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Abstract. The study of aerodynamic modeling methods in transonic flow regimes has a great
importance to the aeronautical engineering. Nonlinear features due to compressibility effects
and shock waves appearance represent a major challenge on the treatment of transonic aerody-
namics. Such nonlinear effects present a great influence on aerodynamic performance, as well
as they are responsable for harmful aeroelastic response phenomena in aircraft. Equations for
transonic flows can be obtained from the basic fluid mechanic theory. However, only numerical
methods are able to attain practical solutions for those set of partial differential equations in
the present moment. For the specific case of treating transonic flow problems the nonlinear Eu-
ler equations provide an appropriate set of partial differential equations to capture nonlinear
effects of typical compressible flows, despite of not accounting for viscous flows effects. The
aim of this work is to develop a computational routine to the numerical solution of transonic
flows around airfoils. A finite difference C-type structured mesh has been used to discretize the
flow around a NACA0012 airfoil. The methodology for numerical solution has been based on
the explicit MacCormack method of second order in time and space. Artificial dissipation with
nonlinear coefficients has incorporated to the method. The steady transonic flow around the
NACA0012 airfoil numerical solution is assessed and the main flow properties are presented.
Shock waves structure can also be observed by means of the Mach number contours around
the airfoil. Pressure distributions on upper and lower surfaces for different flow conditions are
also shown, thereby allowing the observation of the abrupt pressure change effects due to shock
waves. The present work results match well with the solutions obtained in other computational
codes used for the same problem that are presented in the literature.
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1. INTRODUCTION

The problems associated with compressibility effects on high performance aircraft have
contributed significantly to increase the difficulties in aeronautical design. A flow regime in
which compressibility effects introduce a great deal of difficulties is the transonic one. Major
challenge on the treatment of transonic flows is due to nonlinear behavior. The dominant source
of nonlinearity corresponds to the formation of shock waves and, for many cases, viscous effects
can be neglected.

The Euler equations have been used for the representation of transonic flows to capture
mixed flow effect (subsonic and supersonic) and the consequent shock waves formation. The
mathematical theory for equations of this kind is still not developed to allow the attainment of
analytical solutions in arbitrary regions and general boundary conditions. The most appropriate
alternative is to apply a numerical method. The major current effort in computational methods
for aerodynamics is the development of tools using methods of Computational Fluids Dynamics
(CFD) (Anderson, 1995, Hirsch, 1988a, Hirsch, 1988b, Fletcher, 1992a, Fletcher, 1992b).

The interest in CFD for aeronautical applications is to acquire trustworthy and practical
solutions of aerodynamic models. Great advances are already being reached and applications
of CFD in the aeronautical industry start to be more usual.

The solution of the Euler equations for CFD methods has been proposed for a significant
number of researchers (Nixon, 1989, Anderson, 1995). Shock waves formation and consequent
associated nonlinear behavior can be successfully treated by CFD methods. Another field in
which CFD methods present increasing interest is in the treatment of aeroelastic problems (Bis-
plinghoff, 1996). The so-called computational aeroelasticity (Bennett and Edwards, 1998) is
a term that defines a field of aeroelasticity theory that relates the integration of computational
tools for solving aeroelastic problems in general. The current trend in the use of CFD meth-
ods enables unsteady aerodynamic modeling, while the finite element methods have been the
most appropriate to represent structural-dynamics problems. Therefore, a typical computational
aeroelasticity model comprises the coupling of structural-dynamics and unsteady aerodynamic
models.

In this work the first step towards the development of aerodynamic models to apply in
aeroelasticity (Camilo, 2003) is presented. In the context of steady aerodynamic modeling
methods for the transonic flow regime, the aim of this work is to implement a CFD method
for the numerical solution of the nonlinear Euler equations. The model will serve to ensure
that the main steady transonic flow phenomena will be captured. Then, futher developments
in unsteady transonic aerodynamic modeling can be attained for aeroelastic analysis. The CFD
method has been based on the explicit MacCormack method of second order in time and space
with artificial dissipation added to the method (Hirsch, 1988b). A finite difference C-type mesh
is used to discretize the flow field around a NACA 0012 (NACA - National Adivisory Comittee
of Aeronautics) airfoil. A complete analysis of the nonlinear flow phenomena is presented.

2. EQUATIONS FOR TWO-DIMENSIONAL COMPRESSIBLE INVISCID FLOWS
IN TRANSFORMED COORDINATES

For non-uniform or curvilinear meshes the discretization of the equation can be performed
after a transformation from the physical space
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relations between the two spaces are defined through the coordinate transformation formulas.
These transformation represent a mapping from the physical space to the computational space.
Therefore, the Euler equations can be written in curvilinear coordinates (Nixon, 1989).

The conservative formulation of the nonlinear Euler equations in transformed coordinate



system can be written as:����� ��� ����� ��� �	�
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denotes the vector of conservative variables,
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denote the convective fluxes,
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where � and � are the two components of the cartesian velocity, �8� the specific total energy,
(

the pressure, � is the jacobian defined by:
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and $ and 1 are the contravariant velocities given by:$ � � � � ��& � � �'+ � � 1 � 
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3. NUMERICAL SOLUTION OF THE EULER EQUATIONS

3.1 General Description of the Explicit Method

The second-order explicit MacCormack method is derived from the basic explicit Lax-
Wendroff scheme (Hirsch, 1988b). They can be interpreted as space-centred discretizations,
first-order discretization in the time and an additional dissipative term to guarantee second-
order accuracy.

3.2 Explicit MacCormack Scheme with Artificial Dissipation

MacCormack’s scheme combines forward and backward differences in the space discretiza-
tion with predictor and corrector steps. The artificial dissipation terms are generally added into
both predictor and corrector steps (Hirsch, 1988b), that is:
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The solution for the time P �RQ is given by:
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Jameson et al. (1981) and Pulliam (1986) have suggested the construction of a dissipative
operator with the following form:
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where the dissipative fluxes are defined by:

T CJI VW D E ��� C)I VW D E � T������C)I�VW D E - T��
	��C)I�VW D E
� � (9)

where

� CJI�VW D E � QS ��� CJI � D E �����CJI � D E � � C,D E �����C7D E � � (10)

with � C7D E ��� $ �'����� � �& � � �+ ��� 1 �'����� 
 �& � 
 �+ ? (11)

The use of second and fourth differences operators also follows the ideas of Pulliam (1986)
for the control of the nonlinear instability, and they are given by:
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where � � and � 	 are real parameters.

4. SOLUTION OF THE STEADY TRANSONIC FLOWS AROUND AN AIRFOIL

A C-type structured grid has been used around the airfoil. The Figure 1 presents an illus-
tration of the mesh closer to the airfoil. For all calculations, the initial conditions have been
especified with the freestream values.

Figure 1: C-type structured mesh closer to the NACA0012 airfoil .



4.1 Boundary Conditions

External boundaries have the limits located far enough from the main flow region, so that
the influence of the flow disturbances does not affect the freestream values. Therefore the inlet
and outlet boundaries are specified with freestream values.

Airfoil boundaries must be specified as solid wall boundary conditions. Considering the
contravariant velocities $ and 1 given by Eqs. (4), the following expressions for the Cartesian
velocity in the solid wall (Hirsch, 1988b) are attained :
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where
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and

4+

are the normal vector components to the boundary surface and the subscript
�

indicates that the variable is at solid boundary.
The density and pressure are approached by zero-order extrapolation methods:��� � � � � (19)( � � ( � ? (20)

4.2 Steady Transonic flow around the NACA0012 Airfoil

The results obtained here are compared with the data presented by Oliveira (1993). Lift
and drag coefficients, the Mach number contours and pressure distributions on upper and lower
surfaces of the NACA0012 airfoil have been presented. Four cases in which different incidence
angle and Mach number have been considered. Table 1 presents the values used in each case.

For the numerical solution the CFL number was equal to 0.9 and the artificial dissipation
parameters were: � � � �	 and � 	 � ��	�
� .

Table 1: Parameters used in the cases for the flow solution around the NACA0012 airfoils.
Case 1 Case 2 Case 3 Case 4�
�
0,63 0,8 0,8 0,85� (degrees) 2 0 1,25 1

Table 2 presents a comparison between the lift and drag coefficients obtained with the
present methodology and with the ones extracted from Oliveira (1993).

Figures 2 to 5 show the Mach number contours revealing the mixing condition of the sub-
sonic and supersonic flow around of the airfoil. In the case 1 the airfoil is exposed to a condition
of relatively low Mach number, where the shock wave structure can not be observed. In the other
cases (2 to 4) the influence of the Mach number is clear in the formation of the shock wave.

Figures 6 to 9 present the pressure distributions around of the NACA0012 airfoil for the
cases presented in Tab.1. The results are also compared with the ones obtained by Kroll and
Jain (1987). Kroll and Jain (1987) have used finite volume methods to the numerical solution
of the Euler equations.



Table 2: Aerodynamic coefficients for the NACA0012 airfoil. (Pres.- Present work; Ref.-
Oliveira (1993))

Case 1 Case 2 Case 3 Case 4

Pres. Ref. Pres. Ref. Pres. Ref. Pres. Ref.��� ' � � S���S ' � � S���� ' � ' ' ' ' ' � ' ' S ' ' �$� �	��
 ' � � � '	� ' �$��
	� � ' � � �����
��
 ' � ' ' ��� ' � ' ' � � ' � ' Q '	� ' � ' Q ' � ' �$' S	� � ' � ' S � � ' �$' ��S 
 ' � ' � 
 �

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M∞ = 0,63, α = 2°

Figure 2: Mach number contours around of the NACA0012 airfoil for the case 1 conditions.
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Figure 3: Mach number contours around of the NACA0012 airfoil for the case 2 conditions.
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Figure 4: Mach number contours around of the NACA0012 airfoil for the case 3 conditions.
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Figure 5: Mach number contours around of the NACA0012 airfoil for the case 4 conditions.
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Figure 6: Pressure distributions for the NACA0012 airfoil, case 1. Solid lines - results of the present
work; � - extracted from the Oliveira (1993); � - extracted from the Kroll and Jain (1987).
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Figure 7: Pressure distributions for the NACA0012 airfoil, case 2. Solid lines - results of the present
work; � - extracted from the Oliveira (1993); � - extracted from the Kroll and Jain (1987).
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Figure 8: Pressure distributions for the NACA0012 airfoil, case 3. Solid lines - results of the present
work; � - extracted from the Oliveira (1993); � - extracted from the Kroll and Jain (1987).
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Figure 9: Pressure distributions for the NACA0012 airfoil, case 4. Solid lines - results of the present
work; � - extracted from the Oliveira (1993); � - extracted from the Kroll and Jain (1987).

5. CONCLUSIONS

This work has presented the implementation of the explicit MacCormack method, with ad-
dition of artificial dissipation with nonlinear coefficients, for the solution of the two dimensional
nonlinear steady Euler equations. The procedure aims to be the first steps towards the develop-
ment of models for computational aeroelasticity. Four cases have been considered, where the
Mach number and incidence angle varied inside of a range that guarantees no flow separation.
The analysis of the results have been based on the Mach number contours for the discretized
field, the respective steady pressure distributions and aerodynamic coefficients calculation. The



formation of shock waves in agreement with the expected physical effect in compressible flows
have been observed. All the cases agree well with the solution obtained in other computational
codes presented in the literature that have been used for the same problem. For continuity of
the work the solution of the unsteady Euler equations in transonic flow can be based on the
prescribed oscillatory movements for a airfoil one. The development of this method can lead
to future implementation of algorithms for simultaneous solution of the aerodynamic and struc-
tural dynamics equations in the context of the computational aeroelasticity.
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