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Abstract. Recent advances in computing processing power brought about the use of machine vision 
to new applications, like industrial inspection and robotic sensors. This project has as objective the 
development of a vision-based tracking system to the Nomad XR4000 mobile robot. The system is 
composed by four main modules: the acquisition module, using a Meteor frame grabber under 
Linux getting RGB format images; the pre-processing module, processing the acquired image by 
sampling reduction, low pass filtering, RGB-HSV color conversion and image's gradient 
calculation; the motion-extraction module, extracting from a gradient image a number of feature 
points from the scene, comparing them with previous images using SSD correlation and optical 
motion detection and also calculates the centroid and scattering data for those points; the control 
module, using the data computed by the previous module and by means of a fuzzy controller 
calculates the robot's response making it tracks the perceived image motion. The system was 
optimized in processing time by computational code changing. Also, an image correlation 
parameter optimization was carried out based on factorial design methodology. It was verified that 
two variables, the correlation window size and the search window size are the main variables 
related to the processing time and robustness of correlation algorithm. Tests were performed with 
the system using a robot simulator, validated qualitatively by comparing the speed curve observed 
from the simulator and from the Nomad robot. It was observed that the image processing system 
and the fuzzy logic controller were adequate to cancel the apparent motion in the image plane from 
the acquired images. The developed system could detect speeds by means of optical flow and 
control the robot using a fuzzy controller, and brought about a contribution with the study of 
important system variables by factorial design analysis. 
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1. INTRODUCTION 
 

Visual Servoing of mobile robots is a thriving approach to the control of robot navigation since 
it emulates human sense of vision. The best control of a mobile robot would be achieved by 
constructing a complete three-dimensional world model, planning a path and then executing the 
required steps to move the robot along the path. However, many challenges are still posed ahead as 
object recognition, obstacle avoidance (Trucco, 1998, Klette, 1998) and  sensor fusion. 

Robot navigation based on visual tracking has had a significant amount of research work (Corke, 
2000, Kara, 2000) in the last years. A robust robot tracking system can provide information about 



the relative 3-D motion of a target relative to the observer and may simplify the retrieval of a object 
shape and/or localization. 

Several researchers have published different approaches to the problem of visual servoing of 
robots and many methods have been presented for tracking a moving object over a sequence of 
images, based on optical flow, image correlation or deformable contours (Santos-Victor, 1998, 
Kass, 1998). 

Arsenio and Santos Victor (1997) addressed the problem of tracking a moving target by a 
monocular observer. Their strategy was based on the integration of correlation-based techniques 
together with active contours, using a Kalman filtering approach to update the target image position 
over time. A number of experiments have been presented to compare the robustness of each 
method. 

Spindler (1998) presented an estimation of the apparent bi-dimensional motion induced in the 
image sequence by a subsea vehicle in order to compensate for it, using an affine model and a 
gradient-based image optic flow. Their model was computationally optimized by using methods to 
reduce the computational cost. 

This article presents the basics of a vision-based tracking system developed for the Nomad 
XR4000 mobile robot (Fig. 1) architecture and an optimization scheme based on experimental 
statistics, namely factorial design analysis (Box, 1978, Rowlands, 1995, Hafeez, 2002), to 
investigate sensitive parameters of the image-based tracking system. Factorial Design is an 
experimental design which allows system parameters to be investigated in all possible combinations 
of their levels or values and the results are obtained by analysis of variance. Experimental tests were 
carried out using a robot simulator, which was validated by comparing the speed curve obtained 
from the simulator and the physical mobile robot using a single camera. A fuzzy logic controller 
was used to cancel the apparent motion from the acquired images.  

 

 
Figure 1: Nomad XR4000 mobile robot (Nomadic Technologies) 

 
2. OPTICAL FLOW 
 

The analysis of motion in images is performed by using several types of algorithms. The use of 
the optical flow approach has a better acceptation in research (Beauchemin, 1995), mainly due to its 
capacity to cope with motion with low computer processing time and/or high precision motion 
calculation. 

Optical flow is an approximation of the real 3D motion in image, measured in the image plane. 
It's based on the assumption that the intensity structures of local regions in time-varying images are 
approximately constant under short duration motion, commonly named as the optical flow 
constraint equation, mathematically stated as [Anandan, 1992]: 
 

I .v I t 0                (1) 
 

where I is the spatial intensity gradient, v is the image velocity and I t is the temporal intensity 
gradient. 



There are many methods to calculate the optical flow. The three mainly used methods are the 
gradient based, the frequency based and the correlation based algorithms. Gradient and frequency 
methods are in general better for getting precise velocity information but at the expense of high 
processing time. The latter, correlation method, is better suited to real time problems, like vision 
based tracking systems. In spite of correlation is based on statistical methods, the SSD (sum of 
squared differences) approach is more used in optical flow calculation (Anandan, 1992): 
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where W i , j is a weighting function, I x ,t is the image intensity in space coordinate x at time 
t , and d is a square neighboring area near x with size 2n 1 2

. Regions with smallest S values 
have better correspondence, indicating image displacement related with image motion. 
 
3. VISION-BASED CONTROL 
 

Machine vision based control is not a new technology. The work of Hutchinson (1995) reveals 
that there are mainly two architectures to cope with this subject: the first considers the errors in the 
image domain and the second in the position domain. These errors are the input to the control loop. 
It was concluded that data based on errors in the image domain are in some cases better than with 
second approach, since the first method does not need camera calibration. In another work, Plakas 
(1998) showed that for underwater applications uncalibrated systems are more robust than 
calibrated ones. His work uses a SSD correlation algorithm to make 3D reconstruction from the 
acquired images. 

Many control algorithms can be used in a vision based control system. If possible, a PID 
controller is a good choice, since it can cope easily with linear problems. Besides, there are many 
tuning rules to this type of control system. Some applications in vision based control are non-linear, 
and PID controllers are not useful in these cases. To solve this problem other types of algorithms 
(artificial neural networks or fuzzy logic controllers) are used. Neural networks are used in the 
control of car wheels based on road images, for example. 
 
4. SYSTEM ARCHITECTURE 
 

The architecture of the vision control system was divided in four modules for acquisition, pre-
processing, motion calculation and controlling. Figure (2) shows this architecture.                                                 
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Figure 2: System architecture for object tracking. 
 
4.1. Acquisition Module 
 



The acquisition module is responsible for sending commands to the video acquisition device 
(framegrabber) in the robot. This module initializes the robot's communication system and 
configures the framegrabber. 

Robot's initialization starts the framegrabber configuring its parameters: a) image's format 
(NTSC), b) image's resolution (256x256), c) depth color (24 bits), d) acquisition mode (continuous 
sequence), e) frame buffer memory address, and f) interruption signals in Unix style. The frame 
buffer memory addresses points to a global variable in the program, responsible to store the three 
components of image (Red, Green and Blue).                                                        
 
4.2. Pre-processing Module 
 

The pre-processing module prepares the image to be used by the next module, motion 
extraction. There are five steps in pre-processing: 
 
     1. image decimation and filtering; 
     2. color conversion; 
     3. image's gradient; 
     4. histogram thresholding; 
     5. search of feature points in image. 
 

The first step is carried out by using a one-step algorithm reducing simultaneously the image 
dimension and applying a low pass filter over the image. The new pixel is the mean value from four 
pixels in the original image as seen in Fig.(3). The algorithm uses only 25% of processing time 
compared a common two-step method. 
 

                                   
 

Figure 3. One pass decimation and filtering. 
 

The color conversion step is necessary since most of the algorithms for image processing are 
devised for using monochromatic images for simplicity. The conversion from the RGB (Red-Green-
Blue) to HSV (Hue, Saturation, Value) produces a monochromatic output and reduces storage space 
in memory as well as the processing time for each image. The mathematical formulation for this 
conversion is as simple as [Tourino, 2001): 
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where R, G and B are the components of original image (Red, Green and Blue, respectively), and V 
is the Value component in the HSV format. 

The gradient step searches for discontinuities in the image, like borders and corners in objects, 
or indicates good points to be tracked in the motion analysis system. The algorithm used is the 
Sobel mask, mainly due to its simplicity and fast processing time. The calculated gradient has two 



components, x and y, that are normalized and merged to give only one gradient image as result. 
The next step, histogram thresholding, is a procedure applied over the gradient image. The 

thresholding is carried out by using points with high gradient values. The cutoff value is obtained 
from the histogram, based on a percentage of the total points in image. Figure (4) presents an 
example of this process, in which 189 is the cutoff value. 
 

                                 
 

Figure 4. Histogram thresholding of a gradient image. 
 

                         
(a) (b) 

 
Figure 5. (a) Non-uniform and (b) uniform searching for feature points. 

 
Searching for feature points in the image is performed by selecting a limited number of points 

which are present in the thresholded gradient image. A uniform search algorithm was conceived to 
get a better point distribution in the image space, increasing the probability of finding feature points 
representing the actual object's motion. Figure (5) shows the results using this approach. 
 
4.3. Motion Calculation Module 
 

This module calculates motion by processing data from the control module. Optical flow is 
calculated by using the correlation method, in which the previous image is compared to the current 
one to get the displacement of the feature points or the apparent object's motion. 

The extraction module has the following steps: 
 
     1. extraction of the last and previous sub-image; 
     2. displacement calculation from correlation; 
     3. updating feature points data; 
     4. centroid and scattering data calculation from feature points. 
 



Sub-image extraction is performed storing a square window of the original image centered in 
each feature point. This new image is compared to the previous stored sub-image and the correlation 
algorithm is applied over it. When the correlation is maximum the new location of a feature point is 
marked as well as velocity. 

The correlation algorithm is based on the SSD. In this work the following modified expression 
was used to calculate correlation: 
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where I and J are respectively the last and the previous images, (xc, yc) is the central point in 
correlation window, (x, y) are the index of the correlation window, (i, j) is the localization of the 
point in the correlation window, and l is the correlation window size. 

When the maximum correlation point is found, the system can calculate feature point 
displacements. The data stored in the system is then updated with new positions and velocity for the 
next iterations. 

Subsequently the system starts to calculate the centroid and scattering information from the 
feature points. Centroid data is associated with the mean position of points, and scattering data is 
the mean distance of points relative to its centroid. Scattering values were defined as dispersion 
around the average, as: 
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The vectors in Eq. (5) are used in the control module to perceive object's motion. With this 
information the robot motion can be controlled. A simple algorithm is used in this approach: 
centroid data is associated with lateral movement of an object, so if the centroid value increases it 
turns that the robot must walk to right. If it decreases, the robot must move to the left. The same 
process is used with the scattering data: if points in a group are getting closer (scattering value 
decreases) this means that the object is getting farther from the camera, so the robot must walk 
forward. On the other hand, if the points are getting farther the robot must walk backward. 

Table (1) presents centroid and scattering data in x and z direction. It is shown that during the 
motion along the x axis the scattering values are almost constant, while the centroid value, xc, 
increases. Similar results are found along the z motion, when centroid values remain practically 
stable and scattering data decreases. 
 

Table 1. Centroid and scattering data from x direction motion (a) and z direction motion (b). 
 

t xc yc xe ye  t xc yc xe Ye 

1 67 64 188 405  1 42 74 29 21 

2 71 63 205 398  2 42 76 17 20 

3 75 64 218 403  3 43 75 17 24 

4 80 64 235 397  4 44 75 15 21 

5 84 63 251 395  5 45 74 15 21 

(a)  (b) 

 
4.4. Control Module 
 



This module is responsible for getting information from the previous modules and taking action 
for the robot motion. A fuzzy controller was developed to compose the control module. Its main 
characteristics are: 
 
• three variables: two inputs (group of points displacement and its velocity) and one output (robot's 

walking distance); 
• each variable has seven fuzzy sets, with triangular or trapezoidal membership functions; 
• fuzzy rules were defined by simple expressions like “ if displacement is medium and speed is 

slow then walk is medium”; 
• defuzzyfication method was centroid based; 
• system was implemented using the Xfuzzy software (Inse, 2000). 
 
A snapshot from the Xfuzzy software and results from the fuzzy controller are shown in Fig. (6) in a 
surface response graph. 
 

   
  

Figure 6. Snapshots from Xfuzzy software and the fuzzy controller´s surface response. 
 
5. SYSTEM OPTIMIZATION 
 

The developed system had its code optimized and the sensitivity of its variables was studied by 
means of factorial design analysis. The final optimized system was computer simulated for getting 
more information about its efficiency and accuracy. 
 
6.1. Code Optimization 
 

Code optimization was carried out along the computer program sections that are extensively 
used, like the correlation algorithm code. In a normal image the correlation code is repeated about 
32,000 times, so a small gain in processing time in this part reduces considerably the total 
processing time. The optimization implemented in this work was as in the following lines: 
 

g = img[i][j]+img[i+1][j]* img[i][j]; changed to t=img[i][j]; and g=t+img[i+1][j]* t; 
 

Despite of this new code uses more memory the processing time is shorter, since it refers to the 
memory address in the variable img only once. This simple code substitution could reduce the 
processing time around 7.5% for each image. 

 
6.2. Optimization by Factorial Design and Results 

 
Factorial Design is a technique to design an experiment or to estimate how much input 

parameter changes may affect the system output. Before conceiving the experiment design and 
applying a performance test, it is necessary to consider the amount of time spent to perform 



experimental runs. Time consumption is closely related to the number of experimental parameters, 
the number of levels of each parameter investigated, and the amount of data required. In factorial 
design, the total number of runs (N) is determined using the expression N = (L)V , where L is the 
number of levels of each parameter and V is the number of experimental parameters investigated. 
As an example, when studying four parameters with three levels each, the total number of runs is 34 

= 81. (Box, 1978) 
To achieve a generic factorial design, one selects a fixed number of levels (or versions) for each 

of the parameters (or factors) and carries out the experiments with all possible combinations. A 
level of a parameter refers to the discrete values of that parameter domain. For example, if an 
experiment is such that the studied temperature has the values of 20°C, 50°C and 100°C then the 
experiment has 3 levels associated to the variable temperature (parameter).  

Factorial design possesses an important faculty of showing up the interaction between 
parameters, but this does not mean that these interactions are numerically appreciable. The main 
effects of a parameter alone tend to be larger than the effects of interactions with two parameters, 
and those larger than three, and so on. 

The number of runs or experiments performed in a factorial design 2n increases geometrically as 
n increases. However, in many cases the information desired from the experiments can be obtained 
with only a part or fraction of the total runs, leading to the concept of fractional factorial design. 

Fractional factorial design disregards smaller effects from interactions of higher orders to reduce 
the number of experiments. Various fractions can be used to reduce of the number of experiments, 
as 1/2, 1/4, 1/8 or 1/16. In this case one can define a fractional factorial design on the basis of the 
original exponent minus the fraction factor. However the greater the fractioning the less confidence 
there will be in the results. (Hafeez, 2002) 

Five parameters were tested in the system. Table (2) shows the main parameters in study. 
The output data analyzed included four variables: t1, processing time for the first image; tf, 

processing time for the following images; ex, error in the x component of the optical flow; and ey, 
error in the y component of the optical flow. 

 
Table 2. Meaning, maximum and minimum values for parameters in factorial design analysis. 

 
# Parameter Meaning in system Minimum Maximum 
   (-) (+) 
1 ROWS_SIZE Correlation window size 5 15 
2 SEARCH_SIZE Search window size 10 30 
3 THRES_PERCENT Threshold for feature points 0,1 5 
4 MAX_FEAT_NUM Maximum number of feature points 50 200 
5 UNGROUP_SIZE Distance to erase nearby points 5 20 

 
It was used a 3 x 25-1 fractional factorial design with repetitions, leading to 48 runs. Repetitions 

were necessary to calculate the average processing time for each test. Fractional design was used to 
reduce the number of runs. 

Factorial design results are summarized in Tab. (3), where numbers are related to the parameters 
shown in Tab. (2). 
 

Table 3. Results from factorial design runs. 
 

Output variable Inputs related to this output 
T1 1, 12, 3 and 4 
tf 1, 2 and 12 
ex 1, 2 and 12 
ey 1, 2, 12 and 4 

 
In Table (3), the number 12 means that the output variable is dependent on the interaction 



between parameters 1 and 2. The results show that parameters 1 and 2 (ROWS_SIZE and 
SEARCH_SIZE, respectively) are the main factors in the output results. 
 

   
(a) (b) (c) 

 
Figure 7. Sensitivity analysis graphs in optimization phase: (a) time versus windows' dimensions; 

(b) ex error versus windows' dimensions; (c) ey error versus windows' dimensions. 
 

A sensitivity analysis on the variables 1 and 2 was performed for obtaining optimal values for 
processing time and the minimum correlation error. Figure (7) shows graphs as studied in this 
optimization phase. From this study the 'optimal' values were arisen for the following variables: 
ROWS_SIZE (=9) and SEARCH_SIZE (=17). Those values were chosen from the graphs due to 
their respective short processing time and relatively low correlation error. 
 
6.3. System Simulation 
 

A simulator for the Nomad robot was conceived to validate the system's performance. The 
simulator emulates the robot's motion in the x and z directions relative to the camera coordinate 
system, providing artificial images to the tracking algorithm. The simulator's performance was 
verified by comparing simulated speed curves to actual robot data under the same conditions. This 
procedure proved to be acceptable to validate the emulation of the robot's motion. 

The simulator emulates all the tracking modules. The last three modules are used identically as 
tracking algorithms or simulating ones, but the image acquisition module (first) is changed to an 
artificial image generator when used in simulation. Synthetic images are built using white squares 
over random grayish background. The square positions in the image are calculated from the object 
and robot positions in the 3D world, using a perspective projection. 

The simulator was tested in the x and z directions of the object's motion. The first run was 
performed with the tracking controller turned on, and the second run with controller turned off. 
Results were compared based on the tracking algorithm performance.  
 
7. DISCUSSION 
 

Simulations and tests have shown that the tracking algorithm is capable to follow the object's 
motion. The use of centroid and scattering data showed to be simple and efficient to characterize the 
motion of groups of points (seen as points in same object). Control using fuzzy logic was not able 
for tracking along the z direction of the object's motion. This can be explained due to the fact that 
the controller surface response is not smooth in some regions, leading to instabilities in the control 
loop. The presence of a speed control algorithm in the robot server, Robserver, may also interfere in 
the fuzzy controller performance. 
 
8. CONCLUSIONS 
 

The development of a tracking system for the Nomad robot have led to the following results: 
optical flow calculations based on a correlation method showed efficiency and short processing 



time; the fuzzy controller in the x direction was successful, and tracking in the z direction can be 
improved by using a separate controller. Factorial design and code optimization were useful for 
reducing the processing time and the errors of velocity measurements. Future improvements to this 
work can be pointed towards the use of a better control loop, an integrated optimization step (image 
processing and control optimization) and the use of a non-linear model for searching feature points 
in the correlation algorithm. A procedure based on variance analysis would automated the choice of 
optimal parameter values. 
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