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Abstract. A new technique is developed for determining the motion of an artificial satellite at an
altitude of about six Earth radii, corresponding to an orbital period of 24 hours. The gravitational
anomalies due to the axial asymmetry of the Earth give rise to a resonance condition between such
anomalies and the motion in longitude of the satellite. The dominant part of the Hamiltonian
Function is given by the Newtonian central field and includes the main influence of the Earth
dynamical flattening. The disturbing function includes all major equatorial anomalies contributing
to such resonance, except for luni-solar perturbations. By means of a canonical transformation, the
original Hamiltonian Function is mapped into a new form corresponding to the classical ideal
resonance problem. The existence of small divisorsis avoided altogether, improving the convergence
of the method of successive approximations. An alternate procedure, also including all major
equatorial anomalies, is developed with the aid of Lagrange’s Planetary Equations, leading to the
same result, to first approximation, of the canonical method first developed, despite the fact that for
the particular problem under analysis the canonical method presents some numerical difficulties.
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1. INTRODUCTION

The problem of motion of a geostationary satellite has been treated by several authors, mainly due
to the applications to communication satellites. In this context na ideal Situation is considered,
assuming a circular equatorial orbit, while in reality the orbit is not exactly circular nor the inclination
is zero. Nevertheless, a first approximation to the problem is important in order to establish a nominal
trgjectory. In this respect, a mgjor unsolved difficulty has been to define a nominal trgjectory where
many, if not al equatorial anomalies, are taken into account, contributing to a resonance with the
equatorial bulge of the Earth. A better definition would imply an improved performance of the
operations involved in station keeping.

It iswell known that two major factors limit the life of a communication satellite, fuel available on
board and degeneration of electronics due to cosmic radiation. A better definition of the best position
for station keeping would certainly impliesin less fuel consumption and a better definition of fina orbit
injection operation..

It is clear that today’s computational methods and hardware are a strong support for a station
keeping operation, but this does not invalidate a better knowledge of the nominal trajectory to be
designed (Giacaglia, 2003).

The smple and classica approach given by Kaula (1966), where only two tesseral harmonic
coefficients, Cx e Sy, are taken into account, is sufficient to indicate the presence of two centers and
two saddle points for a geostationary satellite, on the equatorial plane. The influence of al other
anomalies contributing to the 1:1 resonance with the 24-hour satellite are generally not taken into
account, assuming a minor influence in the problem. Actually, considering values of &l other
harmonics it becomes clear that their cumulative effect may have a considerable influence on the
station keeping operation.

The Hamiltonian of the problem has the form given by Eq. (1), where y is the product of the
universal gravitational constant and the mass of the Earth, R is the mean equatoria radius, a is the



earth diurnal rotation rate, L?= 1, a the orbital radius of the satellite, A its longitude reckoned from the
first point of Ariesand & the Greenwich Hour Angle..

Coefficients Cyn and Sy, of the tesseral harmonics contribute to the 1:1 resonance with the
equatorial bulgeif | —-m=2p,p=0,1, ..., [I/2},and | = 2, 4. 6, ... Legendre’s Polynomials reduce to
numerical values corresponding to Kaula's Inclination Functions (Kaula, op. cit.) for azero inclination

H(a,A-8)=u?/2L% + t*CoR?* 1 2L° + w,L +
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The adopted constants are:

R= 6378 km, = 3,986 032 x 10° km’S?, ¢ = 7,291 899 706 x 10°s?, a =42 164,271 km,
Coo=1082,7 x 10°, Cpy= 1,540 x 10°, S5, = -0,870 x 10°®, C53= 0,078 x 10°, S5 = 0,226% 10°°,
Ci= 0,074 % 10° S, = 0,148 x 10°, C1y= -0,001 x 10°, S, = 0,148 x 10°®,

Other coefficients have not been considered, because the scope of this work is to show that it is
possible to include any number of them, up to any degree of approximation. It is visible that, for
instance, the value of these coefficients does not decrease very fast, although the numerica value of al
other parts of the final coefficient of the Fourier Series as given by Eq. (1) is decreasing much faster.

The Hamiltonian given by Eq.(1) iswritten as

H(X,y) =Ho(x)+Hi(xy) )

wherex = Landy = A - 6 Hp(x) corresponds two the first three terms of H(x,y) and H1(x,y) to the
trigonometric series which, including all possible resonances with a 24-hour satellite, assumes the form

Hy(x,y) =D Ad(x)cosky + B (x)sinky 3

k=2
Including coefficients up to the fourth degree, one has the following values (Schutz, 2004)
Ap=1,0571x10"(a /), By=-5,971 7x 10" (a /1)), Az =4,044 7x10°° (a /1)), Ba=1,171 9x10°° (a /1),
A= -54873 x10 (@l 1), By = 27437 x10°(a/ 1), u/ a= 9,453 577 396 km’s 2.

Retaining terms associated with the élipticity of the equator, in the present work truncated at | = 4,
the above series assumes the form

Hi(x,y)=)Y.Q;(a)cos2(y -4y ,) (4)
i=1

where
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2. INTRODUCING A SMALL PARAMETER

The ideal resonance problem as defined by Garfinkel (1970) corresponds to the reduction of the

general Hamiltonian H1(Xx,y) to the simple form where only the cos2y term appears. As was indicated
by Giacaglia (1970, 2003) it is possible to take into account all resonant terms, not only those factoring
the cos2y term, and reduce the Hamltonian to a form containing only such argument. Here it is shown
that thisis actually the case, that is, there is a canonical transformation to variables (u, v) such that the
Hamiltonian is mapped into the simple form

H[x(u, v), y(u, v)] = P(u) + Q(u) cos2v + R(u) sin2v (6)

The transformation (Brouwer, 1961; Giacaglia, 1972) is generated by a Hamilton — Jacobi Function
Su,y) developed in terms of fractional powers of a small parameter which, in the general situation,
where all resonant arguments are considered, is taken as the magnitude of the ratio of the dominant

term in Hy(X,y) and the Newtonian central field intensity, approximately 10°®. This small parameter,
taken exactly equal to thisvalueisindicated by & Therefore the basic hypothesisis that

H(xy) = Ho () + Hi(xy), Ho (X) = O(1), Ha(xy) = O(¢) (7)

Since the satellite period is close to 24 hours, the difference between its mean motion n in longitude
and the Earth rotation rate «p istaken to be of the order of the square root of the small parameter, that

IS, N- &= 0(51/ %) = 0(10'3). Neglecting the tessera harmonics disturbances, the differential equation
for the angular variabley is given by the Hamiltonian

Ho(X) = 4?1 2x? + p*CoR? 1 2x° + wix (8)
so that
dy/dt = —dHy(x)/ dx= %/ x3 —w, +O(103) = n-w, +O(1073) = O(1073) 9)

2.1. The Canonical Transformation

The generating function is taken as

S(u,y) =uy+ Sy 5(u,y) + S (u,y) + Sgy(u,y) +- (10)
where the subscript shows the order of magnitude with respect to &. The transformation is defined by

v=0S/0u=y+0S;,,/du+---

11
X=0S/0y=u+0S;;, /0y +--- (11)

The coefficients of the new Hamiltonian given in Eq.(7) are written as

P(U)=Ry + Py + P+ Py +-- (12)



and similar developments for Q(u) e R(u). By introducing Eq. (9) into Eq. (5) it isfound that

Po(u)=Hg(u), Qp(u)=Ry(u)=0

(13)
Pr/o(u)=Qq/2(u) =Ry 2(u)=0
T 1 n -
Ho(u)Sy/ 2y +§HO(U)812/2,y +Hy(u,y) =P (u)+Q(u)cos2y + Ry(u)sin2y (14
T n 1 m T
[Hotu)+ H3(WSy2y ] Sty + SHE(W) STz +HiU) Sy = 5
= P3/2(u) +Qz/5(u)cos2y + Ry (u)sin2y
2.2. The Generating Function
The first approximation to the Generating Function is given by
5 1/2
_ Hyg Ho 2 .
Sioy ="\ o + =[P (A —Qy)cos2y - (B, - Ry )sin2y] (16)
0 Ho Ho

where A, and B, are the dominant terms of the original Hamiltonian, factoring cos2y and sin2y. By
defining

- . B, -R
qz[(Az—Q1)2+(Bz—R1)2], 0032a1=—A:1/Sl, sin2ay = - ;1/21
Ho 2q/2 2 _ .2 1/2
r=—-, p° = 172 > ,b =r +(2P1+q )/H(';,W:y+ﬂ/2—a'1 (17)
Ho g~ “+a“Hp +2P

A=41- pzsinzw

the equation for Sy, is

Si/2y =T +by1-p®sin®w=r+ba (18)

that is, considering that, in general p > 0,

Sy/2(u,y)=-ryxbE(p,w), p<1l

p? -1 (19)

Siy/o(uy)=-ryxb pE(%,z)— F(%,z) , p>1, sinz=psinw

where E(«,¢) and F(«,¢&) are the Elliptic Integrals of the Second and First kind, with amplitude & and
modulus K.

In the second of Egs.(19), when p>1, it is clear that the angle w is bounded by the values given by

(-/p) =sinw = (1/p), sothat, certainly, this case corresponds to librations around centers defined by
w = 0 or 180° and x corresponding to a satellite’s period very close to 24 h.. Numerical values of Cx, e



S» give avalue oy [715°. The Earth relative longitudes, defined by a1 #772, correspond to 75° W and
105° E of Greenwich, and are the longitudes of the stable equilibrium points..

In order to avoid secular terms in the Generating Function, when p < 1, one should choose the
unknown coefficients P, , Q; e Ry in such away that the secular term in the Elliptic Integral matches
exactly theterm ry. Thisgives afirst condition for the definition of these unknown coefficients.

When p < 1, the Elliptic Integra of Second Kind may be written as:

E(p, w) = (2/ 7)E(p, 772)w + periodic function (20)

where E(p, 772) isthe corresponding complete integral, that is,

00 2 2n
st = 1_a[(2n-117" p
(27 Ep, 712) = F(-122,1; p) = 1 Zl[ o } - (21)

where F is the Hypergeometric Function with modulus p.

When p > 1, the dliptic integrals E(1/p,w) and K(1/p, w) also have a secular term in w but since this
angleisrestricted the linear part islimited in value.

Inthelibration case, p < 1, the solution is

Sy/o(u,w)=-2(b/ m)E( p,/1/ 2)w+bE( p,w) (22
Carrying the solution up to the next order (one part in a million) presents no difficulties and, after
defining

S;,2 = Agsin3ay — B3 cos3aq

Cs/o = Agcos3a, + B3sin3a;

D3/2 = —Q3/28in20’1 + R3/2 00320’1
Gg/p = Qg2 08201 + Rg/p8iN204
B, =-Hg/6

A=41- p?sinw

onefinds, for p < 1,

(23)

Cy/2S1(u,y) =3r20By(ay — 71/ 2) + Byb [3r2 +b2(1-p?/2) W+%b380 psin2w +

+1b%/2§n3W_1bC3/2 COSBW'*‘iD3/2A+ASS/2AS.I’|W_£C3/2ACOSW+
3 3 k2 . p2 pz

24
e L= 92852 #(2- 9G] Inpoosw 2)- s parcsin pinw) + 0
p

2-p? 2
+[Bor3+P3/2+ pf G3/2] F(W,p)+(3rszo‘FG3/2J E(w, p)




Equation (24) involves Elliptic Integrals of the first and second kind, as well as periodic functions
such as the natural log of a periodic function, the arcsin of a periodic function and the function A
isolately or combined with with periodic functions. It should be noted that the order of magnitude is

affected by the fact that the derivative with respect to the variable x = ./ga which is very large for a

geostationary satellite, produce eventualy unredlistic results when only literal developments, without
actual verification of the magnitude of terms, are considered, as is the case of works by Romanowicz
(21975) and Morando (1963).There is no singular term since for p < 1, p cosw + 4> 0O for al values of
w. Furthermore al functions involved are periodic, except for the Elliptic Integrals.

2.3. Coordinate transfor mation
In the new variables the Hamiltonian is mapped into
K(u,y)=P(u)+Q(u)cos2w+ R(u)sin2w (25)

and the canonical transformation is defined by the Generating Function

S(u,y) =uy+S;,,(u,y)+ S (u,y)+0(32) (26)

that is

V=0S/0u=y+0dSy,,/0u+0S; / du+0(e?)

28
X=0S/dy=u+0S,,,/dy+9S, | dy +O(£3' ?) 9
The implicit form of these transformations can be avoided making use of a method introduced by

Hori (1976) where the transformation is obtained by Lie Series. But the scope of this work is to
demonstrate the possibility of obtaining a new Hamiltonian maintaining the form of the Ideal resonance
problem. It should be noted that O(£"?) corresponds, in this problem to 10° (one part in a thousand)
and O(&) corresponds to 10° (one part in a million) and the generating function was developed up to
this order of approximation, although any derivative with respect to X, as noted before, may introduce
some change in the order of magnitude of the termsinvolved in the devel opment.

3. DIRECT SOLUTION

In order to show that the solution obtained by means of a canonical transformation matches with a
first order variation of parameters technique. Lagrange’s Planetary Equations (Brouwer, op. cit.) are
used next. The equation for the perturbation in semi-mgjor axis of the satelliteis

a=2% -2 5o (a)sn2y-y,) (29)
na 5

where the disturbing function has been given in Eq. (4). Taking into account that y = A - @and that, by
Kepler Harmonic Equation, n?a®= y, it followsthat

o_y_on._ 3n._ 6.«
V=A= a8= 52T 2 L IQEnAY ~Az) (30)



By defining @ =y - A, - 102, integration of Eq. (30) gives
w? =c+2—j|<22 cos2y (31)
a

where C is an integration constant corresponding to the square of the angular velocity ¢ when the
angle Y isequal to 174. Thelongitude A, is given by

K% cos24, = Qj(a)cosdy;
j=1

! (32)
KZsin24, =Y Q;(a)sindy; ,
=1
K2 :[ZQj(a)COSAZJ,Z\] +(2Qj(a)5in/]2j,2\] (33)
=1 j=1
Equation (31) yields
2
Y2 = [c #2282 J(1— K2sin%y) (34)
a
where the parameter k is defined by
2
K2 = jus . (35)
Ca? + 24K 3

Two situations may occur:

a) k< 1:inthis case, corresponding to C > 24K22 / a2, one has libration about two equilibrium
points, two potential wells in the Earth potential field at the equator, corresponding to 0° or 180°
values of the variable ¢, that is, when the longitude of the satellite referred to Greenwich, is at
90° or at 270° from the equatorial bulge, defined by A, (about 15°) and approximately equal to
75° W or 105° E of Greenwich. A 24-hour satellite at these locations has no drift, if the equator
were an exact elliptic shape. At theoretical right angles of these locations, one has two saddle
points, two picks in the Earth potential field at the equator. A 24-hour satellite at these locations
will drift away very fast and will move toward the longitudes corresponding to one of the two
stable equilibrium points. It will reach these points with considerable speed, about 10 per day,
giving rise to an overshooting and, therefore, to a self exited oscillation, to be damped by
activating the satellite energy systems. It is clear that the angle Y will oscillate between values
suchthat 1/ k >sing >-1/k From Eqg. (35) it follows that the equilibrium points (centers)

correspond to a vaue of the constant C given by C = —24K22 /a?, acerta nly negative value.
When k > 1, the solution of the problem is given by



F(k,w):[1/c+24K22/a2]t (36)

and thelibration period isgivenby T = (4F(k,n/ 2)/+/C+ 24K22 / azj .

b) k > 1: in this case, corresponding to C < 24K22 /a%, a positive value, one has circulation
around the Earth equator, with a period greater or smaller than 24 hours. It should be noted that

a small fraction of 1 hour is enough to put the satellite in this situation. The value C = O, isa
possible case, dthough not general. Another possibility is to have a negative value of C, in

between 0 and — 24K 5 / a?, excluding this limiting value. When k > 1 the solution is
1.(1 . _ >
EF E,arcsm(ksmz,11) = 1/C+24K2/a t (37)

and the circulation period isgiven by T = (4F(% 71 2) 1 ky(C + 24K 3 / azj .

As k approaches a unit value, this period approaches an infinite value, corresponding to asymptotic
orbits toward saddle points. These orbits separate the stability regions of libration around centers and
the circulation regions around both centers.

It is seen that both methods developed here lead to the same conclusion, to the first order of
approximation. On the other hand, the method used in the previous chapter alows an improvement of
the solution, in principle to any order, although beyond the order corresponding to 10 (one part in a
million) the mathematics becomes extremely complex and the presence of the variable x in the
denominator may distort the classical equations used in low satellites theories and in the motion of
asteroids (Brouwer, op. cit.).

4. CONCLUSIONS

The canonical method developed in Chapter 2 has a great potential for solutions of high order of
approximation, although as noted before care should be taken with the fact that x is a very large
guantity due to the high altitude of the satellite and derivatives with respect to this variable may mask
the order of magnitude of the approximations, something certainly true above the firs order. Up to the
first order of approximation (one part in a thousand) the solution gives the same answer as the direct
use of Lagrange’s Planetary Equations for the variation of the elliptic element of the osculating orbit.

A better definition of the equilibrium points of the problem will lead to a more redlistic values of
the longitudes, corresponding two the wellsin the Earth potential field. It is known (Morgan, 1989) that
observations indicate the longitudes 107° E and 79° W as the actual locations of those longitudes, one
over i Lanka, in the Indian Ocean and the other over the Pacific Ocean, off the coast of Equador,
dlightly different from the locations indicated by just considering the second degree and order tessera
harmonics of the Earth potential field. These observed longitudes do not correspond to opposite points
on the equatorial plane of the Earth, a consequence of the influence of high order tesseral harmonics
and the presence of the Sun and of the Moon. These are important gravitational forces affecting the
orbit of a communication satellite, producing additional drift in longitude and also in latitude, shifting
the satellite, periodically from the equatorial plane. It is amazing that a smple difference of about 100
m around the equator is responsible for such a strong effect on a satellite, orbiting at 35786 km atitude
above the Earth equator. It is also clear that the equator of the Earth is not an ellipse, even to a first
approximation.
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