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Abstract. In this work the problem of two-impulsive orbital transfers between non-coplanar orbits
with minimum fuel consumption and fixed time is studied, considering fixed terminal points in the
initial and the final orbits. The basis of this study are the equations presented by Eckel and Vinh
(1984), which provide the transfer orbit between non-coplanar elliptical orbits with minimum fuel
and fixed time of transfer, considering free terminal points. When the problem with fixed time is
considered, the position of the terminal points must be taken into account. When fixed terminal
points are considered, it is required to leave the initial orbit from a specific point at a specific time
and to arrive to the final orbit in a specific point at a specific time. Other two cases occur when
only one of the terminal points is fixed. And the last case occurs when both terminal points are free.
Then, some equations considering the position constraints are added to the equations presented by
Eckel and Vinh (1984), and a software for orbital maneuvers was developed. This software is
available to be used in the next missions developed by INPE. The software was tested, simulating
real maneuvers with success.
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1. INTRODUCTION

The majority of the spacecrafts that have been placed in orbit around the Earth uses the basic
concept of orbital transfers. During the launch, the spacecraft is placed in a parking orbit distinct
from the final orbit for which the spacecraft was designed. Therefore, to reach the desired final orbit
the spacecraft must perform orbital transfers. Besides that, the spacecraft orbit must be corrected
periodically because there are perturbations acting on the spacecraft. Both maneuvers are usually
calculated with minimum fuel consumption but without a time constraint. This time constraint



imposes a new characteristic to the problem that rules out the majority of the transfer methods
available in the literature: Hohmann (1925), Hoelker et al. (1959), Gobetz et al. (1969), Prado
(1989), etc. Therefore, the transfer methods must be adapted to this new constraint: Prussing et al.
(1986), Eckel (1982), Eckel et al. (1984), Lawden (1993) and Taur et al. (1995). In Brazil,
important applications have been carried on with the launch of the Remote Sensing Satellites RSS1
and RSS2 that belongs to the Complete Brazilian Space Mission and with the launch of the China
Brazil Earth Resources Satellites CBERS 1, 2, 3 and 4.

In this work the problem of two-impulsive orbital transfers between non-coplanar orbits with
minimum fuel consumption and fixed time is studied, considering fixed terminal points in the initial
and the final orbits (initial point and final point of the maneuver). The basis of this study are the
equations presented by Eckel and Vinh (1984), which provide the transfer orbit between non-
coplanar elliptical orbits with minimum fuel and fixed time of transfer; or minimum time of transfer
for a prescribed fuel consumption, considering free terminal points. In this work, the problem of the
fuel consumption minimization with fixed time of transfer and fixed position of the terminal points
is considered. This is an extension of the work of Rocco (1997) and Rocco et al. (1999). The case of
orbital transfer between non-coplanar orbits with minimum time for a prescribed fuel consumption
considering free terminal points, was already studied in Rocco et al. (2000). When the problem with
fixed time is considered, the position of the terminal points must be taken into account. When fixed
terminal points are considered, it is required to leave the initial orbit from a specific point at a
specific time and to arrive to the final orbit in a specific point at a specific time. Other two cases
occur when only one of the terminal points is fixed. And the last case occurs when both terminal
points are free. Then, some equations considering the position constraints are added to the equations
presented by Eckel and Vinh (1984), and a software for orbital maneuvers was developed. This
software is available to be used in the next missions developed by INPE. The original method,
developed by Eckel and Vinh, was presented without numerical results in that paper. Thus, the
modifications considering the position constraints, the implementation and the solutions using this
method are contributions of this work. The software was tested, simulating real maneuvers with
success.

2. DEFINITION OF THE PROBLEM

The orbital transfer of a spacecraft from an initial orbit to a desired final orbit consists (Marec
1979) in a change of state of the spacecraft, from initial conditions 0r

r , 0v
r  and 0m  at time 0t  to final

conditions fr
r , fv

r  and fm  at time ft  ( 0tt f ≥ ). In this work we consider that the spacecraft
propulsion system is able to apply an impulsive thrust. Therefore, we have the instantaneous
variation of the spacecraft velocity.

3. PRESENTATION OF THE METHOD

The basis for this method are the equations presented by Eckel et al. (1984). The equations were
presented in the literature but the method was neither implemented nor tested by Eckel and Vinh,
and it is only valid for a specific geometry. They used the plane of the transfer orbit as the reference
plane but in this work, it was decided to use the equatorial plane as the reference plane because in
this way it is easy to obtain and to apply the results in real applications. Using the transfer orbit as
the reference plane almost all the results obtained belong to the same specific geometry, so we
change the reference system, adding the equations 1 to 6 to consider cases with more complex
geometry.

Given two terminal orbits it was desired to obtain a transfer orbit which performs an orbital
maneuver from the initial orbit to the final orbit with minimum velocity increment and fixed time of
transfer. The orbits are specified by their orbital elements:



a → Semi-major axis
e → Eccentricity
p → Semi-latus rectum
ω → Longitude of the periapsis
i → Inclination
Ω → Longitude of the ascending node
M → Mean anomaly
E → Eccentric anomaly
λ →Angle between the planes of the initial

and final orbits
1β → True anomaly of the point N  obtained

in the plane of the initial orbit
2β → True anomaly of the point N  obtained

in the plane of the final orbit
1I → Location of the first impulse

2I → Location of the second impulse
∆ → Transfer angle obtained in the plane of

the transfer orbit
1V →Velocity increment generated by the first

impulse
2V →Velocity increment generated by the

second impulse
V → Total velocity increment
Τ → Time spent in the maneuver

1α → True anomaly of the point 1I  obtained in
the plane of the initial orbit

2α → True anomaly of the point 2I  obtained in
the plane of the final orbit

1r →Distance from point 1I

2r →Distance from point 2I

1f → True anomaly of the point 1I  obtained in
the plane of the transfer orbit

2f → True anomaly of the point 2I  obtained in
the plane of the transfer orbit

ih →Horizontal component of iV

1x →Radial component of the first impulse

2x →Radial component of the second impulse

1y → Transverse component of the first
impulse in the plane of the initial orbit

2y → Transverse component of the second
impulse in the plane of the transfer orbit

1z →Component of the first impulse
orthogonal to the initial orbit

2z →Component of the second impulse
orthogonal to the transfer orbit

N → Intersection of the orbits

From the geometry of the maneuver we obtain 1β , 2β , λ  and the transfer angle ∆ :

( ) ( )
( ) ( ) 1

12121

212
1 coscos180tansin

180tansintanarc ω
ΩΩ

ΩΩβ −







−−+

−−
=

iii
i

o

o

(1)

( )
( ) ( ) 2

12212

112
2 cos180costan

tantanarc ω
ΩΩ

ΩΩ
β −








−−+

−
=

iisini
isin

o
(2)

( )
( )

( )
( ) 








+

−
=








+

−
=

11

212

2

112 sinarc
2

sinarc
βω

ΩΩ
βω

ΩΩ
λ

sin
sinisin

sin
sinisin (3)

( ) ( ) ( ) ( ) ( )λβααββααβ −−−+−−=∆ o180cossinsincoscoscos 22112211 (4)

( ) ( )
Bsin

180sinsinsin 22 λβα −−
=∆

o

(5)

( )
( ) ( ) ( ) ( )






−−−−−

−
=

λαββααβ
λ

o

o

180coscoscotsin
180sinarctan

112211

B (6)

Considering that the spacecraft propulsion system is able to apply an impulsive thrust, and that
maneuver is bi-impulsive, the total velocity increment is:

( )ΧFVVV =+= 21 (7)

The time of the transfer maneuver, when it is not considered any position constraint, is:

( )ΧΤ G= (8)



Therefore, the problem is the minimization of V  for a prescribed Τ . If the time of transfer is
prescribed, being equal to a value 0T , we have the constrained relation:

00 =−TT (9)

Thus, we have the performance index:

( )0TTkVJ −+= (10)

From Eckel et al. (1984) we know that the solution of the problem depends on three variables:
the semi-latus rectum p  of the transfer orbit and the true anomaly 1α  and 2α  that define the position
of the impulses in the initial and final orbits. Therefore, we have the necessary conditions:
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By eliminating the Lagrange’s multiplier k  from Equations (11) we have the set of two
equations:
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Evaluating the partial derivatives in these equations and doing some simplifications we have the
final optimal conditions:
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which utilize the relations shown in appendix A.
Considering position constraints, the time spent in the maneuver can be calculated by three

different ways.
Case 1: when we consider fixed terminal points we want to leave the initial orbit from a specific

point at a specific time and to arrive in the final orbit in a specific point at a specific time. In this
case the time spent in the maneuver can be calculated by:

21 tttT ∆∆∆ ++= (15)

where 1t∆  is the time spent in the initial orbit; t∆  is the time spent in the transfer orbit and 2t∆  is
the time spent in the final orbit to reach the final terminal point.

Another two cases occur when only one of the terminal points is fixed. In these cases the
problem has one constraint less than the anterior case.

Case 2: when the initial terminal point is fixed the method can be applied to optimal orbital
transfers where the localization of the maneuver is specified, for example, when the maneuver need
to be performed in visibility. The time spent in the maneuver can be calculated by:

ttT ∆∆ += 1 (16)

Case3: When the final terminal point is fixed the method can be applied to rendezvous
maneuvers. The time spent in the maneuver can be calculated by:

2ttT ∆∆ += (17)

Case 4: The last case occurs when both terminal points are free and the only constraint is the
duration of the maneuver. In this case, the interest is not where the maneuver is going to be
performed, but how long the spacecraft is going to stay in the transfer orbit. Thus, the method can



be applied in maneuvers of remote sensing satellites because these satellites can not work properly
in the transfer orbit. The time spent in the maneuver can be calculated by:

tT ∆= (18)

The variables 1t∆ , t∆  and 2t∆  can be calculated by:
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where iE is the eccentric anomaly in the transfer orbit of the position of the first impulse; fE is the
eccentric anomaly in the transfer orbit of the position of the second impulse; 3E is the eccentric
anomaly in the final orbit of the position of the second terminal point.

Thus, we have an equation system composed by Equations (9), (13) and (14). Solving this
equation system by Newton Raphson Method (cf. Press et al. 1992) or by the Least Square Method
(cf. Rocco 2002), we obtain the transfer orbit which performs the maneuver between two non-
coplanar terminal orbits spending a minimum fuel consumption but with a specific time of transfer.

4. RESULTS

Figures (1) to (9) present some results obtained with the software developed. Only the case 2
was considered in this example, but, the other cases were also studied and implemented. It was
decided to show only case 2 because this case presented the best results until the moment. The
graphs were obtained through the variation of the time spent in the maneuver. These graphs not
only show the tendency of the parameters, but they quantify the evolution of the variables studied.

It was utilized as an example the correction maneuver between two elliptical non-coplanar orbits
where the initial orbit have the semi-major axis of 7122.237 km, eccentricity 0.014161, longitude of
the periapsis 1.72253089 rad, longitude of the ascending node 0.005 rad and inclination 0.005 rad.
The final orbit shows the semi-major axis of 7148.865 km, eccentricity 0.0011, longitude of the
periapsis 1.57079633 rad, longitude of the ascending node 0.01 rad and inclination 0.01 rad. We
utilized in this example the initial values p  = 7095 km, 1α  = 1.0 rad, and 2α  = 2.0 rad. The graphs
were obtained through the variation of the time spent in the maneuver from 1950 to 2450 s.

5. CONCLUSION

In Figures 1 to 9 it can be verified the behavior of some orbital elements of the transfer orbit
when the time spent in the maneuver is varied.

In Figure 1 it can be observed that the semi-major axis decreases, from the value 7097 km,
when T is 1950 s, and it begins to increase when T is 2250 s. In Figures 2 and 3, that show the
variation of the eccentricity and the inclination, we have a similar behavior. This happens due to the
geometric arrangement of the initial and final orbits. Figures 4, 5 and 6 show respectively, the
variation of the longitude of the ascending node, the variation of the longitude of the periapsis and
the variation of the transfer angle ( if EE −=∆ ). Figure 7 shows the time spent by the satellite in
the initial orbit 1t∆ , from the longitude of the periapsis until the point of the application of the first
impulse, and the time spent in the transfer orbit t∆ . It can be seen that 1t∆  decreases while t∆
increases with  the increase of T.  This was  expected, because as it was seen in Figure 6 the transfer



Fig. 1 – Semi-Major Axis vs. Time

Fig. 3 – Inclination vs. Time

Fig.5 – Periapsis vs. Time

Fig. 7 – 1t∆  and t∆  vs. Time

Fig.2 – Eccentricity vs. Time

Fig. 4 – Ascending Node vs. Time

Fig. 6 – Transfer Angle vs. Time

Fig. 8 –True Anomaly vs. Time



Fig. 9 – Velocity Increment vs. Time

angle∆  increases with the increase of T. The increase of ∆  can also be verified in the Figure 8 that
shows the location of the points of application of the impulses in the transfer orbit. In Figure 9 it is
verified that the total velocity increment decreases with the increase of T, as it was expected due to
the increase of ∆  with the increase of T. When the time T is increased the necessary velocity
increment decreases drastically because in this case the maneuver is accomplished with a larger
transfer angle so that the direction of the impulses approaches the directions of the velocity vector
of the satellite in the initial and final orbits. Thus the fuel consumption becomes smaller. But this is
an academic study. For practical applications we have to consider the limitations of the satellite
propulsion system. Besides that, we should advise that the developed program can not supply the
solution for all combinations of the input parameters. For very small or very large values of the time
spent in the maneuver the solution can not exist, or the numerical algorithms used in the program do
not converge for the solution, because the initial values used can be too far from the solution. So, it
is  recommended  a physical  analysis of  the  problem, that  takes into  account the  geometry of  the
maneuver, to find the range of values for the time, so that it is possible to accomplish the maneuver.
It is important to notice that the software tests all the results, verifying if the maneuver obtained is
just a mathematical solution or if it can really be implemented. When we use numerical methods
there are some solutions, which satisfy the equations, however, in practice, they are impossible.
This happened especially in cases 1 and 3, where some solutions presented negative values of the
eccentricity, 1t∆  and 2t∆ . Concluding, we can verify that these results are very similar to the results
obtained by Rocco (1997) for the coplanar case. Therefore, the cases considering coplanar and non-
coplanar maneuvers, were studied, implemented and tested with success. The simulations showed
that the software developed can be used in real applications and it is capable to generate reliable
results.
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