < 0 = X esta contida numa regido de falha, isto €, o sistema falhara.

Essas situagdes sdo representadas na Fig. (3), onde a fungdo de estado limite ¢ funcionalmente
definida pela margem de seguranga, g(C—D)=0. Nesse sentido, se as variaveis aleatorias X puderem ser
definidas por uma funcdo de densidade de probabilidade f{X) entdo, a probabilidade de falha estrutural,
Pf, podera ser obtida por meio da Eq. (5).

P, =[ f(X)-ax )
onde Q representa o dominio de falha no espago dos parametros de projeto, ou seja: X / G(X) < 0.
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Figura 3. Representacdo Grafica dos Possiveis Estados de um Componente Estrutural

Devido a complexidade que a fun¢do f(X) pode assumir e a incapacidade de definir precisamente o
dominio de falha, a estimativa de Prtem que ser realizada por meio de métodos alternativos (Harr, 1987).



Considerando a qualidade das informagdes necessarias para descrever o modelo e a exatidao da resposta
obtida, esses métodos sdo classificados em Exatos e Aproximados. De forma geral, pode-se definir os
métodos exatos como aqueles que procuram determinar a probabilidade de falha por meio da integracdo da
fungdo de densidade de probabilidade conjunta das variaveis de estado do sistema. A integragdo analitica e
a caracterizagdo da fun¢do de densidade de probabilidade conjunta sdo fatores limitantes para a aplicagao
desse método.. O método de integracdo numérica e o método de Monte Carlo sdo classificados como
pertencentes a essa categoria (Harr, 1987; Bilal et al., 1984). Tipicamente, para a executar tal integragao ¢
necessario assumir que as variaveis de estado possuem distribuicdo Gaussiana ou alguma distribuicdo que
possa ser transformada em Gaussiana, por exemplo a distribui¢do log-normal. J& os métodos aproximados
costumam ser usados para minimizar a carga computacional necessaria para resolver os métodos exatos,
para isso as relagdes funcionais entre as variaveis de estado do problema sdo simplificadas. Dessa forma, a
probabilidade de falha estimada por esses métodos € apenas uma aproximacao do seu valor real, estando a
incerteza dessa aproximagao relacionada a forma de constru¢do do modelo (Ferreira, 2002). Os mais
usados e conhecidos dessa categoria sao denominados de FORM (First Order Reliability Method) e de
ASM (Advanced Second Moment Method). Para o desenvolvimento desses métodos somente os dois
primeiros momentos sao usados, a média e a variancia. A principal vantagem do uso desses métodos
consiste na simplicidade dos modelos matematicos. A maior dificuldade que se pode encontrar no uso dos
métodos de primeira ordem estd associada a necessidade de expressar-se a funcdo de estado limite de
forma implicita. O objetivo desse trabalho ¢ o de apresentar um conjunto de metodologias que permitem
quantificar o dano médio e a probabilidade de falha em componentes estruturais sujeitos a condigdes de
falha por fadiga quando a histéria de carregamento e o material apresentam comportamento aleatorio.

2. METODOS DE CONFIABILIDADE

A seguranga absoluta de uma estrutura ndo pode ser garantida devido a imprevisibilidade de
diversos fatores presentes em um projeto. A fim de contornar essa dificuldade sdo usados modelos de
previsao de confiabilidade. Dos modelos existentes os mais comumente usados sao abaixo apresentados.

2.1. Método de Monte Carlo

O termo Monte Carlo foi introduzido por John Von Neumann como um codigo de guerra associado
ao seu trabalho em Los Alamos durante a Segunda Guerra Mundial. De uma maneira genérica sao
chamadas de métodos de Monte Carlos as técnicas de construcdo e simulagdo de modelos fisicos ou
matematicos que usam recursos estocasticos. A utiliza¢do desse procedimento pe validade pela Lei dos
Grandes Numeros. (Harr, 1987). Assim, com base no enunciado da Lei dos Grandes Numeros, se
freqliéncia relativa de ocorréncia de um evento, f,, for definida segundo a Eq. (6).

f="y ©)

onde n, ¢ o numero de vezes que o evento acontece apds n tentativas. Se P(4) = p for a probabilidade de
ocorréncia do evento 4. Entdo, para todo numero positivo & ¢ possivel demonstrar a seguinte
desigualdade representada na Eq. (7).

(1=

Prob /. - p|2 £]< 2-0=2) @
n-g

ou seja: a medida que o numero de tentativas n cresce, a freqiiéncia relativa das das amostra, f;, tende ao

valor exato da probabilidade do evento acontecer. (Meyer, 1983, Dachs, 1988)

2.2. Método de Primeira Ordem Segundo Momento - FOSM

Nesse método, as estimativas da média e da varidncia da funcdo de distribuicdo de G(X) sdo
realizadas usando o vetor média e a matriz de covariadncias associadas as varidveis aleatorias do
problema. Expandindo G(X) em série de Taylor em torno dos valores médios de X, X, e limitando a
série aos termos lineares, as aproximagoes de primeira ordem da média e da variancia de G(X) serdo
definidas pelas Egs. (3) e (4). Se G(X) for representada por uma distribui¢do de probabilidade qualquer,



o risco de falha serd quantificado pela probabilidade P(G(X)<E[G(X)]). Entretanto, assumindo que tal
distribuicdo seja aproximadamente normal com média E[G(X)] e desvio padrio (Var{G(X])"?, ou seja:
G(X) ~N[E[G(X)], (Var[G(X])"*], o risco de falha sera estimado pela diretamente pela distribuigio
normal reduzida, ou seja, através das Egs. (8) a (10).

E[6(X))= 6{X)= 6. 5,2, ®)
0, o (56(X)) (o6(X)
Var[G(X)] = Z Z . . Cov[xi ,X; ] 9
o o\ Ox, ox;
P, =1-0(p) (10)
onde £ ¢ uma nova medida de risco de falha indice de confiabilidade, S, definida pela Eq. (11).
E[G(X)]

_ 11
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2.3. Método Avancado de Segundo Momento - ASM

A aplicacdo do método de confiabilidade de primeira ordem segundo momento conduz a bons
resultados quando as varidveis aleatorias envolvidas no problema forem normalmente distribuidas e a
equacdo de estado limite for linear. Com o objetivo de evitar tais inconvenientes, recomenda-se a
utilizacdo do método avangado de segundo-momento. Nesse método a expansdo em série de Taylor da
fungdo de estado limite ¢ linearizada ndo em torno dos valores médios das variaveis aleatorias, mas em

um ponto qualquer da superficie de falha (xl* ,x;,u-,x: ), denominado ponto de controle. Nesse método

especifico, o indice de confiabilidade, £, ¢ definido como a menor distancia entre a superficie de falha a
origem do sistema de coordenadas reduzidas ()? X, o )_cn). Usando o sistema de coordenadas

originais, os pontos de controle e o indice de confiabilidade serdo determinados resolvendo-se
iterativamente o sistema de Egs. (12).

(GG(X*)J'G
o - X, ' (12a)
[yt .

i=1 6Xl O-X;
x, =% —a, B o, (12b)
G(X")=0 (12¢)

De forma semelhante ao método de primeira-ordem segundo-momento, a relagdo entre a
probabilidade de falha, P, e o indice de confiabilidade, f, ¢ estimado segundo a Eq. (11).

Em muitas situacdes reais, as variaveis que governam as fungdes de estado limite sdo nao
gaussianas. Rackwitz e Fiessler (Bilal, 1984) demonstram que func¢des de distribui¢ao de probabilidades
ndo gaussianas podem ser utilizadas nas Eqs. (13) desde que tais distribuicdes sejam transformadas em
distribuicdes gaussianas equivalentes. Tipicamente, tal transformagdo ¢ realizada aproximando-se as
distribui¢des ndo gaussianas por gaussianas com mesmo valor médio e mesmo P-percentil. Paloheimos
(1973) sugere adotar a probabilidade P associada a distribui¢do Gaussiana equivalente como igual a
probabilidade de falha P, se a varidvel for associada ao carregamento, ou (1 - Py se a mesma for
associada a resisténcia. Ja e Fiessler (1973) sugerem que as distribui¢des gaussianas equivalentes,

. A ST —N . ~ . —N . .
definidas pelos pardmetros de média, x;", € de desvio-padrdo equivalentes, &, , sejam avaliados

considerando as seguintes hipdteses: (i) A fun¢do de distribuicdo acumulada e a funcdo de densidade de
probabilidade das distribuigdes reais e das Gaussianas equivalentes devem ser iguais nos pontos de



controle. (ii) Os desvios padrdo e os valores médios associados as varidveis Gaussianas equivalentes
sejam estimados segundo as Eqs. (13).

O_-iN — ¢{CD_1 [ESX:‘)]} (13a)
S,
7 =X -0 |F(X]) oy (13b)

onde F; e f; sdo, respectivamente, as funcdes de distribuicdo e de densidade de probabilidade de Xi, e
@() e ¢() sao as fungdes de distribuicdo acumulada e densidade de probabilidade Gaussianas.

3. CONSTRUCAO DA FUNCAO DE ESTADO LIMITE

Tipicamente a condicdo de falha estrutural ¢ definida pela equagdo de estado limite, cuja forma mais
simples ¢ a margem de segurancga, apresentada na Eq. (14).

G¢(x)=c(X,)-D(X,) (14)

onde C(X.) e D(Xqy) sdo, respectivamente, funcdes associadas a capacidade do elemento estrutural
suportar uma determinada solicitacdo e solicitagdo especificamente.

Na analise de propagacgdo de trinca, a fun¢do de demanda construida substituindo a Eq. (1) na Eq.
(3), integrando a expressdo resultante. Escrita em termos do numero total de ciclos, N, gastos para
propagar a trinca de um tamanho inicial, a;, at¢ um tamanho final, a5, conforme apresentado na Eq. (15).

(Y da
N _I C~(Aa~\/7z_-a~F)m )

O tamanho inicial da trinca, a;, pode ser definido com base na distribui¢do estatistica de trincas pré-
existentes, produzidas durante o processo de fabricagdo, ou pode ser avaliado considerando as variaveis
que definem o limiar de propagacao da trinca, o que resultara na Eq. (16).

E-ay~1*
il L 16
¢ (O'-F)2~7r (16)

O tamanho final da trinca, a5 pode ser estimado em termos da Eq. (4). Considerando, a priori, que o
componente estrutural deve ter um tempo de vida util, a fungdo de capacidade pode ser considerada uma
variavel randdémica associada a um nimero especifico de ciclos N. Dessa maneira, a equacao de estado
limite para a vida de um componente estrutural sujeito a propagagdo de uma trinca de fadiga pode ser
definida de acordo com a Eq. (17).

i(L] da
CACA0, K, )= Ny = [7\or

e P

4. METODOLOGIA DE VALIDACAO DOS MODELOS DE CONFIABILIDADE

G(N (17)

Crit?

Uma vez apresentados os modelos de confiabilidade e construida a fun¢do de estado limite do
problema, a valida¢ao dos modelos de previsdo sera conduzida por meio da analise de propagagdo de
uma trinca central atuante na placa apresentada na Fig. (3). Nessa analise os resultados estimados pelos
métodos ASM e FOSM serdo comparados aos obtidos segundo a técnica de Monte Carlo, visto que tal
técnica enquadra-se na classe dos métodos exatos. As variaveis de estado usadas nessa analise serdo os
tamanhos inicial e final da trinca, respectivamente, 2a; € 2ay, a largura da pega, 2b, o coeficiente € o
expoente de Paris, respectivamente, C e m. Com relagdo ao comportamento estatistico dessas variaveis
sera assumido que as mesmas possuirdo distribui¢do Gaussiana com valores médios apresentados na
Tab. (1), com coeficientes de variagdo iguais a 5%. O fator de intensidade de tensdes para o modo I de
propagacao, K, € expresso segundo a Eq. (18).



K, = o-Nr-a-F(a/b) (18)

onde o fator de forma sera quantificado por meio da formula de Koiter modificada (Tada, 1973), descrita
pela Eq. (19).

1-0,5 (a/b) + 0370 (a/b)* - 0,044 (a/b)’

V1 -a/b

Tabela 1. Caracteristicas Basicas da Fratura

Fla/b) = (19)

Parametro Valor
Largura da Placa, 2b [m] 0,6
Tamanho Inicial da Trinca, 2a; [m] 2x10°
Tensdo Aplicada, o [MPa] 120
Coeficiente de Paris, C [ MPa -+/m ] 6,87 x 107"
Expoente de Paris, m 3
Tenacidade & Fratura, Kic [ MPa-+/m ] 55
3
t + 404
h
| — ——
f it e a ] _*_
. | —e— | —» h
F e v
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Figura 3. Placa com Furo Central.
4.1. Implementacio do Método de Monte Carlo

Para a implementacdo do método de Monte Carlo as equacdes (17) e (19) foram discretizadas
conforme apresentado nas Egs. (20).

= 5. . .
N, = L 1i=0,1,2,...1-1;j=0,1,2, ... J-1 (20a)
0 Ci (0|7 (a; +jo;) F(ab))™
a; +j6; a; +j6; ? a; +j0; ’
Fab)=1-05| = +0370| = 0,044 = (20b)

onde 9; ¢ a variacdo do tamanho da trinca a cada ciclo, sendo quantificada segundo as Egs. (21) e (22), I
€ um parametro associado ao nimero de termos aleatorios que deverdo ser gerados para a simulacdao do
processo de crescimento da trinca (quanto maior o valor de I, maior a consisténcia da analise estatistica)
e J € o parametro associado ao niimero de passos dados durante a integragdo numérica (quanto maior o
valor de J, maior preciso € a integracdo e maior ¢ o tempo de integrago).

=) e



a, K?
« . F f/ _ K (22)
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Para a resolugdo numérica da integral utilizou-se o método de Simpson. Coma a intengdo de avaliar
o processo de integracdo e a consisténcia das previsdes estatisticas graficos correlacionando a estimativa
média, o desvio padrdo e o coeficiente de variagdo do numero de ciclos para falha, N, em relacdo ao
tamanho da amostra, I, foram construidos e analisados.

5. RESULTADOS E DISCUSSOES

De forma a avaliar a consisténcia dos resultados obtidos segundo o método de Monte Carlo foi
conduzida uma analise de convergéncia dos parametros estatisticos da vida de fadiga, N. Assim, com
base nesses resultados foram construidos os graficos apresentados na Fig. (5), que permitem verificar
que as estimativas estatisticas para a média e para o desvio padrdo obtidas segundo o método de Monte
Carlo comegam a ter consisténcia estatistica quando o tamanho da amostra é da ordem de 10° elementos.
Apos a validagdo do modelo de Monte Carlo, a funcao de densidade de probabilidade foi estimada e
verificou-se que o fendmeno de propagagao de trinca possui um elevado nivel de dispersdo e assimetria,

conforme ilustrado na Fig. (6).

Desvio Padrdo de N
Vida Média, N

1.1E+6 L 1 L s L A R A R UL L L e R L 4.8E+5 \HHHHHHH‘HHHH T T T T T T T T T T T T T oo
R T T AT e A AT e I N1 A O R 1) I AR WA TH [ AT L O O T O T R A AU Y| R O A A AT R RN
[T I N ALY | R N A R T 1! e A A R T 11) A R 111 R NI [ AT N 1T A N N 11T e A N AU Y| R A I A R AT| I A NI
| R R I e R A e R N B R AR B A [ AT N 1T A N N 11T e A N AU Y| R A I A R AT| I A NI
AT Y L AT AR A L S T T ] Y O I W ) AN W 1| U A Ot
[T I N ALY | R N A R T 1! e A A R T 11) A R 111 R NI [ AT N 1T A N N 11T e A N AU Y| R A I A R AT| I A NI
[ T A N Y| R A A A RN TY O R O H 1T R A A 1) B AN [ AT N 1T A N N 11T e A N AU Y| R A I A R AT| I A NI
1. 1E+6 e [N R O R 1 e A N T I A A e N I R N N R AN
[T I N ALY | R N A R T 1! e A A R T 11) A R 111 R NI O I N T
[T I N ALY | R N A R T 1! e A A R T 11) A R 111 R NI 4.4E+5 IR O ] R LTI B I .|
(L T ] A R T e A1 O R R AT R (R A AR NI Resultados Numéricos
I T R R A (RN (R (IR [ Valor Real |
[ T I N AL T| B R A RN T! e A R T 1T) R O WA 1] B R N oo o rrmp o crnn 1 el
[T I N ALY | R N A R T 1! e A A R T 11) A R 111 R NI 1 R T
T0E+E i b e e [ AT N 1T e A N N 11T e e A N AU Y| R A I A R AT| I A NI
[T I N ALY | R N A R T 1! e A A R T 11) A R 111 R NI [ AT N 1T e A N N 11T e e A N AU Y| R A I A R AT| I A NI
[T I N ALY | R N A R T 1! e A A R T 11) A R 111 R NI [ AT N 1T e A N N 11T e e A N AU Y| R A I A R AT| I A NI
R N N A e [ AN O N 11 A M A A1 O A IR ALY | A AT B A MR AN

I I e B el B I I e i B S IR IR S S S H 4.0E+5
e e e e A e A = [T [ D
Coo@ o 1| 11| —©—  Resultados Numéricos R AT N N A AT R R RN
PO e e | —— vida Real AT .| (LT A AT A A N AT B A A AT N A NN
+ — [N (RN [ [ AT S R AN T| B A AR
9.5E+5 [ AT A N AT e R R T T 1TI B A R B —1— 1 H ] 7\7\%H\€§4{*\‘®\\ )44ﬁww—++ H — =y H HH
ot [T O 1T e A R AT TY I A R 1T R A AN T T Wz ™ \\@\H T
RN L R N R R o umuj\:\\@u}ﬁ\ﬁ?m (R R
T anmE T Tap” I Tmm - TITmI - T Ty =T Thmi [ AT T A 1T R O A b A1 O A N AU Y| R A B R AT| I R NI
(RN YAl ] N A A T O T A A K Y| N B A AT | A RN AT1]
(RN AT M@\/g)/\x/@w% —) L 3.6E+5 [ I I
9.0E+5 At L] o U S T — i A N e R R e A AT 1T| e A AT
R Ry N Y| NN S A A T 1T) O R IT] AT o A N e R R e A AT 1T| e A AT
[T A N ALY R N R RN A A R T 1T) B O R 111 B A A [ AT N 1T A N N 11T e A N AU Y| R A I A R AT| I A NI
RN A I ALY R R A R TT! e A A R R T 11) S R 111 B A A e Rt I T e Bl B ] i BT W Rt i I U sl e AR R B el W Rt
T Anm/ T Tam= I Tmm - T ITTI - T TOmy = T Trmg [ AT N 1T A N N 11T e A N AU Y| R A I A R AT| I A NI
R AT A N AT R R R T T AT 1TI R A R [ AT N 1T A N N 11T e A N AU Y| R A I A R AT| I A NI
L LU [ R R [ AT N 1T A N R 111 R e A N ALY | R A AR AT| R RN
8.5E+ A A T - - T T TI0 3.2E+5 L Ll Lol L LI Lol LI LU LI

i+ e 1E+1 1E+2  1E#3  1E+4  1E+5  1E+6  1E+7
Tamanho da Amostra, | Tamanho da Amostra, |

Figura 5. Estimativas para a Média e para o Desvio Padrao em Fun¢do do Tamanho da Amostra, |
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Figura 6. Aproximacao da Fun¢do de Densidade de Probabilidade Baseado na Técnica de Monte Carlo.



Na Fig. (7) sdo apresentadas as estimativas de confiabilidade para os métodos de Monte Carlo,
FOSM e ASM. Com base nesses resultados pode-se verificar que as estimativas realizadas utilizando o
método avancado de segundo momento, ASM, apresentaram os menores erros quando comparadas aos
resultados obtidos por Monte Carlo.
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Figura 7. Comparagdo entre os Métodos de Confiabilidade.
6. CONCLUSOES

Esse trabalho apresentou trés metodologias de previsdo de confiabilidade aplicadas ao problema de
propagagao de trincas sob condi¢des aleatorias. Nesse sentido, os métodos de Monte Carlo, FORM e
ASM foram implementados e aplicados na analise de um problema de propagacao de uma trinca central
em uma placa plana. O método de Monte Carlo permitiu verificar uma grande dispersao distribui¢do da
vida de propaga¢do da trinca. Comparando as previsdes de confiabilidade obtidas segundo os métodos
FORM e ASM verificou-se que somente o ASM produziu resultados comparaveis aos estimados
segundo Monte Carlo, demonstrando a possibilidade de usar-se tal técnica para estimar a confiabilidade
de componentes estruturais trincados.
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Abstract. Fatigue is known to be a major cause of failure of a large number of structural components.
From a fracture mechanics point of view, fatigue damage of a component subject to dynamic loading can
be measured by the size of the dominant crack, and failure occurs when this crack reaches a critical size.
1t is widely recognized that fatigue crack growth is fundamentally a random phenomenon that can only be
quantified in terms of probability and statistics. The two main reasons for the randomness in fatigue crack
growth behavior are the random material resistance to fatigue crack growth and the random loading. The
goal of this work is to describe the statistical behavior of the parameters that control the fatigue crack
growth and quantifying the influence of such parameters on the life of the structural component. In this
sense, the Monte Carlo method, FOSM and ASM methods were implemented and applied in a structural
problem and the probability of failure was calculated. Since the Monte Carlo regards of an exact method,
it was used to be compared with the rest of the methodologies.
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