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Resumo. Na locomogdo bipede temos um grande nimero de graus de liberdade envolvidos,
tornando-se essencial uma boa coordenacdo entre eles. A maior parte dessa coordenacdo €
realizada pelo sistema nervoso central, gerando sinais de acordo com o passo desejado. Uma das
maneiras de gerar esses sinais € através de uma rede neural artificial, que tem habilidade para
“aprender” relacGes complicadas de nédo-linearidades, proporcionando o controle de sistemas
através do método classico de Backpropagation. O objetivo do trabalho aqui apresentado é
realizar a andlise cinematica de um rob6 bipede utilizando o método de Denavit-Hartenberg,
aplicando entéo redes neurais para determinagdo dos principais graus de liberdade do mecanismo.
Através do emprego de uma rede neural, pode-se garantir que os graus de liberdade seréo
fornecidos em *““tempo real”, a partir de um comprimento de passo desejado. Este estudo
demonstra a possibilidade do emprego de redes neurais para determinagdo dos angulos de
posicionamento para um sistema mecanico de locomocéo bipede.
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1. INTRODUCAO

Durante muitos anos o ser humano vem tentando, de todas as formas, recriar 0S mecanismos
complexos que formam o corpo humano. Tal tarefa é extremamente complicada, e por mais que se
tente, os resultados sdo por muitas vezes insatisfatérios. Contudo, com os avangos tecnoldgicos
cada vez maiores, 0 homem consegue de certa forma copiar ou imitar alguns sistemas do corpo
humano. E o caso, por exemplo, das redes neurais e inteligéncia artificial, que simulam o
funcionamento do cérebro humano. Na area de robdtica procura-se construir mecanismos que
realizem funcGes motoras. Em especial, o estudo de membros mecanicos, como bracos e pernas,
tem por objetivo ajudar na reabilitacdo de pessoas que tenham sofrido algum acidente. O estudo da
locomocao esta inserido neste contexto.

A maior parte da coordenacdo do sistema locomotor € realizada pelo sistema nervoso central,
gerando sinais de acordo com o passo desejado. Uma das maneiras de gerar esses sinais € através de
uma rede neural artificial, a qual consiste de elementos computacionais simples (neurdnios),
organizados em camadas e funcionando em paralelo. A rede neural tem habilidade para “aprender”
relacdes complicadas de ndo-linearidades e tem sido amplamente utilizada na modelagem de
sistemas complexos, proporcionando o controle de sistemas altamente néo-lineares através do



método classico de Backpropagation (Wasserman, 1989). Dentre trabalhos anteriores que utilizam
0S mesmos principios da rede aqui apresentada destacam-se Dutra et al. (2002, 2003).

2. ANALISE CINEMATICA

A analise cinemaética é o ponto de partida para o projeto de qualquer mecanismo. Existem
procedimentos diferentes para deduzir as expressoes de deslocamentos do sistema (Rivin, 1988), as
quais fornecem as velocidades e aceleracGes (pela simples derivacdo das equacdes em funcdo do
tempo), tais como a analise geométrica (prépria para mecanismos simples) e o método de Denavit-
Hartenberg (Denavit & Hartenberg, 1955), que utiliza as chamadas matrizes de translacdo e rotacdo
(ideal para mecanismos mais complexos).

Antes de iniciar a analise cinematica é preciso definir o modelo que seré estudado, bem como
considerar certas hipéteses para simplificacdo do modelo, deixando o mesmo menos complexo e
desta forma tornando a anélise viavel.

2.1. Descricdo do Modelo e Hipoteses para Modelagem
Considerando os chamados determinantes do modo de andar (Saunders et al.,1953), 0 modelo

adotado leva em consideracado trés dos seis principais determinantes, séo eles: o compasso, a flexdo
do joelho da perna de apoio, e a flexdo da planta do pé da perna de apoio (Fig. (1)).
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Figura 1. Principais determinantes do modo de andar: (1) o compasso, (4) a flexdo do joelho da
perna de apoio, e (5) a flexdo da planta do pé da perna de apoio (Dutra, 1995).

O modelo é formado por 4 pares de elementos, a saber: fémur, tibia, planta do pé e dedo do pé.
As pernas sdo idénticas em pesos e comprimentos. O pé estd ligado de forma rigida a perna,
formando um angulo fixo de 90°.
Quanto ao modo de andar, consiste de duas fases (Fig (2)):
= Fase de suporte simples: durante esta fase uma das pernas realiza 0 movimento de balanco
enquanto a outra é responsavel pelo apoio. A extremidade da perna de apoio é assumida como
ndo deslizante.



= Fase de suporte duplo: esta é a fase onde ocorre a transicdo das pernas, ou seja, a perna em
balanco torna-se perna de apoio e a outra inicia 0 movimento de balango. Essa fase ocorre
instantaneamente quando a perna em balanco toca o0 solo e a perna que antes era de apoio
deixa o solo.
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Figura 2. Movimento das pernas, mostrando as fases de suporte duplo e simples (DUTRA, 1995).

Quanto as colisbes, cada vez que um dos pés toca o solo, o sistema pode sofrer impactos que
incorrem em aceleracgdes adicionais que influenciam na velocidade (Zheng & Hemami, 1984). Por
esta razdo, deve-se impor algumas condicdes de continuidade as velocidades das pernas para evitar
impactos quando o pé da perna em balanco toca o solo. Por outro lado, considerando a existéncia de
colisBes, o impacto da perna em balanco com o solo é assumido como sendo inelastico e sem
deslizamento. Isso implica que durante o estagio de transi¢do instantanea:

= a configuracdo do rob6 permanece inalterada;

= 0 momento angular do rob6 sobre o pé de impacto, bem como 0 momento angular da perna de

apoio (que sofreu impacto) sobre o quadril sdo conservados. Essas leis de conservacdo
resultam em uma mudanca descontinua na velocidade do robé (Goswami et al., 1996).

Nas andlises realizadas ndo foram consideradas parcelas relativas aos impactos e atrito. Esses
fendmenos tornam a modelagem extremamente complexa e, por muitas vezes, sem solucdo. Essa foi
uma simplificacdo necesséaria para possibilitar a modelagem do sistema.

2.2. Determinacédo dos Deslocamentos

Adotando o modelo apresentado na Fig. (3), com a especificagdo dos comprimentos e angulos, e
utilizando as matrizes de translacdo e rotacdo, pode-se determinar as coordenadas da ponta do pé da
perna em balango em fun¢do do ponto inicial de movimento, neste caso a ponta do pé da perna de
apoio. Como a analise é bidimensional a coordenada z sera igual a zero, e as coordenadas x e y
serdo dadas pelas seguintes equacoes:

Xp = A COS(el +0,+ 03+ 94) + fp COS(el +0,+ 03+ 64) + 4 sen(61 +0,+03+ 94)
+ (s sen(01 + 0, + B3) — fr sen(B1 + 02) — £y sen(B1) — £p coS(01) — /a (¢D)

Yp = A sen(91 +0,+ 03+ 94) + fp sen(el +0,+03+ 64) -t cos(61 +0,+ 03+ 64)
— (£ C0S(01 + 02 + 03) + 5 cos(01 + 62) + £ c0S(01) — ¢, Sen(01) (2)



onde: X, e yp sd0 as coordenadas da ponta do pé; ¢, € o comprimento da parte do pé responsavel
pelo apoio (dedos do pé); ¢, € o comprimento da parte do pe que levanta do solo (planta do pe); /; é

0 comprimento da tibia; e /s ¢ o comprimento do fémur.

Figura 3. Modelo do locomotor a ser analisado.

A partir das Eq. (1) e (2) pode-se determinar as velocidades e aceleracdes (pela simples
derivagéo das equacGes em funcdo do tempo), bem como especificar as outras coordenadas de cada
uma das articulac@es. Isto € muito importante para determinacao das trajetorias que permitem que o

robd bipede ande de forma mais natural (Shih et al., 1993).

Desta forma, além da ponta do pé da perna em balanco, é interessante descrever as equacdes
para os demais pontos principais do modelo, tais como: os calcanhares, os joelhos e o quadril.

Assim sendo, tém-se as seguintes equacoes:

a) Coordenadas do calcanhar da perna de apoio:

Xca = — lp COS(01) — /a
yca - - gp Sen(el)

b) Coordenadas do joelho da perna de apoio:

Xja = — £y Sen(01) — £, cos(01) — /a
Yja = 1 c0S(01) — £, sen(61)

c) Coordenadas do quadril:

Xq = — ¢ Sen(01 + 02) — ¢y sen(B1) — £, cos(01) — /a
Yq = 05 c0S(01 + 07) + ¢; cos(61) — £p sen(D1)

d) Coordenadas do joelho da perna em balanco:

Xjp = /s Sen(01 + 02 + 63) — /s sen(B1 + 0,) — ¢y sen(61) — £, €oS(01) — /a
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Yjb = — /5 C0S(01 + 62 + 03) + /5 cOS(01 + O2) + ¢y cOS(01) — £, sen(61) (20)
e) Coordenadas do calcanhar da perna em balanco:

Xcb = £15en(01 + 0, + 03 + 04) + (£ sen(0; + 6, + 03) — /¢ sen(B; + 0,) — £y sen(01) — £, cos(01) — 4a  (11)
Yeb = — £ €0S(01 + 0, + 03 + 04) — s COS(01 + 0, + 03) + £ cOS(01 + B,) + ¢, cOs(1) — £, Sen(Dy) (12)

No instante inicial do movimento essas coordenadas fornecerdo a localizacdo dos pontos
principais do modelo. Apos realizado o primeiro passo, as coordenadas fornecem uma localizagdo
instantanea em relacdo a ponta do pé da perna de apoio. A localizagcdo em relacdo ao ponto inicial
do movimento serd dada pela adicdo do valor do passo aos valores de cada deslocamento
instantaneo.

2.3. Analise Cinematica Inversa

A analise cinematica inversa consiste em especificar equacdes para determinacdo dos angulos
envolvidos no sistema em relacdo as medidas do modelo, coordenadas de algum ponto principal ou
mesmo de um outro angulo. Quanto maior o numero de graus de liberdade do sistema, mais
complexa se torna a andlise inversa. Em nosso caso, 0s angulos 063 e 6, serdo fornecidos por uma
rede neural artificial, como serd visto na Secdo 3. Logo, resta determinar as equacles para
determinacéo de 0; e 0-.

Para especificar as equacdes de 0, e 6, a analise se inicia a partir das Eq. (7) e (8) referentes ao
quadril. Em primeiro lugar, determina-se a equacdo de 0;. Os termos contendo (6; + 6,) devem ser
isolados num dos lados das equac6es. Desta forma, as equacdes assumem a seguinte configuracao:

— lssen(01 + 02) = Xq + ¢y sen(B1) + £, cos(01) + la (13)
05 c0S(01 + 0;) = yq — £ c0s(01) + £, sen(61) (14)

Elevando todas as parcelas ao quadrado e somando-se as equacgdes, varios termos terdo uma
configuracdo da forma cos?0 + sen’0 = 1. Entdo, fazendo-se todas as manipulagbes algébricas
necessarias, chega-se a uma configuracao final da forma:

A cos?0; + B cos 6, + C=0 (15)

onde:
B = (4Xq lp + Ayq (v + Alpla)(2Xq la + L2 + )2 + 07 — I + Xg* + Yo'

A Eqg. (15) é uma equacdo do segundo grau, logo:

B++B*-4AC

oS 0; = — 16
: A (16)
0, = arc cos[ B ZBA 4AC ] a7

Vale ressaltar que 0; deve ser sempre menor que 90°, pois do contrério o locomotor nédo
permanecera de pé.



Conhecendo 6, pode-se entdo encontrar a equagéo para 6,. Considerando as mesmas equacoes
do quadril (Eq. (7) e (8)) e utilizando manipulacdes algebricas similares as anteriores, chega-se a
equacdo de 0,, que dependera do valor de 0;.

D cos?0, + Ecos 8, + F=0 (18)
_E+4E?%2_
cos 0, = E+VE" ~4DF (19)
2D
_EF+ 2 _
0, = arc cos E+VE -4DF (20)
2D
onde:
D:€f2

E =2/¢sen 01 (4 sen 01 + £, COS 01 + 5 + Xq)
F = (fysen 0y + £, COS 01 + £, + Xg)* — £ c0s%0;

O valor de 6, também devera ser sempre menor que 90°.

Assim como na anélise cinematica direta, pode-se também especificar velocidades e aceleragoes
angulares a partir das equagdes dos angulos por meio de derivacdo em funcdo do tempo. Como as
equacdes sdo muito extensas € aconselhavel utilizar um programa computacional de célculo caso as
mesmas venham a ser utilizadas. Levando-se em consideracdo que as Eq. (17) e (20) estdo
relacionadas ao calculo de um arco-cosseno, pode-se generalizar uma solugdo para as velocidades e
aceleracdes angulares da seguinte forma:

S (21)

1-u?
. ! uu‘— u (22)
ﬁ(l—uz)3 1-u?

onde: n =1, 2; e u se refere as expressoes entre colchetes nas Eq. (17) e (20).
3. IMPLEMENTACAO DA REDE NEURAL

Estudos do movimento humano, bem como a anélise de Fourier (Braune, 1987), demonstram
gue o movimento dos angulos 63 e 6,4 (veja Fig. (3)) podem ser descritos com grande precisao por
seu harménico fundamental, estando o bipede nas fases de suporte duplo ou simples.

As funcdes harmonicas tém as seguintes formas:

03 = 039 + Az COS wt (23)

04 = 049 + A4 COS 200t (24)

onde: B3 e 049 se referem aos valores iniciais dos angulos; Az e A4 se referem as amplitudes; o € a
velocidade angular; e t € o tempo.



A rede deveré especificar os angulos 63 e 0, a partir de um comprimento do passo desejado.
Pode-se adotar as seguintes medidas para os comprimentos: ¢/, = 0,03 m, /, =0,11 m, /=0,37 me
/; = 0,37 m. Com estas medidas pode-se entdo configurar a rede para gerar os resultados desejados.

A rede foi programada no software MATLAB (Version 5.2. Copyright 1984 - 1998. The Math
Works, Inc.) e configurada para treinamento com 0s seguintes parametros:

= 25 conjuntos de pontos de treinamento;

= 1% camada intermediaria com 6 neurdnios do tipo sigmoide (tangente hiperbdlica);

= 2% camada intermediaria com 4 neurdnios do tipo sigmoide (tangente hiperbdlica);

= camada de saida com 2 neurénios do tipo linear;

= funcdo utilizada: Levenberg-Marquardt backpropagation;

= numero maximo de épocas para treino: 2000;

= erro médio quadrético (MSE): 1 x 107",

Os dados de saida da rede foram padronizados, com o angulo 63 variando de 30 a 50° e 0,
variando de —40° a 0. Apds o processo de treinamento, verifica-se a capacidade de generalizacao da
rede, escolhendo-se diferentes valores de passo e especificando-se 03 e 04 (fase de simulagcdo da
rede, com 99 conjuntos de pontos).

Com os valores de 03 e 0, ja definidos pela rede, pode-se entdo calcular os valores de 0; e 6,
pelas Eq. (17) e (20), o que finaliza a analise.

4. RESULTADOS

Utilizando a rede neural pode-se observar entdo os resultados encontrados por meio do grafico
apresentado pelo proprio programa de simulacdo, possibilitando uma avaliacdo do desempenho da
rede. A Fig. (4) apresenta o grafico fornecido pela rede, enquanto a Fig. (5) mostra o grafico
construido por Dutra (1995), a partir de uma analise tedrica (observe que a diferenca na inclinagdo
se deve a mudanca de orientacdo no eixo que contém os valores de 63). Comparando os resultados
de ambos os gréaficos, o erro no valor de 03 fornecido pela rede foi de 0,6% em média, apresentando
um valor méximo de cerca de 1,1%. Com relagdo a 0,4, 0 erro foi de 5,5% em média, com valor
méaximo de cerca de 8,8%. Nota-se claramente a semelhanca entre os dois graficos.

s (metros)

-40 30

Figura 4. Gréfico fornecido pela rede, considerando a relacéo entre 63, 64, € 0 passo s.
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03 (graus)

0. (graus) 0

—-40°

Figura 5. Gréfico construido por Dutra (1995), considerando a relagdo entre 03, 0,4, € 0 passo s.

Em relagdo aos erros, verifica-se que 0s erros nos valores de 6, S&0 maiores que 0S erros nos
valores de 03, mostrando que é mais dificil para a rede aprender o angulo 6, do que aprender o
angulo 03. Possivelmente um trabalho mais apurado na configuracdo da rede para treinamento
poderd resolver o problema. De qualquer forma o &ngulo 6, tem menor influéncia que o angulo 63
na determinacdo dos deslocamentos dos pontos principais do modelo, o que pode ser visto na Se¢ao
2.2. A Fig. (6) apresenta uma simulacdo do movimento do robd bipede.

{
I
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Figura 6. Simulacdo do movimento do robd bipede.

5. CONCLUSOES

O trabalho aqui apresentado mostrou a anélise cinematica de um modelo de locomotor bipede,
com as principais hipdteses para modelagem, e pela implementacao de uma rede neural foi possivel
determinar alguns dos principais determinantes do modo de andar em conjunto com as equagdes
fornecidas através da analise cinematica inversa.



Este estudo demonstrou a possibilidade do emprego de redes neurais para determinagdo dos
angulos de posicionamento para um sistema mecanico de locomocdo bipede. A rede forneceu
resultados excelentes, com erro no valor de 65 de 0,6% em média, e um valor maximo de cerca de
1,1%. Com relacdo a 04, 0 erro foi de 5,5% em media, com valor maximo de cerca de 8,8%.

Vale ressaltar a grande importancia da fase de treinamento, onde a rede consegue assimilar as
informacgdes relativas ao problema, possibilitando um desempenho 6timo na simulacdo e
consequentemente apresentando os resultados desejados ao final do processo.
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Abstract. In the bipedal locomotion we have involved a great number of degrees of freedom,
becoming essential a good coordination between them. Most of this coordination is performing by
the central nervous system, generating signals in accordance with the desired step. One of the
forms to generate these signals is through a artificial neural network, that has ability to "learn”
complicated relations of nonlinearities, providing the control of systems through the classic method
of Backpropagation. The objective of the work presented here is to make the kinematical analysis of
a bipedal robot using the method of Denavit-Hartenberg, applying then neural networks for
determination of the main degrees of freedom of the mechanism. Through the application of a
neural network, it can be guaranteed that the degrees of freedom will be supplied in "real time",
from a length of desired step. This study demonstrates the possibility of the application of neural
networks for determination of the positioning angles for a mechanical system of bipedal
locomotion.
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