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Abstract. A new technique is developed for determining the motion of an artificial satellite at an 
altitude of about six Earth radii, corresponding to an orbital period of 24 hours. The gravitational 
anomalies due to the axial asymmetry of the Earth give rise to a resonance condition between such 
anomalies and the motion in longitude of the satellite. The dominant part of the Hamiltonian 
Function is given by the Newtonian central field and includes the main influence of the Earth 
dynamical flattening. The disturbing function includes all major equatorial anomalies contributing 
to such resonance, except for luni-solar perturbations. By means of a canonical transformation, the 
original Hamiltonian Function is mapped into a new form corresponding to the classical ideal 
resonance problem. The existence of small divisors is avoided altogether, improving the convergence 
of the method of successive approximations. An alternate procedure, also including all major 
equatorial anomalies, is developed with the aid of Lagrangé s Planetary Equations, leading to the 
same result, to first approximation, of the canonical method first developed, despite the fact that for 
the particular problem under analysis the canonical method presents some numerical difficulties. 
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1. INTRODUCTION 
 

      The problem of motion of a geostationary satellite has been treated by several authors, mainly due 
to the applications to communication satellites. In this context na ideal situation is considered, 
assuming a circular equatorial orbit, while in reality the orbit is not exactly circular nor the inclination 
is zero. Nevertheless, a first approximation to the problem is important in order to establish a nominal 
trajectory. In this respect, a major unsolved difficulty has been to define a nominal trajectory where 
many, if not all equatorial anomalies, are taken into account, contributing to a resonance with the 
equatorial bulge of the Earth. A better definition would imply an improved performance of the 
operations involved in station keeping. 
     It is well known that two major factors limit the life of a communication satellite, fuel available on 
board and degeneration of electronics due to cosmic radiation. A better definition of the best position 
for station keeping would certainly implies in less fuel consumption and a better definition of final orbit 
injection operation..  
      It is clear that today’s computational methods and hardware are a strong support for a station 
keeping operation, but this does not invalidate a better knowledge of the nominal trajectory to be 
designed (Giacaglia, 2003).  
      The simple and classical approach given by Kaula (1966), where only two tesseral harmonic 
coefficients, C22 e S22, are taken into account, is sufficient to indicate the presence of two centers and 
two saddle points for a geostationary satellite, on the equatorial plane. The influence of all other 
anomalies contributing to the 1:1 resonance with the 24-hour satellite are generally not taken into 
account, assuming a minor influence in the problem. Actually, considering values of all other 
harmonics it becomes clear that their cumulative effect may have a considerable influence on the 
station keeping operation.  
      The Hamiltonian of the problem has the form given by Eq. (1), where µ is the product of the 

universal gravitational constant and the mass of the Earth, R is the mean equatorial radius, ωe is the 



earth diurnal rotation rate, L2=µa, a the orbital radius of the satellite, λ its longitude reckoned from the 
first point of Aries and θ  the Greenwich Hour Angle..   

      Coefficients Cnm  and  Snm  of the tesseral harmonics contribute to the 1:1 resonance with the 
equatorial bulge if  l – m = 2p, p = 0, 1, …, [ l/2}, and l = 2, 4. 6, ... Legendré s Polynomials reduce to 
numerical values corresponding to Kaulá s Inclination Functions (Kaula, op. cit.) for a zero inclination 
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      The adopted constants are:  
 
      R = 6 378 km, µ = 3,986 032 × 105 km3s-2,  ωe = 7,291 899 706 × 10-5s-1,  a = 42 164,271 km,          
      C20 = 1 082,7 × 10-6, C22 = 1,540 × 10-6, S22 = -0,870 × 10-6, C33 = 0,078 × 10-6, S33 = 0,226× 10-6,  
      C42 = 0,074 × 10-6, S42  = 0,148 × 10-6, C44 = -0,001 × 10-6, S44  = 0,148 × 10-6. 

 
      Other coefficients have not been considered, because the scope of this work is to show that it is 
possible to include any number of them, up to any degree of approximation. It is visible that, for 
instance, the value of these coefficients does not decrease very fast, although the numerical value of all 
other parts of the final coefficient of the Fourier Series as given by Eq. (1) is decreasing much faster. 
 
      The Hamiltonian given by Eq.(1) is written as  

 
)y,x(H)x(H)y,x(H 10 +=                            (2) 

 

where x = L and y = λ - θ, H0(x) corresponds two the first three terms of H(x,y) and H1(x,y) to the 
trigonometric series which, including all possible resonances with a 24-hour satellite, assumes the form 
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      Including coefficients up to the fourth degree, one has the following values (Schutz, 2004) 
 

      A2=1,0571×10-7(a /µ), B2=-5,971 7× 10-8 (a /µ), A3 =4,044 7×10-9 (a /µ), B3=1,171 9×10-8 (a /µ),   

      A4 = -5,487 3 × 10-11 (a / µ), B4 = 2,743 7 × 10-10 (a / µ), µ / a = 9,453 577 396 km2s-2.  
 
      Retaining terms associated with the ellipticity of the equator, in the present work truncated at l = 4, 
the above series assumes the form 
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     2. INTRODUCING A SMALL PARAMETER 
 
      The ideal resonance problem as defined by Garfinkel (1970) corresponds to the reduction of the 

general Hamiltonian H1(x,y) to the simple form where only the cos2y term appears. As was indicated 
by Giacaglia (1970, 2003) it is possible to take into account all resonant terms, not only those factoring 
the cos2y term, and reduce the Hamltonian to a form containing only such argument.  Here it is shown 
that this is actually the case, that is, there is a canonical transformation to variables  (u, v) such that the 
Hamiltonian is mapped into the simple form 
 
      H[x(u, v), y(u, v)]  = P(u) + Q(u) cos2v + R(u) sin2v                         (6) 
 
      The transformation (Brouwer, 1961; Giacaglia, 1972) is generated by a Hamilton – Jacobi Function 
S(u,y) developed in terms of fractional powers of a small parameter which, in the general situation, 
where all resonant arguments are considered, is taken as the magnitude of the ratio of the dominant 
term in H1(x,y) and the Newtonian central field intensity, approximately 10-6. This small parameter, 
taken exactly equal to this value is indicated by ε.  Therefore the basic hypothesis is that 
 

      H(x,y) = H0 (x) + H1(x,y), H0 (x) = O(1),  H1(x,y) = O(ε)             (7)  
 
      Since the satellite period is close to 24 hours, the difference between its mean motion n in longitude 

and the Earth rotation rate ωe  is taken to be of the order of the square root of the small parameter, that 

is,  n - ωe = O(ε1/2) = O(10-3). Neglecting the tesseral harmonics disturbances, the differential equation 
for the angular variable y is given by the Hamiltonian  
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so that   
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2.1. The Canonical Transformation 
 
      The generating function is taken as 
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where the subscript shows the order of magnitude with respect to ε. The transformation is defined by 
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      The coefficients of the new Hamiltonian given in Eq.(7) are written as 
 
      �++++= 2/312/10 PPPP)u(P                         (12) 

 



and similar developments for  Q(u) e R(u). By introducing Eq. (9) into Eq. (5) it is found that 
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2.2. The Generating Function 
 
      The first approximation to the Generating Function is given by  
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where A2 and B2 are the dominant terms of the original Hamiltonian, factoring cos2y and sin2y. By 
defining  
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the equation for S1/2 is 
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that is, considering that, in general p > 0, 
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where E(κ,ξ) and  F(κ,ξ) are the Elliptic Integrals of the Second and First kind, with amplitude ξ and 
modulus κ.   
      In the second of Eqs.(19), when  p>1, it is clear that the angle w is bounded by the values given by 
(-1/p) ≤ sinw ≤ (1/p),  so that,  certainly,  this case corresponds to librations around centers defined by 
w = 0 or 180o and x corresponding to a satellité s period very close to 24 h.. Numerical values of C22 e 



S22 give a value α1 ≅ 15o.  The Earth relative longitudes, defined by α1 ±π/2, correspond to 75o W and 
105o E of Greenwich, and are the longitudes of the stable equilibrium points..  
      In order to avoid secular terms in the Generating Function, when p < 1, one should choose the 
unknown coefficients P1 ,  Q1  e R1 in such a way that the secular term in the Elliptic Integral matches 
exactly the term ry. This gives a first condition for the definition of these unknown coefficients. 
      When  p < 1, the Elliptic Integral of Second Kind may be written as: 

 
      E(p, w) = (2/π)E(p, π/2)w + periodic function                            (20) 
 
where  E(p, π/2) is the corresponding complete integral, that is,   
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where F is the Hypergeometric Function with modulus p.  
      When p > 1, the elliptic integrals E(1/p,w) and K(1/p, w) also have a secular term in w but since this 
angle is restricted the linear part is limited in value. 
      In the libration case, p < 1, the solution is   
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      Carrying the solution up to the next order (one part in a million) presents no difficulties and, after 
defining   
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one finds, for p < 1,  
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      Equation (24) involves Elliptic Integrals of the first and second kind, as well as periodic functions 
such as the natural log of a periodic function, the arcsin of a periodic function and the function ∆ 
isolately or combined with with periodic functions. It should be noted that the order of magnitude is 

affected by the fact that the derivative with respect to the variable ax µ= which is very large for a 

geostationary satellite, produce eventually unrealistic results when only literal developments, without 
actual verification of the magnitude of terms, are considered, as is the case of works by Romanowicz 
(1975) and Morando (1963).There is no singular term since for p < 1, p cosw + ∆ > 0 for all values of 
w. Furthermore all functions involved are periodic, except for the Elliptic Integrals. 
 
2.3. Coordinate transformation  
 
      In the new variables the Hamiltonian is mapped into  
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and the canonical transformation is defined by the Generating Function 
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      The implicit form of these transformations can be avoided making use of a method introduced by 
Hori (1976) where the transformation is obtained by Lie Series. But the scope of this work is to 
demonstrate the possibility of obtaining a new Hamiltonian maintaining the form of the Ideal resonance 
problem. It should be noted that O(ε1/2) corresponds, in this problem to 10-3 (one part in a thousand) 
and O(ε) corresponds to 10-6 (one part in a million) and the generating function was developed up to 
this order of approximation, although any derivative with respect to x, as noted before, may introduce 
some change in the order of magnitude of the terms involved in the development. 
 
3. DIRECT SOLUTION 
       
      In order to show that the solution obtained by means of a canonical transformation matches with a 
first order variation of parameters technique. Lagrange´s Planetary Equations (Brouwer, op. cit.) are 
used next. The equation for the perturbation in semi-major axis of the satellite is 
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where the disturbing function has been given in Eq. (4). Taking into account that y = λ - θ and that, by 
Kepler Harmonic Equation,  n2a3 = µ , it follows that  
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By defining ψ = y - λ2 - π/2, integration of Eq. (30) gives 
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where C is an integration constant corresponding to the square of the angular velocity ψ

�
 when the 

angle ψ is equal to π/4. The longitude λ2 is given by  
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      Equation (31) yields 
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where the parameter k is defined by 
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      Two situations may occur: 

a) k < 1: in this case, corresponding to 22
2 a/K24C > , one has  libration about two equilibrium 

points, two potential wells in the Earth potential field at the equator, corresponding to 0o or 180o 
values of the variable ψ, that is, when the longitude of the satellite referred to Greenwich, is at 
90o or at 270o from the equatorial bulge, defined by λ2 (about 15o) and approximately equal to 
75o W  or 105o E of Greenwich. A 24-hour satellite at these locations has no drift, if the equator 
were an exact elliptic shape. At theoretical right angles of these locations, one has two saddle 
points, two picks in the Earth potential field at the equator. A 24-hour satellite at these locations 
will drift away very fast and will move toward the longitudes corresponding to one of the two 
stable equilibrium points. It will reach these points with considerable speed, about 1o per day, 
giving rise to an overshooting and, therefore, to a self exited oscillation, to be damped by 
activating the satellite energy systems. It is clear that the angle ψ will oscillate between values 
such that 1 / k  ≥ sinψ ≥ - 1 / k. From Eq. (35) it follows that the equilibrium points (centers) 

correspond to a value of the constant C given by 22
2 a/K24C −= , a certainly negative value. 

When k > 1, the solution of the problem is given by  
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b) k > 1: in this case, corresponding to 22
2 a/K24C < , a positive value, one has circulation 

around the Earth equator, with a period greater or smaller than 24 hours. It should be noted that 
a small fraction of 1 hour is enough to put the satellite in this situation. The value C = 0, is a 
possible case, although not general. Another possibility is to have a negative value of C, in 

between 0 and 22
2 a/K24− , excluding this limiting value. When k > 1 the solution is  
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      and the circulation period is given by ������
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      As k approaches a unit value, this period approaches an infinite value, corresponding to asymptotic 
orbits toward saddle points. These orbits separate the stability regions of libration around centers and 
the circulation regions around both centers. 
 
      It is seen that both methods developed here lead to the same conclusion, to the first order of 
approximation. On the other hand, the method used in the previous chapter allows an improvement of 
the solution, in principle to any order, although beyond the order corresponding to 10-6 (one part in a 
million) the mathematics becomes extremely complex and the presence of the variable x in the 
denominator may distort the classical equations used in low satellites theories and in the motion of 
asteroids (Brouwer, op. cit.). 
 
4. CONCLUSIONS 
 
      The canonical method developed in Chapter 2 has a great potential for solutions of high order of 
approximation, although as noted before care should be taken with the fact that x is a very large 
quantity due to the high altitude of the satellite and derivatives with respect to this variable may mask 
the order of magnitude of the approximations, something certainly true above the firs order. Up to the 
first order of approximation (one part in a thousand) the solution gives the same answer as the direct 
use of Lagrangé s Planetary Equations for the variation of the elliptic element of the osculating orbit.    
      A better definition of the equilibrium points of the problem will lead to a more realistic values of 
the longitudes, corresponding two the wells in the Earth potential field. It is known (Morgan, 1989) that 
observations indicate the longitudes 107o E and 79o W as the actual locations of those longitudes, one 
over Sri Lanka, in the Indian Ocean and the other over the Pacific Ocean, off the coast of Equador, 
slightly different from the locations indicated by just considering the second degree and order tesseral 
harmonics of the Earth potential field. These observed longitudes do not correspond to opposite points 
on the equatorial plane of the Earth, a consequence of the influence of high order tesseral harmonics 
and the presence of the Sun and of the Moon. These are important gravitational forces affecting the 
orbit of a communication satellite, producing additional drift in longitude and also in latitude, shifting 
the satellite, periodically from the equatorial plane. It is amazing that a simple difference of about 100 
m around the equator is responsible for such a strong effect on a satellite, orbiting at 35786 km altitude 
above the Earth equator. It is also clear that the equator of the Earth is not an ellipse, even to a first 
approximation. 



5. REFERENCES 
  
Brouwer, D.and Clemence, G. M., 1961, “Methods of Celestial Mechanics” , Academic Press, New  
      York, 598 p. 
Garfinkel, B., 1970, “On the Ideal Resonance Problem”, In “Periodic Orbits, Stability and 
      Resonances” , D. Reidel Pub. Co., Dordrecht, p. 474-481 
Giacaglia, G. E. O., 1970, “ Introduction to Resonance Problems”, Applied Mechanics Research 
      Laboratory” , N. TR 1017, Univ. of Texas, Austin, 29 p. 
Giacaglia, G. E. O.,1972, “Perturbation Methods in Non Linear Systems”, Springer-Verlag, New 
      York, 369 p. 
Giacaglia, G. E. O., 2003, “ Perturbation of a Stationary Solution of a Nonlinear Conservative System 
      under Resonance Conditions” , Proceedings 17th International Congress of Mechanical 
      Engineering, São Paulo, November 2003, CD ROM 
Hori, G. I., 1966, “Theory of General Perturbations with Unspecified Canonical Variables” , Publ.  
      Astron. Soc. Japan, Vol. 18, pp. 287-296 
Kaula, W. M., 1966, “Theory of  Satellite Geodesy” , Blaisdell Pub. Co., Waltham, 124 p. 
Morando, B., 1963, “Orbites de résonance des satellites de 24 heures” , Bull. Astron., Vol. 24, pp. 47-67 
Morgan, W. L. & Gordon, G. D., 1989, “Communication Satellites Handbook” , J. Wiley and Sons,  

New York, 900 p. 
Romanowicz, B. A., 1975, “On the Tesseral Harmonics Resonance Problem in Artificial Satellite 
      Theory” , Smithsonian Astrophysical Observatory, Special Report N. 365, Cambridge, 
      Massachusetts 
Schutz, B., 2004, Private Communication, CSR, The University of Texas at Austin, Austin, Texas 
 
6. COPYRIGHTS 
 
      The author is the sole responsible for the contents of the printed material included in this work. 
 


