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Resumo. O satélite investigado neste trabalho é constituido de um corpo principal e um painel solar
flexivel. O modelo matematico leva em considerag¢do nao-linearidades relacionadas aos termos de
Coriolis e centripetos decorrentes da dinamica do satélite enquanto este realiza orbita circular em
torno da Terra. As equagoes de Lagrange sdo utilizadas para a obten¢do das equagoes governantes do
movimento. Essas equagoes sdo integradas numericamente utilizando-se o integrador Runge-Kutta de
4* ordem. Um motor de corrente continua (atuador) é utilizado para a abertura do painel. Duas
abordagens diferentes sdo utilizadas na modelagem da intera¢do do atuador com o painel solar: na
primeira, o motor é tratado como fonte de poténcia ilimitada (ou ideal) e na segunda, como fonte de
poténcia limitada (ou ndo ideal). A segunda abordagem ¢ mais realista.
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1. INTRODUCAO

Um satélite, durante o lancamento, deve ter uma configuragdo compacta, devido a limitagdo de
espaco no veiculo langador. Portanto, dispositivos como hastes, painéis solares, antenas devem ser
abertas somente em Orbita.

O painel solar ¢ a principal fonte de captacdo de energia de um satélite. Ao ser modelado, pode ser
considerado rigido ou flexivel. E constituido por um ou por varios segmentos planos dobrados uns
sobre os outros. O impulso necessario para a abertura pode ser gerado por meio de molas do tipo
espiral ou pelo uso de um motor de corrente continua (Porro, 2002).

O conhecimento acerca da atitude de um satélite ¢ muito importante para a defini¢do de acdes de
controle (Roberson, 1979). Se o veiculo langador ¢ previamente estabilizado (como o veiculo Longa
Marcha 4B, usado para o langamento dos satélites CBERS-1 e CBERS-2), as a¢des de controle sdao
mais faceis de serem aplicadas, pois o satélite ¢ lancado com os angulos de atitude previamente
conhecidos e proximos dos desejados.
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Durante a fase de abertura dos apéndices (antenas, painéis,...), os angulos de atitude serdo
perturbados (Thomson e Reiter, 1960; Meirovitch and Calico, 1972; Wie, 1998). As equagdes
governantes sdo integradas numericamente e verifica-se a influéncia da abertura dos apéndices sobre a
atitude do satélite (Wie, 1986; Porro, 2002). O comportamento dindmico geral investigado, devido a
suas caracteristicas peculiares, pode ser divido em trés fases distintas (Porro, 2002; Fenili, 2003)

Fase 1 - corregdo e estabilizacdo da atitude: ocorre antes do acionamento do motor responsavel pela
abertura do painel e varia de 0 s a 50 s. No intervalo entre 0 s ¢ 10 s é fornecido torque ao satélite com
a finalidade de produzir correcdo da atitude;

Fase 2 - abertura do painel; inicia-se em 50 s e vai até o instante em que o painel encontra-se
totalmente aberto (e que dependera da excitagdo nos terminais do motor).

Fase 3 — a partir do instante em que o painel encontra-se totalmente aberto.

Considera-se, neste trabalho, que o painel solar seja flexivel e que desenvolva pequenas deflexdes.
No entanto, ao invés de enveredar-se pela teoria do continuo, a flexibilidade do painel solar ¢ modelada
aqui através de uma mola torsional conectada a um corpo rigido. Em outras palavras, a deflexdo
transversal do painel solar ¢ substituida pela deflexdo de uma mola torsional.

A orbita descrita pelo satélite ¢ considerada circular e, portanto, a energia potencial gravitacional
ndo influencia a dinamica estudada. O movimento investigado ocorre totalmente no plano da orbita da
Terra. O sistema de referéncia inercial estd localizado no centro da Terra. Todos os termos nao-lineares
associados aos efeitos de Coriolis e centripetos sdo considerados. Nao se considera nenhum tipo de
controle de atitude neste trabalho.

A Fig. (1) apresenta o modelo geométrico do satélite investigado.

Moter DC
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Painel
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Principal
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Figura 1. Modelo do satélite.

Dois tipos diferentes de abordagem podem ser utilizados na modelagem matematica da interacdao
atuador-estrutura. A saber: ideal e ndo ideal (Kononenko,1969).

Na abordagem ideal, a fonte de poténcia (motor DC, por exemplo) ¢ considerada ilimitada. O
atuador atua sobre a estrutura (painel solar, neste trabalho), modificando sua dindmica. No entanto, a
dindmica da estrutura ndo influencia a dindmica do motor. Nesse caso, a excitacdo ¢ fungdo apenas do
tempo e seu perfil pode ser prescrito.

Na abordagem ndo ideal, a fonte de poténcia ¢ considerada limitada. De acordo com esse modelo, a
dindmica do atuador ¢ influenciada pela dindmica da estrutura. Assim sendo, o perfil da excitagdo
depende tanto do tempo quanto da dindmica desconhecida da estrutura, ndo podendo, portanto, ser
prescrita. Nesse caso, as equagdes governantes do atuador e as equacdes governantes da estrutura sdo
dependentes uma da outra e devem ser integradas ao mesmo tempo.

2. EQUACOES GOVERNANTES DO MOVIMENTO

A Fig (2) apresenta os sistemas de coordenadas utilizadas neste trabalho. A Tabela (1) discrimina
todas as coordenadas generalizadas consideradas neste trabalho.



Tabela 1. Coordenadas generalizadas: nomenclatura.

Simbolo Descri¢ao
0, Posicdo angular do corpo principal do satélite em relacdo ao
sistema de referéncia inercial, X; Y;

0, Posi¢do angular final do painel solar (0, - 65 = deflexao)

0; Posicao angular do eixo do motor em relagdo ao sistema de
referéncia local XY
o Angulo de atitude do satélite em relacdo ao sistema de referéncia

inercial, X; Y;

Figura 2. Sistemas de referéncia.

Na figura 2, a deflexdo do painel ¢ dada por&, —65.

A energia potencial armazenada no satélite ¢ do tipo eldstica. Essa energia est4 associada a deflexao
do painel solar e ¢ dada por:

1 2
V =—kmota (6, = 03)
2 (1)
A energia cinética armazenada no satélite ¢ dada por:
T=T P
corpo principal painel )
onde:
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onde my, representa a massa do corpo principal do satélite, m,.; representa a massa do painel, I,
representa a matriz de inércia do corpo principal do satélite em relagdo aos eixos principais cuja origem
situa-se no centro de massa do mesmo € /,4ne; Tepresenta a matriz de inércia do painel em relagdo aos
eixos principais cuja origem situa-se no centro de massa do mesmo

Nas Eq. (3) e Eq. (4):
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As equagdes governantes do movimento sdo obtidas substituindo as expressdes (1) e (2) nas
equagdes de Lagrange,
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A Eq. (11) representa a equacdo governante do movimento para a varidvel tetal, a Eq. (12)
representa a equagdo governante do movimento para a variavel teta2 e a Eq. (13) representa a equagao
governante do movimento para a variavel alfal.

Os coeficientes all, al2, al3, a21, a22, a23, a31, a32, a33 estio associados a matriz de massa do
sistema completo, os coeficientes cl1, c12, ¢21, ¢22, c31, ¢32 estdo associados aos termos centripetos e
os coeficientes c13, c14, c15, ¢23, ¢33, ¢34 estdo associados aos termos de Coriolis. As expressdes para
cada um desses coeficientes encontram-se no Apéndice.

3. AMODELAGEM DA FONTE DE POTENCIA LIMITADA

O balango de tensao elétrica (diferenga de potencial) em um motor de corrente continua controlado
por armadura pode ser representado, de acordo com a Lei de Kirchoff, por:

di ] .
L, 7:’+Raza +kpOotor =U (14)

A somatoéria dos torques em relagdo ao eixo do motor fornece a equacao mecanica do motor de
corrente continua controlado por armadura, representada por:

Tm= ktia —Cm emotor - Imotor émotor (15)

Na Tab. (2), encontram-se os valores dos coeficientes das Eq. (14) e Eq. (15).

A opgao por uma abordagem de sistema dinamico ideal ou por uma abordagem de sistema dindmico
ndo-ideal (Kononenko, 1969) envolve consideragdes feitas na modelagem matematica com relagdo a
representacao do torque 7, que indicara o acoplamento (ou nao) entre motor e a estrutura. Esse torque
¢ dado por:

Tm :kmola (02 _‘93)ﬁ (16)

onde B € um parametro regulador (ou seja, se f=1 obtém-se a condi¢do necessaria para o sistema nao
ideal e se f =0 obtém-se a condi¢do necessaria para o sistema ideal).

Tabela 2. Especifica¢des técnicas do motor

Descricdo Simbolo Unidade Valor
Tensdo de armadura U \Y 1.500
Resisténcia da armadura R, Q 1.100
Indutancia do motor | H 2.300 107
Constante FEM ks V.s/rad 5.530 10
Constante de torque do motor | k; N.m/A 5.518 10~
Atrito interno ao motor Cm N.m s/rad 6.752 10°°
Inércia do motor Linotor Kg m’ 3.890 107
Massa do motor M kg 5.800




4. SIMULACOES NUMERICAS

As simulagdes numéricas foram realizadas considerando-se dois valores para a constante de rigidez
da mola (aqui representando a flexibilidade do painel solar). Para cada uma dessas situacdes foram
considerados o caso ideal e o caso ndo-ideal. As trés fases citadas anteriormente sdo especificadas da
seguinte maneira:

A primeira fase (correcdo da atitude) ocorre de 0 s a 10 s.

A segunda fase (abertura do painel) ocorre de 50 s a 90 s.

A terceira fase (ap6s a abertura do painel) ocorre de 90 s a 150 s.

Nas simulagdes realizadas, observa-se que o deslocamento angular (orbital) do satélite, 8;, ndo
excedeu 10° e a dinAmica da abertura do painel teve pouca influéncia neste comportamento.

A Fig. (3) mostra o perfil de tensdo prescrito aplicado aos terminais do motor e o perfil de torque
prescrito aplicado ao corpo principal do satélite com o intuito de corrigir a atitude antes do

acionamento do motor. Essa correcdo se faz por meio de jatos localizados no corpo principal do
satélite.
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Figura 3. Perfis de tensdo elétrica aplicada ao motor e de torque aplicado ao corpo principal do satélite

A Fig. (4) mostra o comportamento temporal do angulo de atitude do satélite.

Figura (5) mostra o comportamento temporal da posi¢do angular do eixo do motor. Quando se
considera a abordagem nao-ideal, esta posicdo varia mais rapidamente do que quando se considera a
abordagem ideal. Na primeira abordagem, ap6s a abertura do painel, o eixo do motor continuara
recebendo alguma energia proveniente da vibracdo do painel (essa energia associada a deflexdo do
painel), conforme mostra a figura (regido ampliada).
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Figura 5 Posi¢ao angular do eixo do motor.



A Fig. (6) mostra a diferenca entre a posi¢ao angular do eixo do motor e a posi¢do final do painel,
ou seja, a deflex@o do painel (da mola).

Quando se considera a abordagem ideal, a amplitude e a freqiiéncia de vibragdo do painel sdo
maiores que para o caso nao ideal. Em outras palavras, o painel pode ser comparado neste caso com
uma viga engastada em uma superficie muito rigida. Na abordagem nao-ideal, a interagdo entre o
atuador e a estrutura garante que a energia acumulada no painel seja absorvida pelo atuador,
diminuindo a amplitude e a freqiiéncia da vibragdo (em relagdo ao sistema ideal).
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Figura 6. Deflex@o do painel.

5. CONCLUSOES

O deslocamento angular do satélite, 6, associado a seu movimento orbital, ndo sofreu significativa
influéncia da dinamica da abertura do painel (segundo os parametros considerados).

Observou-se que a freqiiéncia e a amplitude de vibracdo do painel para o caso ideal sdo maiores que
essas mesmas quantidades para o caso nao ideal, sob as mesmas condigdes.

Para o sistema nao ideal, o comportamento dindmico do painel afeta o comportamento dindmico do
motor, fazendo com que o deslocamento angular do eixo do motor atinja a posi¢do desejada (para a
abertura do painel) mais rapidamente do que para o caso ideal, aonde o motor ndo sofre qualquer
influéncia da dinamica do painel. Os resultados para €, e suas derivadas mostrados aqui para o caso
ideal apresentam apenas o comportamento dindmico do motor como sistema independente
(desacoplado do painel).
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Abstract. The satellite investigated in this work is composed by two parts: a main body and a flexible
solar panel. All nonlinear terms are kept on the analysis while the satellite develops a circular orbit
around the earth. The mathematical model is derived through the Lagrangian formalism and the
resulting governing equations of motion are numerically integrated using a fourth order Runge-Kutta.
A DC motor is used for the solar array deployment. Two different approaches are considered
regarding the interaction between the panel and the actuator: in the first one the DC motor is treated
like an ideal energy source and in the second one, the same DC motor is treated like a nonideal energy
source. The second approach is more realistic.

Keywords. rigid body dynamics, solar array deployment, ideal system, nonideal system.
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