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Resumo: Flutter é uma instabilidade aeroelástica que decorre da interação entre as forças 
aerodinâmicas, elásticas e inerciais. Devido à natureza destrutiva do flutter, ensaios em 
túnel de vento são considerados um modo mais seguro para a realização de testes 
aeroelásticos. Um sistema composto por uma asa rígida e uma estrutura de suporte flexível 
foi desenvolvido para testes de flutter em túnel de vento, permitindo o estudo do fenômeno, 
de algoritmos para identificação e previsão do flutter. Neste trabalho, o objetivo é a 
aplicação de Redes Neurais para a previsão da velocidade de flutter a partir de dados 
experimentais identificados utilizando o método EERA. Os dados para identificação foram 
obtidos em experimentos realizados em túnel de vento. A previsão visa garantir a 
segurança dos testes em vôo e a melhor definição de um envelope de vôo. Redes Neurais 
são usadas para análise de sistemas dinâmicos não lineares por possuírem vantagens dos 
métodos não-convencionais tais como velocidade de processamento alta e capacidade de 
aprendizagem. Para capturar a dinâmica de sistemas, redes neurais com entradas 
atrasadas são usadas, permitindo a identificação dos sistemas. Devido à sua capacidade 
de aprendizado e seu processamento paralelo as redes mostram-se eficazes quando 
utilizadas para a previsão. 
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1. INTRODUÇÃO 
 

Instabilidades aeroelásticas podem ocorrer em estruturas e superfícies de aeronaves 
como asas e lemes, provocando problemas como fadiga ou falhas estruturais. Um dos 
fenômenos aeroelásticos mais importantes é denominado flutter, uma instabilidade que 
decorre da interação entre as forças aerodinâmicas, elásticas e inerciais e leva a 
movimentos oscilatórios divergentes e em alguns casos destrutivos (Bisplinghoff et al., 
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1955). Testes em túnel de vento são um modo eficiente para o estudo dos fenômenos 
aeroelásticos de estruturas aeronáuticas. Ensaios de flutter em túnel de vento podem ser 
realizados utilizando-se modelos de asas flexíveis, como em Mukhopadhyay (1995), ou 
modelos de asas rígidas acopladas a dispositivos flexíveis como em Ko, Kurdila e Strganac 
(1997) e em Waszak (1998). Modelos de asa flexíveis podem representar mais fielmente 
um problema real de flutter, porém modelos rígidos associados com dispositivos flexíveis 
representam uma alternativa mais segura se considerada a natureza destrutiva do flutter. 

Um sistema composto por uma asa rígida montada em uma estrutura de suporte 
flexível foi desenvolvido para testes de flutter em túnel de vento. Utilizando-se este sistema 
foram realizados ensaios em túnel de vento onde foram obtidas respostas aeroelásticas a 
partir da excitação do sistema através da superfície de controle da asa em diversas 
velocidades até a ocorrência do flutter. Os dados adquiridos nestes ensaios foram usados 
para caracterizar, identificar e prever o flutter. A caracterização foi verificada através de 
Funções de Resposta em Freqüência e a identificação dos parâmetros modais, neste caso, 
freqüências naturais e fatores de amortecimentos, foi realizada utilizando os dados medidos 
no domínio do tempo durante os experimentos. 

Utilizou-se o método EERA - extensão do Algoritmo de Realização de Sistemas - 
para a identificação dos parâmetros de flutter. Os dados obtidos na identificação em várias 
velocidades foram utilizados para o treinamento e generalização de uma Rede Neural para a 
previsão da velocidade de flutter. A previsão da velocidade de flutter visa garantir a 
realização segura de testes em vôo e a melhor definição de um envelope de vôo. 

Cooper & Crowther (1999) apresentaram uma aplicação de redes neurais 
feedforward para previsão de flutter a partir de dados de testes obtidos de um modelo 
aeroelástico simulado. Para treinar a rede foram usados valores de freqüências e 
amortecimentos de dois modos de uma estrutura aeroelástica. Os resultados mostraram-se 
bastante satisfatórios. 

Takahashi (1999) apresentou uma rede neural com múltiplas camadas, treinada com 
o algoritmo backpropagation para detectar o carregamento crítico para ocorrência de flutter 
e as condições-limite na estrutura. Foram apresentados exemplos numéricos para 
demonstrar a capacidade das redes neurais e, através destes, pôde-se concluir que o 
carregamento crítico para a ocorrência de flutter e as condições-limite da estrutura podem 
ser previstos com sucesso através de redes neurais multicamadas. 

Neste contexto, a proposta deste trabalho é apresentar uma investigação sobre 
previsão da velocidade de flutter no sistema descrito acima. A previsão será feita através de 
uma rede neural feedforward com entradas atrasadas, usando uma variação do algoritmo 
backpropagation que utiliza o algoritmo de otimização de Levenberg-Marquardt para 
treiná-la. 
 
2. IDENTIFICAÇÃO COM REDES NEURAIS 
 
2.1 Redes neurais artificiais 
 
 Uma rede neural artificial multicamadas é um sistema de neurônios ligados por 
conexões sinápticas, dividida em neurônios de entrada, que recebem estímulos do meio 
externo, neurônios intermediários ou ocultos e neurônios de saída, que se comunicam com 
o exterior. São sistemas inspirados nos neurônios biológicos e na estrutura paralela do 
cérebro. Isto permite a realização de procura paralela, endereçamento pelo conteúdo, 



capacidade de adquirir, armazenar e utilizar conhecimento experimental. O comportamento 
é determinado pela estrutura dos neurônios, pela estrutura das ligações (topologia da rede) e 
pelos valores das conexões (pesos sinápticos). Redes Neurais têm sido aplicadas em 
reconhecimento de padrões, classificação de padrões, previsão de séries temporais, 
aproximação de funções, controle automático, otimização, etc. 

Um neurônio é a unidade fundamental de processamento de informação de uma 
rede neural (Haykin, 1999), e a Fig. (2.1) mostra o modelo de um neurônio artificial, 
mostrando seus elementos básicos no modelo: 
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Figura 2.1. Modelo não linear de um neurônio (Haykin, 1999). 
 

Com relação à topologia de uma rede, esta pode ter uma ou várias camadas de 
neurônios, pode ser feedforward, ou seja, formada por uma ou mais camada de 
processadores cujo fluxo de dados é sempre em uma única direção, ou recorrente, isto é, 
pode possuir realimentação podendo possuir conexões entre processadores da mesma 
camada e / ou com processadores das camadas anteriores. 

Existem diversos algoritmos para treinar uma rede neural, porém um dos mais 
utilizados é o backpropagation, que segue o paradigma de aprendizagem supervisionada, 
no qual a rede neural deve reproduzir a saída gerada pelo supervisor, para uma determinada 
entrada (Haykin, 1999). 

 
2.2. Identificação com redes neurais artificiais 
 
 Segundo Cruz (1998), as redes neurais artificiais surgem como mais uma ferramenta 
poderosa, permitindo a modelagem dos processos através de identificação, utilizando-se 
apenas de dados de entrada e saída dos mesmos. Além do mais, as redes neurais têm sido 
exploradas para análise e controle de sistemas dinâmicos não lineares, por possuírem 
velocidade de processamento razoavelmente alta comparada a outros métodos 
convencionais e capacidade de aprendizagem que se aproximam do desempenho humano. 

Foram Narendra and Parthasarathy (1990) que colocaram de forma clara a 
aplicabilidade de redes neurais multicamadas à identificação e posterior controle de 
dinâmicas não lineares. 

Souza et al. (2002) abordaram a identificação de batimento em torção numa pá de 
helicóptero utilizando uma rede feedforward com atrasos no tempo. A identificação foi 
bastante satisfatória. Depois de devidamente treinada, a rede neural forneceu aproximações 



satisfatórias para as duas saídas desejadas que foram torção e batimento na ponta da pá. 
Para verificar a eficiência da rede, foram feitos alguns testes de generalização. 
3. EXPERIMENTO 
 
3.1 Aparato Experimental 
 

O dispositivo flexível desenvolvido é um sistema de dois graus de liberdade. Assim, 
nos ensaios em túnel de vento, o flutter clássico que é caracterizado pela combinação dos 
modos de flexão e torção foi obtido. Uma representação do sistema para ensaio de flutter, 
composto pela asa rígida acoplada ao dispositivo flexível, é apresentado na Fig. (3.1). Este 
dispositivo flexível consiste de uma placa superior apoiada a um sistema de quatro eixos 
circulares e uma barra central. As características elásticas são dadas pelos eixos e pela barra 
central e a asa rígida fixada na placa superior oscilará em flexão e torção quando ocorrer o 
flutter. O material da asa rígida é alumínio e da estrutura de suporte flexível é aço. As 
dimensões são dadas por: eixos 0.005 m de diâmetro; placa superior 0.6*0.3 m; barra 
central 0.7*0.1*0.002 m e a asa 0.8*0.45 m. O perfil da asa é NACA0012.  

 

 
Figura 3.1. Representação do sistema para ensaio de flutter no túnel de vento. 

 
Informações Complementares sobre esta estrutura podem ser obtidos em De Marqui 

Jr. et al. (2003). 
 

3.2 Instrumentação 
 

Após a definição do aparato experimental iniciaram-se os testes em túnel de vento. 
Na câmara de ensaios do túnel construiu-se uma base com perfis de aço na qual o 
dispositivo flexível foi engastado, atentando-se para o fato que deformações em sua 
estrutura não influenciassem nas medições durante os experimentos. A Figura (3.2.1) 
mostra o experimento montado no túnel. 

O sistema de aquisição e processamento de sinais foram desenvolvidos utilizando-se 
um sistema dSPACE  com uma placa processadora DS1103 equipada com um 
processador PowerPc de 400 Mhz e 128 mbytes de memória RAM. O sistema permite 



operações simultâneas de I/O (entrada/saída) com 4 conversores A/D; 12 unidades de saída 
com 2 conversores D/A e 6 interfaces para encoders. A programação deste sistema pode ser 
feita no ambiente MATLAB/Simulink . Sua compilação é realizada no MATLAB 
utilizando-se seu pacote RTW (Real Time Workshop). A programação visual do 
experimento é desenvolvida no programa ControlDesk da dSPACE. 

 

 
Figura 3.2.1. Foto da montagem do experimento no túnel de vento. 

  
A velocidade de deslocamento horizontal, velocidade angular, deslocamento 

horizontal e ângulo foram definidos como os sinais a serem medidos. Os deslocamentos 
foram medidos utilizando-se extensômetros instalados na barra central do dispositivo 
flexível e associados a um amplificador HBM MGCPlus. Para a medida dos deslocamentos 
horizontais utilizou-se um extensômetro Kiowa modelo KFG-5120C123 e para os 
deslocamentos angulares um extensômetro Kiowa modelo KFC-2D211. 
 Para a medida da velocidade horizontal, ou velocidade em plunge, utilizou-se um 
acelerômetro Kistler KBeam modelo 8303A10M4 associado ao condicionador de sinais 
Kistler 5210. Na medida da velocidade angular, ou velocidade em pitch, utilizou-se dois 
acelerômetros Kistler KBeam 8304B10 associados a condicionadores de sinais Kistler 
1572. A filtragem dos sinais dos acelerômetros foi realizada utilizando-se um 
condicionador B&K Nexus Deltatron de 4 canais. Os acelerômetros foram instalados na 
placa superior do sistema flexível. 
 Outro sinal a ser medido é a posição da superfície de controle da asa. A superfície 
de controle foi acionada com um motor elétrico e sua posição medida com a leitura de um 
encoder de 1000 linhas instalado no motor. Logo cada linha do encoder correspondia a 0.36 
graus de deslocamento da superfície de controle.  

A velocidade do fluxo do túnel de vento foi medida com um Pitot instalado na 
câmara de ensaio associado a um manômetro Betz. Também foram medidas a temperatura e 
pressão ambiente para o cálculo da velocidade do fluxo do túnel. Ressalta-se que o túnel de 
vento utilizado possui velocidade máxima de 50 m/s e câmara de ensaio de 2 m2. 
 
3.3 Ensaio Experimental 
 

A verificação experimental da velocidade de flutter foi realizada aumentando-se a 
velocidade do túnel de vento gradativamente e com pequenos incrementos de velocidade 



até que a oscilação divergente e auto-sustentada do flutter fosse observada na velocidade de 
25 m/s. 

A taxa de aquisição utilizada neste experimento foi de 0.001 segundos e os dados 
eram salvos a cada 0.01 segundos. 

Para a caracterização do flutter realizaram-se testes em túnel do vento em diversas 
velocidades, obtendo-se as respostas no domínio do tempo com o sistema dSPACE e as 
respectivas Funções Resposta em Freqüência - FRF, utilizando analisador espectral B&K 
modelo 2032. Foram definidas as velocidades de 10, 15, 20, 23 e 25 m/s para estes testes. 
Estes ensaios consistiram no uso da superfície de controle para excitar o sistema (entrada 
das FRFs) e a medição das respostas através dos acelerômetros (saída da FRFs) e dos 
extensômetros. As FRFs foram obtidas para caracterizar o flutter e os dados no domínio do 
tempo foram utilizados para se obter os parâmetros modais e assim identificar o fenômeno 
do flutter. 
 O sinal utilizado para a excitação do sistema através da superfície de controle foi 
um “ruído branco” com uma faixa de freqüência de excitação entre 0.5 e 3 Hz. Na Figura 
(3.3.1) observa-se um trecho do sinal enviado ao motor e medido com o encoder.  
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Figura 3.3.1. Exemplo de entrada tipo ruído aplicada ao sistema. 

 
 A Figura (3.3.2) apresenta os sinais de resposta, ou saída, medidos com os 
extensômetros de flexão e de torção.  
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Figura 3.3.2. Resposta ao ruído medida no sistema. 

 



 Na Figura (3.3.3) a seguir mostram-se todas as funções resposta em freqüência 
obtidas em diversas velocidades para a caracterização do flutter. Estas curvas permitem a 
visualização da evolução dos modos envolvidos no flutter. Ficam claros tanto o 
deslocamento dos picos quanto a variação de sua forma, indicando a ação do fluxo no 
aumento do amortecimento do sistema. 
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Figura 3.3.3. Evolução dos modos de flexão e torção. 

 
4. Identificação e previsão do flutter 
 

Para realizar a previsão da velocidade de flutter, foi necessário o conhecimento 
prévio dos parâmetros modais, freqüências naturais e amortecimentos, dos modos de flexão 
e torção envolvidos no flutter, em cada velocidade usada para a realização do experimento 
anteriormente descrito. Foi usado o método de identificação EERA para determinar estes 
parâmetros modais. Este é um método de identificação de subespaço que calcula os 
parâmetros modais manipulando os dados de entrada e saída obtidos no tempo, sendo 
necessário o conhecimento dos dados de excitação do sistema. Os matrizes blocos de 
Hankel de entrada e saída são obtidas diretamente dos dados obtidos no tempo. 

Para a identificação através do método EERA foi utilizado como entrada o sinal 
medido pelo encolder e como saída o sinal dos extensômetros instalados no dispositivo 
flexível. 

Foram usados para treinar a rede os valores dos parâmetros modais dos modos 
envolvidos no flutter identificados pelo método EERA para as velocidades dos testes em 
túnel anteriormente definidas. Foi usada como entrada para a rede as freqüências dos dois 
modos e como vetor objetivo valores correspondentes dos amortecimentos, para as 
velocidades determinadas durante o ensaio experimental. O objetivo era que a rede 
conseguisse prever os valores de amortecimento para cada um dos modos a um valor de 
velocidade à frente da velocidade atual. 



A arquitetura de rede escolhida depois de alguns testes foi a seguinte: uma camada 
com 10 neurônios para receber os sinais de impulso (entradas da rede); uma camada 
intermediária com 5 neurônios e uma camada na saída com 2 neurônios. Segundo Haykin, 
(1999) apenas uma camada intermediária é suficiente para aproximar uma função contínua 
de qualquer grau. Foram fornecidas como entradas para a rede, valores de frequência na 
velocidade corrente, valores de frequência numa velocidade anterior e os respectivos 
valores de amortecimento para estas frequências em função da velocidade. O objetivo era 
treinar a rede neural para esta prever o valor de amortecimento correspondente à freqüência 
na velocidade atual. Portanto, a informação específica do problema foi cedida através dos 
exemplos, ou seja, pares de entrada-saída usados para treinar a rede. 

O algoritmo de treinamento usado foi o Backpropagation com a técnica de 
otimização de Levemberg-Marquardt e foi utilizado o software Matlab. 

A Figura (4.1) abaixo mostra os resultados da previsão, considerando-se que a rede 
foi treinada com valores até a velocidade 22 m/s e generalizada a partir desta última 
velocidade de treinamento até a velocidade de flutter. Pôde-se observar que a rede capturou 
a dinâmica do problema, entendendo que o amortecimento para o modo de torção tendeu a 
ficar negativo, fato este que caracteriza o flutter. 

 

 
 

Figura 4.1. Resultados apresentados pela rede neural. 



 
5. CONCLUSÕES 
 
 O sistema desenvolvido para os ensaios possibilitou a obtenção do flutter e 
possibilita a realização de pesquisas em diferentes áreas inerentes a Aeroelasticidade. A 
previsão da velocidade de flutter usando redes neurais é uma dessas aplicações.  

Mesmo sendo este um caso simplificado pode se afirmar que as redes neurais 
mostraram um bom desempenho na previsão da velocidade de flutter através da previsão da 
evolução do amortecimento dos modos envolvidos no flutter na região próxima a 
velocidade crítica. Fornecido um conjunto de 3 valores de velocidades com respectivos 
valores de amortecimentos para os modos de flexão e torção, a rede realizou corretamente a 
previsão do 4º valor de amortecimento.  

Define-se como objetivo futuro o treinamento e previsão on-line da velocidade de 
flutter durante os experimentos. 
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Abstract. Flutter is an aeroelastic instability that results from the interaction of 
aerodynamic, elastic and inertial forces. Considering the destructive behaviour of flutter, 
wind tunnel tests are an important way to the development of experimental aeroelastic 
tests. A system composed by a rigid wing and a flexible structure has been to obtain classic 
flutter phenomenon in wind tunnel tests. This experimental system allows the study of 
flutter phenomenon and the development of flutter identification algorithms and prediction. 
In this work, the main objective is the application of Neural Networks to predict critical 
flutter velocity using experimental data identified with the EERA method. The data used in 
the identification were obtained during wind tunnel experiments. The prediction seeks to 
guarantee the safety of flight tests and the definition of flight envelope. Neural Networks 
are used to the analysis of non-linear dynamic systems because they have the advantages of 
the non-conventional methods, high processing speed and learning capacity. In general, 
neural networks with late entrances are used to the identification the dynamics of systems. 
They are effective when used for the forecast due to its learning capacity and parallel 
processing characteristic. 
 
Keywords. Identificacion, Flutter, neural networks, velocity prediction. 
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