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ABSTRACT. In the present paper a description of the close approach maneuver is made in the 
three-dimensional space. Analytical equations based in the patched conics approximation are 
derived to calculate the variation in velocity, angular momentum, energy and inclination of the 
spacecraft that performs this maneuver. From the general equations derived it is possible to obtain 
expressions for particular cases, like the planar and the polar maneuver. Several properties are 
derived and demonstrated, like: for the planar maneuver the variation in inclination can have only 
three possible values: 180°, 0º, and -180°; the variation in inclination is symmetric with respect to 
the out of plane angle; a passage by the poles changes only the y-component of the angular 
momentum, keeping the energy and the inclination of the trajectory unchanged. Simulations are 
shown for the Sun-Jupiter system.  
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1. INTRODUCTION 

 
The swing-by maneuver is a very popular technique used to decrease fuel expenditure in space 

missions. The literature shows several applications of the swing-by technique. Some of them can be 
found in Swenson (1992), that studied a mission to Neptune using swing-bys to gain energy to 
accomplish the mission; Weinstein (1992), that made a similar study for a mission to Pluto; 
Farquhar and Dunham (1981), that formulated a mission to study the Earth’s geomagnetic tail; 
Farquhar, Muhonen and Church (1985), Efron, Yeomans, and Schanzle (1985) and Muhonen, 
Davis, and Dunham (1985), that planned the mission ISEE-3/ICE; Flandro (1966), that made the 
first studies for the Voyager mission; Byrnes and D'Amario (1982), that design a mission to flyby 
the comet Halley; D'Amario, Byrnes and Stanford (1981 and 1982) that studied multiple flyby for 
interplanetary missions; Marsh and Howell (1988) and Dunham and Davis (1985) that design 
missions with multiple lunar swing-bys; Prado and Broucke (1994), that studied the effects of the 
atmosphere in a swing-by trajectory; Striepe, and Braun (1991), that used a swing-by in Venus to 
reach Mars; Felipe and Prado (1999), that studied numerically a swing-by in three dimensions, 
including the effects in the inclination; Prado (1996), that considered the possibility of applying an 
impulse during the passage by the periapsis; Prado and Broucke (1995), that classified trajectories 
making a swing-by with the Moon. The most usual approach to study this problem is to divide the 
problem in three phases dominated by the “two-body” celestial mechanics. Other models used to 
study this problem are the circular restricted three-body problem (like in Broucke (1988), Broucke 
and Prado (1993), and Prado (1993)) and the elliptic restricted three-body problem (Prado (1997)). 



  

The goal of this paper is to develop analytical equations for the variations of velocity, energy, 
angular momentum and inclination for a spacecraft that passes close to a celestial body. This 
passage, called swing-by, is assumed to be performed around the secondary body of the system. 
Among the several sets of initial conditions that can be used to identify uniquely one swing-by 
trajectory, the following five variables are used: Vp, the velocity of the spacecraft at periapsis of the 
orbit around the secondary body; two angles (α and β), that specify the direction of the periapsis of 
the trajectory of the spacecraft around M2 in a three-dimensional space; rp the distance from the 
spacecraft to the center of M2 in the moment of the closest approach to M2 (periapsis distance); γ, 
the angle between the velocity vector at periapsis and the intersection between the horizontal plane 
that passes by the periapsis and the plane perpendicular to the periapsis that holds pV

r
.           

Figure 1 shows the sequence for this maneuver and some important variables. It is assumed 
that the system has three bodies: a primary (M1) and a secondary (M2) bodies with finite masses 
that are in circular orbits around their common center of mass and a third body with negligible mass 
(the spacecraft) that has its motion governed by the two other bodies. The spacecraft leaves the 
point A, passes by the point P (the periapsis of the trajectory of the spacecraft in its orbit around 
M2) and goes to the point B. The points A and B are chosen in a such way that the influence of M2 
at those two points can be neglected and, consequently, the energy can be assumed to remain 
constant after B and before A (the system follows the two-body celestial mechanics). The initial 
conditions are clearly identified in Fig.1. The distance rp is not to scale, to make the figure easier to 
understand. The result of this maneuver is a change in velocity, energy, angular momentum and 
inclination in the Keplerian orbit of the spacecraft around the central body.  
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Figure 1 - The Swing-By in Three Dimensions. 

 
 

2. ANALYTICAL EQUATIONS FOR THE SWING-BY IN THREE DIMENSIONS 
 
First, it is calculated the initial conditions with respect to M2 at the periapsis. They are (see Fig. 

1): Position: 
 

αβ= coscosrx pi          (1) 
αβ= sincosry pi          (2) 

β= sinrz pi           (3) 



  

Velocity:  
 

αγ−αβγ−= sincosVcossinsinVV ppxi       (4) 
αγ+αβγ−= coscosVsinsinsinVV ppyi       (5) 

γβ= sincosVV pzi          (6) 
 

During the passage, it is assumed that the two-body celestial mechanics are valid and the whole 
maneuver takes place in the plane defined by the vectors pr

r  and pV
r

. So, the vectors −
∞V
r

 and +
∞V
r

, that 
are velocity vectors before and after the swing-by, respectively, with respect to M2 can be written as 
a linear combination of the versors associated with pr

r  and pV
r

. Using ∞V
r

 to represent both −
∞V
r

 and 
+
∞V
r

, since the conditions are the same for both vectors and a double solution will give the values for 
−
∞V
r

 and +
∞V
r

, we have: 
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Which means that: 
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(8) 

 
With A, B constants that follows the relations: 
 

A2 + B2 = 2V∞ , where ∞V  can be obtained from 
p

2
p

2

r
2VV µ

−=∞ , that represents the conservation 

of energy of the two-body dynamics. A second requirement for ∞V
r

 is that it makes an angle δ  with 

pV
r

, where δ  is half of the total rotation angle described by the velocity vector during the maneuver 

(angle between −
∞V
r

 and +
∞V
r

). This condition can be written as: 
 
 δ=• ∞∞ cosVVVV pp

rr
         (9) 

 
where the dot represents the scalar product between two vectors. 

From the two-body celestial mechanics it is known that: 
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Using the equation for ∞V

r
 as a function of pr

r  and pV
r

, we have: 
 

 δ==•









+=• ∞∞ cosVVBVV

V
V

B
r
r

AVV ppp
p

p

p

p
p

r
rr

rr
                 (11) 

 



  

So, δ= ∞ cosVB , because pp Vr
rr

•  = 0 (at the periapsis pr
r  and pV

r
are perpendicular) and 

2
ppp VVV =•

rr
. 

Then, since A2 + B2 = 2V∞  ⇒  A2 = 2V∞ -B2 = 2V∞  - 2V∞ cos2 δ  = 2V∞ (1-cos2 δ ) = 2V∞ sin2 δ  ⇒  
A = δ± ∞ sinV  

 
From those conditions, we have: 
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For M2, its velocity with respect to an inertial frame ( 2V

r
) is assumed to be: 

 
 )0,V,0(V 22 =

r
                  (14) 

 
 By using vector addition: 
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where iV

r
 and 0V

r
 are the velocity of the spacecraft with respect to the inertial frame before and after 

the swing-by, respectively. 
From those equations, it is possible to obtain expressions for the variations in velocity, energy 

and angular momentum. They are: 
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which implies that: 
 

δ=∆=∆ ∞sinV2VV
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                           (18) 
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For the angular momentum ( C

r
) the results are: 
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Where )0,0,d(R =

r
 is the position vector of M2. 

 
Then: 
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and ( ) 2

1222 sinsincossindV2C β+αβδ=∆ ∞

r
                    (23) 

 

Using the definition of angular velocity 
d

V2=ω  it is possible to get: 

 
EsinsincosVV2C 2Z ∆=δαβ−=∆ω ∞                      (24) 

 
For the inclination, the results are the following: 
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So,   
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So, 
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Where iC

r
 and oC

r
 are the initial and final angular momentum, respectively, ii and io are the initial 

and final inclinations,  respectively, and the subscript Z stands for the z-component of the angular 
momentum. 

The variation in inclination ∆i can be obtained from i0-ii. 
For the planar maneuver (β = γ = 0º), those equations are reduced to the well-known results 

(Broucke, 1988): 
 

δα−=∆ ∞ sinsinVV2E 2                      (31) 
 

δ=∆ ∞ sinV2V                       (32) 
 

δα=∆ ∞ sinsindV2C                      (33) 
 
The equations developed here show that: 

i) There is an important result: ZCE ∆ω=∆ , that for the planar case can be simplified to CE ∆ω=∆ , 
since the total variation of the angular momentum is in the z-direction; 
ii) The variation in energy is the one obtained for the planar case multiplied by the factor cos(β). So, 
the maximum variation occurs for the planar maneuver (β = 0°) and the minimum, that is zero, for the 
polar passages (β = 90°); 
iii) The parameters V2 and V∞ are positive quantities (they are the magnitude of two vectors), as well 
as sin(δ) (because 0 < δ < 90°) and cos(β) (because -90° < β < 90°). Then, the only parameter that 
affects the sign of ∆E is sin(α). The conclusion is that for values of α in the range 0° < α < 180°, ∆E 
is negative (decrease in energy) and for α in the range 180° < α < 360°, ∆E is positive (increase in 
energy). So the final conclusions are: if the swing-by is in front of M2 there is a decrease in the energy 
of M3, with a maximum loss at α = 90° ( V

r
∆  opposite to 2V

r
); if the swing-by is behind M2 there is an 

increase in the energy of M3, with a maximum gain at α = 270° ( V
r

∆  aligned with 2V
r

); 
iv) For the variation of the magnitude of the angular momentum the minima, with value zero, are 
located at β = 0° and α = 0°, 180°, 360°. From those points the magnitude increases with the distance 
from the points. Figure 2 shows this results for the system Sun-Jupiter in the case rp = 0.000137595 
and Vp = 4.0. The range used for α is 180° ≤ α ≤ 360°, because the interval 0° ≤ α ≤ 180°  is 
symmetric; 
v) For the variation in the components of the angular momentum, it is possible to conclude that the x-
component is always zero; the z-component is related to the variation in energy as shown before and it 
has a variation according to cos(β), which implies that the minima are at the poles and the maximum 
occurs for a planar maneuver; the y-component has a variation according to sin(β), which implies that 
the maximum is at β = 90° and the minimum is at β = -90°, with value zero for a planar maneuver; 
vi) The variation in velocity is independent of the angle β, so the equations for the planar maneuver 
are still valid; 
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Figure 2 - Variation in angular momentum for rp = 0.000137595 and Vp = 4.0 (Sun-Jupiter system). 

 
3. ANALYSIS OF THE INCLINATION 

 
An interesting question that appears in this problem is what happens to the inclination of the 

spacecraft due to the close approach. To investigate this fact, the equations that calculate the 
inclination of the trajectories before and after the closest approach are studied in more detail. Figures 
3-6 show results for the variation of the inclination for a series of initial conditions, considering the 
case γ = 0° and for the Sun-Jupiter system. This constraint is assumed, because it is the most usual 
situation in interplanetary research, since the planets have orbits that are almost coplanar. The 
horizontal axis represents the angle α, and the vertical axis represents the angle β. The variation in 
inclination is shown in the contour plots. All the angles are expressed in degrees and the velocities in 
canonical units (one canonical unit of velocity is the velocity of a spacecraft in a circular orbit with 
unitary radius). Those results are very similar to the numerical ones obtained by Prado (2000). 
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Figure 3 - Variation in Inclination for rp = 
0.000137595 and Vp = 4.0. 
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Figure 4 - Variation in Inclination for rp = 

0.000137595 and Vp = 5.0. 
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Figure 5 - Variation in Inclination for rp = 0.000183460 and Vp = 4.0. 
 

The interval of α is 180° < α < 360° because there is a symmetry in the system and the values for 
the variation in inclination in the interval 0° < α < 180° are the same ones for the interval 180° < α < 
360°  with a reversal of sign. So, positive values for the variation in inclination are in the symmetric 
part of the plots (not shown here) and negative values are in the regions shown. Several conclusions 
come from those results. The most interesting ones are: i) when β = 0º (planar maneuver) the variation 
in inclination can have only three possible values: º180± , for a maneuver that reverse the sense of its 
motion, or 0º for a maneuver that does not reverse its motion. Those results agree with the physical-
model, since the fact that β = 0º implies in a planar maneuver that does not allow values for the 
inclination other than 0º or 180º. This is clearly shown in the figures, following the line β = 0º. The 
plots are divided in two parts: one with º180 i ±=∆  and the other one with º0i =∆ ; ii) Looking at any 
vertical line (a line of constant α) it is clear that the change in inclination goes to zero at the poles 

)º90 ( ±=β . This fact can be seen in the analytical equations because the difference in the equations for 
the inclination before and after the swing-by is a reversal in the sign of the terms that are multiplied 
by cos(β). So, if this term is null, there is no variation in the inclination. It is also clear that the 
variation in inclination is symmetric with respect to the angle β (+β and –β generate the same ∆i); iii) 
when α = 0º or α = 180º there is no change in the inclination. This is in agreement with the fact that a 
maneuver with this geometry does not change the trajectory at all. Looking at any horizontal line (a 
line of constant β) it is visible that this curve has a maximum in the magnitude of ∆i somewhere 
between the two fixed zeroes at α = 0º and α = 180º. This result is valid only in the situation γ = 0°. 
This maximum can be calculated by the analytic equations, if necessary; iv) when the periapsis 
distance or the velocity at periapsis increases, the effects of the swing-by in the maneuver are reduced. 
In the plots shown, this can be verified by the fact that the area of the regions where the variation in 
inclination is close to zero increases. This is the reason why the regions full of lines are reduced in the 
figures; v) The same is true when the velocity at periapsis increases. 
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Figure 6 - Variation in Inclination for rp = 0.000275190 and Vp = 4.0. 
 
 
4. CONCLUSIONS 

 
In this paper, analytical equations based in the patched conics approximation were derived to 

calculate the variation in velocity, angular momentum, energy and inclination of a spacecraft that 
performs a swing-by maneuver. Several properties are derived and demonstrated. The most interesting 
ones are: i) for the planar maneuver the variation in inclination can have only three possible values: 
180° and -180°, for a maneuver that reverse the sense of its motion, or 0º for maneuver that does not 
reverse its motion; ; ii) The change in inclination goes close to zero at the poles and it is symmetric 
with respect to the out of plane angle; iii) when α, the angle between the periapsis line and the line 
connecting the two primaries is zero or 180º there is no change in the inclination. This result is valid 
only in the situation γ = 0°. 

After that, the equations are used to solve practical problems in maneuvers that have fixed orbits 
before the swing-by, such as problems of obtained a given inclination after the swing-by. 
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