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Resumo. Na locomoção bípede temos um grande número de graus de liberdade envolvidos,
tornando-se essencial uma boa coordenação entre eles. A maior parte dessa coordenação é
realizada pelo sistema nervoso central, gerando sinais de acordo com o passo desejado. Uma das
maneiras de gerar esses sinais é através de uma rede neural artificial, que tem habilidade para
“aprender” relações complicadas de não-linearidades, proporcionando o controle de sistemas
através do método clássico de Backpropagation. O objetivo do trabalho aqui apresentado é
realizar a análise cinemática de um robô bípede utilizando o método de Denavit-Hartenberg,
aplicando então redes neurais para determinação dos principais graus de liberdade do mecanismo.
Através do emprego de uma rede neural, pode-se garantir que os graus de liberdade serão
fornecidos em “tempo real”, a partir de um comprimento de passo desejado. Este estudo
demonstra a possibilidade do emprego de redes neurais para determinação dos ângulos de
posicionamento para um sistema mecânico de locomoção bípede.
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1. INTRODUÇÃO

Durante muitos anos o ser humano vem tentando, de todas as formas, recriar os mecanismos
complexos que formam o corpo humano. Tal tarefa é extremamente complicada, e por mais que se
tente, os resultados são por muitas vezes insatisfatórios. Contudo, com os avanços tecnológicos
cada vez maiores, o homem consegue de certa forma copiar ou imitar alguns sistemas do corpo
humano. É o caso, por exemplo, das redes neurais e inteligência artificial, que simulam o
funcionamento do cérebro humano. Na área de robótica procura-se construir mecanismos que
realizem funções motoras. Em especial, o estudo de membros mecânicos, como braços e pernas,
tem por objetivo ajudar na reabilitação de pessoas que tenham sofrido algum acidente. O estudo da
locomoção está inserido neste contexto.

A maior parte da coordenação do sistema locomotor é realizada pelo sistema nervoso central,
gerando sinais de acordo com o passo desejado. Uma das maneiras de gerar esses sinais é através de
uma rede neural artificial, a qual consiste de elementos computacionais simples (neurônios),
organizados em camadas e funcionando em paralelo. A rede neural tem habilidade para “aprender”
relações complicadas de não-linearidades e tem sido amplamente utilizada na modelagem de
sistemas complexos, proporcionando o controle de sistemas altamente não-lineares através do



método clássico de Backpropagation (Wasserman, 1989). Dentre trabalhos anteriores que utilizam
os mesmos princípios da rede aqui apresentada destacam-se Dutra et al. (2002, 2003).

2. ANÁLISE CINEMÁTICA

A análise cinemática é o ponto de partida para o projeto de qualquer mecanismo. Existem
procedimentos diferentes para deduzir as expressões de deslocamentos do sistema (Rivin, 1988), as
quais fornecem as velocidades e acelerações (pela simples derivação das equações em função do
tempo), tais como a análise geométrica (própria para mecanismos simples) e o método de Denavit-
Hartenberg (Denavit & Hartenberg, 1955), que utiliza as chamadas matrizes de translação e rotação
(ideal para mecanismos mais complexos).

Antes de iniciar a análise cinemática é preciso definir o modelo que será estudado, bem como
considerar certas hipóteses para simplificação do modelo, deixando o mesmo menos complexo e
desta forma tornando a análise viável.

2.1. Descrição do Modelo e Hipóteses para Modelagem

Considerando os chamados determinantes do modo de andar (Saunders et al.,1953), o modelo
adotado leva em consideração três dos seis principais determinantes, são eles: o compasso, a flexão
do joelho da perna de apoio, e a flexão da planta do pé da perna de apoio (Fig. (1)).

Figura 1. Principais determinantes do modo de andar: (1) o compasso, (4) a flexão do joelho da
perna de apoio, e (5) a flexão da planta do pé da perna de apoio (Dutra, 1995).

O modelo é formado por 4 pares de elementos, a saber: fêmur, tíbia, planta do pé e dedo do pé.
As pernas são idênticas em pesos e comprimentos. O pé está ligado de forma rígida à perna,
formando um ângulo fixo de 90°.

Quanto ao modo de andar, consiste de duas fases (Fig (2)):
 Fase de suporte simples: durante esta fase uma das pernas realiza o movimento de balanço
enquanto a outra é responsável pelo apoio. A extremidade da perna de apoio é assumida como
não deslizante.



 Fase de suporte duplo: está é a fase onde ocorre a transição das pernas, ou seja, a perna em
balanço torna-se perna de apoio e a outra inicia o movimento de balanço. Essa fase ocorre
instantaneamente quando a perna em balanço toca o solo e a perna que antes era de apoio
deixa o solo.

Figura 2. Movimento das pernas, mostrando as fases de suporte duplo e simples (DUTRA, 1995).

Quanto às colisões, cada vez que um dos pés toca o solo, o sistema pode sofrer impactos que
incorrem em acelerações adicionais que influenciam na velocidade (Zheng & Hemami, 1984). Por
esta razão, deve-se impor algumas condições de continuidade às velocidades das pernas para evitar
impactos quando o pé da perna em balanço toca o solo. Por outro lado, considerando a existência de
colisões, o impacto da perna em balanço com o solo é assumido como sendo inelástico e sem
deslizamento. Isso implica que durante o estágio de transição instantânea:

 a configuração do robô permanece inalterada;
 o momento angular do robô sobre o pé de impacto, bem como o momento angular da perna de
apoio (que sofreu impacto) sobre o quadril são conservados. Essas leis de conservação
resultam em uma mudança descontínua na velocidade do robô (Goswami et al., 1996).

Nas análises realizadas não foram consideradas parcelas relativas aos impactos e atrito. Esses
fenômenos tornam a modelagem extremamente complexa e, por muitas vezes, sem solução. Essa foi
uma simplificação necessária para possibilitar a modelagem do sistema.

2.2. Determinação dos Deslocamentos

Adotando o modelo apresentado na Fig. (3), com a especificação dos comprimentos e ângulos, e
utilizando as matrizes de translação e rotação, pode-se determinar as coordenadas da ponta do pé da
perna em balanço em função do ponto inicial de movimento, neste caso a ponta do pé da perna de
apoio. Como a análise é bidimensional a coordenada z será igual a zero, e as coordenadas x e y
serão dadas pelas seguintes equações:

xp = la cos(θ1 + θ2 + θ3 + θ4) + lp cos(θ1 + θ2 + θ3 + θ4) + lt sen(θ1 + θ2 + θ3 + θ4)
+ lf sen(θ1 + θ2 + θ3) − lf sen(θ1 + θ2) − lt sen(θ1) − lp cos(θ1) − la (1)

yp = la sen(θ1 + θ2 + θ3 + θ4) + lp sen(θ1 + θ2 + θ3 + θ4) − lt cos(θ1 + θ2 + θ3 + θ4)
− lf cos(θ1 + θ2 + θ3) + lf cos(θ1 + θ2) + lt cos(θ1) − lp sen(θ1) (2)



onde: xp e yp são as coordenadas da ponta do pé; la é o comprimento da parte do pé responsável
pelo apoio (dedos do pé); lp é o comprimento da parte do pé que levanta do solo (planta do pé); lt é
o comprimento da tíbia; e lf é o comprimento do fêmur.
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Figura 3. Modelo do locomotor a ser analisado.

A partir das Eq. (1) e (2) pode-se determinar as velocidades e acelerações (pela simples
derivação das equações em função do tempo), bem como especificar as outras coordenadas de cada
uma das articulações. Isto é muito importante para determinação das trajetórias que permitem que o
robô bípede ande de forma mais natural (Shih et al., 1993).

Desta forma, além da ponta do pé da perna em balanço, é interessante descrever as equações
para os demais pontos principais do modelo, tais como: os calcanhares, os joelhos e o quadril.
Assim sendo, têm-se as seguintes equações:

a) Coordenadas do calcanhar da perna de apoio:

xca = − lp cos(θ1) − la (3)
yca = − lp sen(θ1) (4)

b) Coordenadas do joelho da perna de apoio:

xja = − lt sen(θ1) − lp cos(θ1) − la (5)
yja = lt cos(θ1) − lp sen(θ1) (6)

c) Coordenadas do quadril:

xq = − lf sen(θ1 + θ2) − lt sen(θ1) − lp cos(θ1) − la (7)
yq = lf cos(θ1 + θ2) + lt cos(θ1) − lp sen(θ1) (8)

d) Coordenadas do joelho da perna em balanço:

xjb = lf sen(θ1 + θ2 + θ3) − lf sen(θ1 + θ2) − lt sen(θ1) − lp cos(θ1) − la (9)



yjb = − lf cos(θ1 + θ2 + θ3) + lf cos(θ1 + θ2) + lt cos(θ1) − lp sen(θ1) (10)

e) Coordenadas do calcanhar da perna em balanço:

xcb = lt sen(θ1 + θ2 + θ3 + θ4) + lf sen(θ1 + θ2 + θ3) − lf sen(θ1 + θ2) − lt sen(θ1) − lp cos(θ1) − la (11)
ycb = − lt cos(θ1 + θ2 + θ3 + θ4) − lf cos(θ1 + θ2 + θ3) + lf cos(θ1 + θ2) + lt cos(θ1) − lp sen(θ1) (12)

No instante inicial do movimento essas coordenadas fornecerão a localização dos pontos
principais do modelo. Após realizado o primeiro passo, as coordenadas fornecem uma localização
instantânea em relação à ponta do pé da perna de apoio. A localização em relação ao ponto inicial
do movimento será dada pela adição do valor do passo aos valores de cada deslocamento
instantâneo.

2.3. Análise Cinemática Inversa

A análise cinemática inversa consiste em especificar equações para determinação dos ângulos
envolvidos no sistema em relação às medidas do modelo, coordenadas de algum ponto principal ou
mesmo de um outro ângulo. Quanto maior o número de graus de liberdade do sistema, mais
complexa se torna a análise inversa. Em nosso caso, os ângulos θ3 e θ4 serão fornecidos por uma
rede neural artificial, como será visto na Seção 3. Logo, resta determinar as equações para
determinação de θ1 e θ2.

Para especificar as equações de θ1 e θ2, a análise se inicia a partir das Eq. (7) e (8) referentes ao
quadril. Em primeiro lugar, determina-se a equação de θ1. Os termos contendo (θ1 + θ2) devem ser
isolados num dos lados das equações. Desta forma, as equações assumem a seguinte configuração:

− lf sen(θ1 + θ2) = xq + lt sen(θ1) + lp cos(θ1) + la (13)
lf cos(θ1 + θ2) = yq − lt cos(θ1) + lp sen(θ1) (14)

Elevando todas as parcelas ao quadrado e somando-se as equações, vários termos terão uma
configuração da forma cos2θ + sen2θ = 1. Então, fazendo-se todas as manipulações algébricas
necessárias, chega-se a uma configuração final da forma:

A cos2θ1 + B cos θ1 + C = 0 (15)

onde:
A = (2xq lp + 2yq lt + 2lpla)2 + (2xq lt + 2yq lp + 2ltla)2

B = (4xq lp + 4yq lt + 4lpla)(2xq la + la
2 + lp

2 + lt
2 − lf

2 + xq
2 + yq

2)
C = (2xq la + la

2 + lp
2 + lt

2 − lf
2 + xq

2 + yq
2)2 − (2xq lt + 2yq lp + 2ltla)2

A Eq. (15) é uma equação do segundo grau, logo:

cos θ1 = 
A

ACBB
2

42 −±− (16)

θ1 = arc cos
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −±−
A

ACBB
2

42

(17)

Vale ressaltar que θ1 deve ser sempre menor que 90°, pois do contrário o locomotor não
permanecerá de pé.



Conhecendo θ1, pode-se então encontrar a equação para θ2. Considerando as mesmas equações
do quadril (Eq. (7) e (8)) e utilizando manipulações algébricas similares às anteriores, chega-se a
equação de θ2, que dependerá do valor de θ1.

D cos2θ2 + E cos θ2 + F = 0 (18)

cos θ2 = 
D

DFEE
2

42 −±− (19)

θ2 = arc cos
⎥
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⎤
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⎢
⎣
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D
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2
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(20)

onde:
D = lf

2

E = 2lf sen θ1 (lt sen θ1 + lp cos θ1 + la + xq)
F = (lt sen θ1 + lp cos θ1 + la + xq)2 − lf

2 cos2θ1

O valor de θ2 também deverá ser sempre menor que 90°.
Assim como na análise cinemática direta, pode-se também especificar velocidades e acelerações

angulares a partir das equações dos ângulos por meio de derivação em função do tempo. Como as
equações são muito extensas é aconselhável utilizar um programa computacional de cálculo caso as
mesmas venham a ser utilizadas. Levando-se em consideração que as Eq. (17) e (20) estão
relacionadas ao cálculo de um arco-cosseno, pode-se generalizar uma solução para as velocidades e
acelerações angulares da seguinte forma:

nθ&  = − u
u

& 
1

1
2−

(21)

nθ&&  = −
( )

2

32
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1 uu
u
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−

− u
u

&& 
1

1
2−

(22)

onde: n = 1, 2; e u se refere as expressões entre colchetes nas Eq. (17) e (20).

3. IMPLEMENTAÇÃO DA REDE NEURAL

Estudos do movimento humano, bem como a análise de Fourier (Braune, 1987), demonstram
que o movimento dos ângulos θ3 e θ4 (veja Fig. (3)) podem ser descritos com grande precisão por
seu harmônico fundamental, estando o bípede nas fases de suporte duplo ou simples.

As funções harmônicas têm as seguintes formas:

θ3 = θ30 + A3 cos ωt (23)

θ4 = θ40 + A4 cos 2ωt (24)

onde: θ30 e θ40 se referem aos valores iniciais dos ângulos; A3 e A4 se referem às amplitudes; ω é a
velocidade angular; e t é o tempo.



A rede deverá especificar os ângulos θ3 e θ4 a partir de um comprimento do passo desejado.
Pode-se adotar as seguintes medidas para os comprimentos: la = 0,03 m, lp = 0,11 m, lt = 0,37 m e
lf = 0,37 m. Com estas medidas pode-se então configurar a rede para gerar os resultados desejados.

A rede foi programada no software MATLAB (Version 5.2. Copyright 1984 - 1998. The Math
Works, Inc.) e configurada para treinamento com os seguintes parâmetros:

 25 conjuntos de pontos de treinamento;
 1a camada intermediária com 6 neurônios do tipo sigmóide (tangente hiperbólica);
 2a camada intermediária com 4 neurônios do tipo sigmóide (tangente hiperbólica);
 camada de saída com 2 neurônios do tipo linear;
 função utilizada: Levenberg-Marquardt backpropagation;
 número máximo de épocas para treino: 2000;
 erro médio quadrático (MSE): 1 x 10−7.

Os dados de saída da rede foram padronizados, com o ângulo θ3 variando de 30 a 50° e θ4

variando de −40° a 0. Após o processo de treinamento, verifica-se a capacidade de generalização da
rede, escolhendo-se diferentes valores de passo e especificando-se θ3 e θ4 (fase de simulação da
rede, com 99 conjuntos de pontos).

Com os valores de θ3 e θ4 já definidos pela rede, pode-se então calcular os valores de θ1 e θ2
pelas Eq. (17) e (20), o que finaliza a análise.

4. RESULTADOS

Utilizando a rede neural pode-se observar então os resultados encontrados por meio do gráfico
apresentado pelo próprio programa de simulação, possibilitando uma avaliação do desempenho da
rede. A Fig. (4) apresenta o gráfico fornecido pela rede, enquanto a Fig. (5) mostra o gráfico
construído por Dutra (1995), a partir de uma análise teórica (observe que a diferença na inclinação
se deve a mudança de orientação no eixo que contém os valores de θ3). Comparando os resultados
de ambos os gráficos, o erro no valor de θ3 fornecido pela rede foi de 0,6% em média, apresentando
um valor máximo de cerca de 1,1%. Com relação a θ4, o erro foi de 5,5% em média, com valor
máximo de cerca de 8,8%. Nota-se claramente a semelhança entre os dois gráficos.

Figura 4. Gráfico fornecido pela rede, considerando a relação entre θ3, θ4, e o passo s.

θ3 (graus)

θ4 (graus)

s (metros)



Figura 5. Gráfico construído por Dutra (1995), considerando a relação entre θ3, θ4, e o passo s.

Em relação aos erros, verifica-se que os erros nos valores de θ4 são maiores que os erros nos
valores de θ3, mostrando que é mais difícil para a rede aprender o ângulo θ4 do que aprender o
ângulo θ3. Possivelmente um trabalho mais apurado na configuração da rede para treinamento
poderá resolver o problema. De qualquer forma o ângulo θ4 tem menor influência que o ângulo θ3
na determinação dos deslocamentos dos pontos principais do modelo, o que pode ser visto na Seção
2.2. A Fig. (6) apresenta uma simulação do movimento do robô bípede.

Figura 6. Simulação do movimento do robô bípede.

5. CONCLUSÕES

O trabalho aqui apresentado mostrou a análise cinemática de um modelo de locomotor bípede,
com as principais hipóteses para modelagem, e pela implementação de uma rede neural foi possível
determinar alguns dos principais determinantes do modo de andar em conjunto com as equações
fornecidas através da análise cinemática inversa.

θ3 (graus)

θ4 (graus)

s (metros)



Este estudo demonstrou a possibilidade do emprego de redes neurais para determinação dos
ângulos de posicionamento para um sistema mecânico de locomoção bípede. A rede forneceu
resultados excelentes, com erro no valor de θ3 de 0,6% em média, e um valor máximo de cerca de
1,1%. Com relação a θ4, o erro foi de 5,5% em média, com valor máximo de cerca de 8,8%.

Vale ressaltar a grande importância da fase de treinamento, onde a rede consegue assimilar as
informações relativas ao problema, possibilitando um desempenho ótimo na simulação e
consequentemente apresentando os resultados desejados ao final do processo.
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Abstract. In the bipedal locomotion we have involved a great number of degrees of freedom,
becoming essential a good coordination between them. Most of this coordination is performing by
the central nervous system, generating signals in accordance with the desired step. One of the
forms to generate these signals is through a artificial neural network, that has ability to "learn"
complicated relations of nonlinearities, providing the control of systems through the classic method
of Backpropagation. The objective of the work presented here is to make the kinematical analysis of
a bipedal robot using the method of Denavit-Hartenberg, applying then neural networks for
determination of the main degrees of freedom of the mechanism. Through the application of a
neural network, it can be guaranteed that the degrees of freedom will be supplied in "real time",
from a length of desired step. This study demonstrates the possibility of the application of neural
networks for determination of the positioning angles for a mechanical system of bipedal
locomotion.
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