
 
 
 
 
 

OTIMIZAÇÃO DA TRAJETÓRIA DE UMA ESTRUTURA PARALELA 
UTILIZANDO ALGORITMOS GENÉTICOS 

 
Plínio José Oliveira1 
¹Universidade Federal de Goiás – Campus de Catalão (GO) – Brasil. 
Av. Dr. Lamartine Pinto de Avelar, nº 1120, CEP: 75701-220, Catalão.  
Fone : (64) 411 –3929      e-mail: plinio127@ibest.com.br 
 
Fernando Rodrigues Gonzalez2 

João Carlos Mendes Carvalho2 

Sezimária F. Pereira Saramago2 

²Universidade Federal de Uberlândia – Campus Santa Mônica 
Av. João Naves de Ávila, 2160, CEP: 38408-100 Uberlândia (MG) – Brasil. 
Fone: (34) 3239 - 4156     e-mail: saramago@ufu.br 
 
Resumo. Manipuladores paralelos são de grande interesse principalmente porque 
apresentam vantagens em varias aplicações, mostrando grande resistência, exatidão de 
posicionamento, capacidade de carga maior que manipuladores seriais e podem ser operados 
a altas velocidades e acelerações. No Laboratório de Robótica e Mecatrônica em Cassino, 
Itália, foi criado um mecanismo paralelo moderno com três graus de liberdade, chamado 
CaPaMan (Cassino Parallel Manipulator). O objetivo principal deste trabalho é otimizar a 
trajetória da estrutura paralela CaPaMan, em termos da energia gasta por seus atuadores. 
Conhecendo-se os ângulos iniciais  e finais  de cada mecanismo, a trajetória pode ser 
calculada assumindo que os ângulos de entrada são representados por uma função cúbica do 
tempo t.  A modelagem cinemática é obtida derivando-se a equação da trajetória em relação 
ao tempo. O modelo analítico para a dinâmica inversa do CaPaMan utiliza as equações de 
Newton-Euler. A cadeia cinemática peculiar e as propriedades de simetria da arquitetura do 
CaPaMan são úteis nesta formulação, que permite calcular os torques de entrada, 
responsáveis pela obtenção de uma determinada trajetória da plataforma móvel. Como 
método de otimização, propõe-se a utilização de algoritmos genéticos como alternativa ao 
método seqüencial. A presença de mínimos locais justifica a utilização de métodos 
randômicos. Alguns exemplos numéricos são apresentados para verificação e validação da 
metodologia proposta. 
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1. INTRODUÇÃO 
 
 O CaPaMan é composto de uma plataforma fixa (PF) e uma móvel (PM) as quais são 
conectadas entre si por três pernas. Cada uma delas  fixada à PF através de um mecanismo 
articulado de quatro barras, os quais se mantém sempre na vertical e possuem juntas 
rotacionais. Os centros das bases destes mecanismos estão dispostos nos vértices de um 
triângulo eqüilátero na PF, de modo que os planos que  os contém, formam entre si ângulos de 
120o; atribuindo desta forma propriedades de simetria ao manipulador. 



 
Figura 1. Arquitetura e  parâmetros do CaPaMan 

 
 Conforme representado na Fig. 1, as barras conectoras entre as pernas dos mecanismos de 
quatro barras hi, e a PM  são constituídas por duas juntas; uma esférica conectando a extremidade 
superior da barra à PM nos respectivos Hi e a outra prismática, a qual é fixada no ponto médio e 
numa posição transversal à biela do mecanismo de quatro barras.  Considerando o índice i=1,2,3 os 
parâmetros da perna do CaPaMan são: ai=bases dos mecanismos de quatro barras, mi=comprimento 
das manivelas de entrada, ci=comprimento das bielas, di=comprimento das manivelas de saída, 
hi=comprimento das barras conectoras, rP= raio da PM é dado pela distância do centro P da PM às 
juntas esféricas Hi, rB= raio da PF é dado pela distância do centro O da PF aos pontos médios Oi das 
bases, Si=coordenadas dos deslocamentos das juntas prismática, δi= ângulos de rotações estruturais 
entre OX1 e OXi bem como entre PH1 e PHi, αi= ângulos de entrada, formados entre as bases e as 
manivelas de entrada dos mecanismos de quatro barras (são as variáveis cinemáticas). 
 Para descrever o comportamento cinemático e dinâmico do CaPaMan  considera-se dois 
sistemas. Um sistema inercial OXYZ é fixado à PF, sendo que a origem O é o centro da PF. O outro 
sistema PXPYPZP é atado à PM e P é o centro da PM, o eixo X tem a mesma direção do segmento 
ligando os pontos O e O1.  O eixo Z é perpendicular ao plano da PF e Y é tomado neste plano de 
modo a definir um sistema cartesiano. O sistema móvel PXPYPZP é fixado de modo que o eixo XP 

seja coincidente com a linha que une os pontos P(x, y, z) e H1. O eixo YP é colocado sobre a PM de 
maneira que o sistema móvel seja ortogonal. Como os planos que contém os mecanismos de quatro 
barras formam entre si ângulos de 120°, cada sistema cartesiano de referência OiXiYiZi para i=1,2,3 
é tomado de maneira que Oi coincida com o centro da base ai do mecanismo de quatro barras. O 
eixo Xi é perpendicular ao plano do mecanismo de quatro barras, o eixo Yi coincide com a base do 
mecanismo e Zi é tomado de modo que o sistema de referência OiXiYiZi seja cartesiano. Desse 
modo cada Xi é girado de 120° em relação ao Xi imediatamente anterior. A orientação do sistema 
móvel PXPYPZP fixo à PM é descrita em relação ao sistema inercial OXYZ pelos ângulos de Euler 
θ ,ϕ  e ψ , onde θ é a rotação em torno do eixo Z, ϕ é a rotação  em torno do eixo Y’, rotação que  
inclina a PM em relação ao sistema inercial e ψ é uma rotação em torno do eixo ZP. 
 
2. MODELAGEM GEOMÉTRICA 
 
 Utilizando-se as propriedades de simetria do CaPaMan (Carvalho e Ceccarelli, 2001) obtém-se 
a posição do ponto P(x,y,z) centro da plataforma móvel e sua orientação em termos dos ângulos de 
Euler  θ ,ϕ  e ψ , em relação ao sistema fixo  OXYZ como :      
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 onde, c e s representam o cosseno e seno de um dado ângulo. O deslocamento da junta 
prismática é dado por: 
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3. CINEMÁTICA DO CAPAMAN 
 
 Como na robótica industrial as unidades de motor são controladas em posição e velocidade, o 
ângulo de entrada pode ser dado por uma função cúbica do tempo t. Dados os pontos αο e αF, inicial 
e final, considerando o tempo total de percurso T como variável, a trajetória αi(γ) é aproximada por 
B-splines cúbicas uniformes com os nós  0=γ1 < γ2 <...< γm-1  < γm =1. Neste caso, uma nova 
variável de tempo definida como γ = t/T varre o intervalo [0,T] sobre o intervalo [0,1]. Assim, 
conforme demonstrado por Saramago e Steffen (1998), tem-se: 
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 Neste caso, Ci

j  são os coeficientes da B-spline que aproximam αi(γ)  no intervalo Ij. 
Assim, αi

j(γ)  é um polinômio cúbico em γ, e suas derivadas em relação a γ são bem definidas. Seja 
um intervalo Ij=[γj , γj + ∆], ∆=1/(m-1), os quatro segmentos que compõe as  funções base, não-
nulas neste intervalo, são dados por: 
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 Assim, as trajetórias  αi são modeladas por splines cúbicas. A velocidade e a aceleração são 
obtidas pelas derivadas temporais destas splines. Portanto, as equações (1) a (3), podem ser usadas 
para simular as operações cinemáticas do CaPaMan quando suas dimensões e parâmetros de 
movimento são fornecidos. 
                        
4. DINÂMICA DO CAPAMAN 
 
 As equações de Newton-Euler para o CaPaMan podem ser formuladas considerando-o como 
um corpo rígido (Tsai, 1999).  A posição, a velocidade e a aceleração da plataforma móvel são 
obtidas da cinemática do CaPaMan. Nesta formulação os três mecanismos de quatro barras são 
paralelogramos articulados com ai = ci e mi = di. Considera-se também rB= rP. 
 

 

 
 

Figura 2. Forças na plataforma fixa e móvel 
 
Deste modo, o equilíbrio dinâmico para a PM é representado pelas equações de Newton-Euler 

na forma: 
 

inext FGFF =++  ,    inext NNN =+  (12) 
 
onde, Fext é a força externa; Next é o torque externo; G é o peso da plataforma móvel; F é a soma das 
forças de reação Fi (i=1, 2,3) nos pontos Hi da PM; N é o torque resultante em relação ao sistema de 
referência OXYZ fixo na base PF.  Além disso, devem ser considerar as expressões: 
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onde, M  é a massa da PM; aP é a aceleração do ponto central P; ω&  e ω  são a aceleração angular  e 
velocidade;  I é a matriz de inércia da plataforma móvel. A matriz de inércia I pode ser determinada 
por: 
 

t
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considerando  R  a matriz de rotação, Rt  a sua transposta e Ic a matriz de inércia da PM com respeito 
ao centro de massa. Quando o atrito nas juntas é desprezado, e consideram-se somente as forças 
aplicadas aos pontos articulados Hi pela barras conectoras hi, as quais estão contidas em planos 
paralelos aos respectivos planos dos paralelogramos articulados, então estas forças nas juntas têm 
somente as componentes Fiy e Fiz para i=1,2,3. As componentes da força resultante F e torque N, 
dados respectivamente pelas Eqs.  (13), são descritas por: 
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considerando 















=

















0
i

i

P

iz

iy

ix

s
c

Rr
u
u
u

δ
δ

          i =1, 2 , 3     (16)   

 
onde, a matriz de transformação R é dada pela Eq. (5). As equações de (12) a (16) podem ser 
resolvidas analiticamente, obtendo-se as componentes de força Fiy e Fiz expressas pela equação 
matricial: 
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onde, as matrizes A e B  apresentadas em  Carvalho e Ceccarelli (2001),  dependem dos uix , uiy, uiz. 
Os torques de entrada τPi , devidos à inércia da plataforma móvel  na manivela de cada mecanismo 
articulado de quatro barras, podem ser obtidos do equilíbrio dinâmico das pernas através das 
seguintes expressões: 
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 Através da ánalise cinetostática de mecanismos obtém-se os  torques de entrada dos 
mecanismos de quatro barras devido à inercia das pernas do CaPaMan. Os quais  são dados por:  
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 Visto que as equações deduzidas são algébricas e lineares nas forças de inércia, o princípio da 
superposição pode ser aplicado. Desse modo os efeitos dinâmicos da plataforma móvel podem ser 
superpostos aos efeitos dinâmicos dos paralelogramos articulados. Assim, o torque total τi na 
manivela de entrada de cada paralelogramo articulado pode ser obtido somando os torques τPi e τMi, 
Eqs. (18) e (19), que são obtidos pela análise dinâmica da plataforma móvel e dos paralelogramos 
articulados respectivamente.  
 
5. REVISÃO DE ALGORITMOS GENÉTICOS 
 
 Trata-se de um processo randômico de otimização que utiliza valores aleatórios a serem 
atribuídos às várias variáveis que compõem o sistema. Denomina-se por indivíduo o conjunto de 
valores atribuídos para cada variável. A probabilidade ou aptidão de cada indivíduo é um valor que 
representa o grau de adaptabilidade deste, ou seja, o quão próximo este conjunto de valores está do 
conjunto solução do problema em relação a um agrupamento de indivíduos. 
A programação genética faz com que sejam produzidas várias gerações, com o mesmo número de 
indivíduos da geração inicial. A definição dos indivíduos das gerações seguintes é baseada em três 
operadores: seleção, cruzamento e mutação. No processo de seleção, os indivíduos de baixa aptidão 
são eliminados e os de aptidão mais alta são repetidos com uma taxa de repetição proporcional à 
respectiva aptidão. O cruzamento é geralmente feito após a seleção e consiste na criação de 
indivíduos intermediários entre outros dois indivíduos genitores. Alguns algoritmos genéticos são 
baseados no cruzamento heurístico, para o qual o indivíduo descendente tende mais para o 
indivíduo genitor de que apresenta melhor valor para a função-objetivo, similarmente ao conceito 
de dominância da biologia. A probabilidade de ocorrência do cruzamento entre dois indivíduos 
pode ser determinada pelo usuário, sendo 25% um valor bastante utilizado. O processo de mutação 
permite que a rotina de otimização percorra uma grande quantidade de máximos ou mínimos locais 
para facilitar a determinação do extremo global. Baseia-se na variação aleatória de alguma ou de 
todas as variáveis do indivíduo. A probabilidade de ocorrência da mutação mais utilizada é de 1%. 
Este valor também pode ser modificado pelo usuário. Ao término destes três processos, estará 
concluída a nova geração de indivíduos. 
 



6. PROBLEMA DE OTIMIZAÇÃO 
 
Seja o problema de otimização definido como: 
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Sujeito  a:       α0i <  αji < αfi  
   max maxji W|)t(W| ∆≤∆   (22)   
 max maxji |)t(| ττ ≤    ;   para   j=1,...,m  e  i=1,..,n     
 
onde, T é o tempo total de percurso, E é a função objetivo definida pela energia mecânica, αoi e αfi 

são os ângulos  iniciais e finais de cada mecanismo, ∆Wmax é a restrição da variação de aceleração 
(jerk), τmax é a restrição de torque.  
Assim, adotados m pontos, para um manipulador com n=3 mecanismos,  ao desenvolver a Eq. (6) 
para o deslocamento, obtém-se um total de n(m+2) incógnitas a determinar. O número total de 
equações para cada mecanismo devido ao deslocamento é m. Torna-se necessário, portanto, 
considerar conhecidas as velocidades iniciais e finais para obter duas novas equações (normalmente 

oiα& = fiα& =0 ). Desta forma, obtém-se um sistema de n(m+2) equações lineares e n(m+2) incógnitas 
Ci

j a serem determinadas. No problema de otimização da trajetória as variáveis de projeto são os 
coeficientes dos polinômios Ci

j  e o  tempo total T.      
 
7. SIMULAÇÃO NUMÉRICA. 
 
 Durante as simulações foram adotados: o tempo inicial T=2 s,  torque máximo τmax = 10 N, 
variação máxima de aceleração (jerk)  ∆Wmax = 300 rad/s3. A spline foi construida considerando 
m=80 pontos. A velocidade dos pontos iniciais e finais é nula. Utilizou-se um programa elaborado 
no MATLAB para cálculo da  energia, em conjunto com o programa de otimização GAOT. 
 

 
 

 (a)   (b)   
 

Figura 3. Resultados obtidos para o caso 1, com  três angulos iguais:  
(a) Angulo dos mecanismos , (b) Trajetória do manipulador 

   
 No primeiro caso em estudo considerou-se que os três mecanismos possuem os ângulo de 
entrada iguais α1=α2=α3, variando de 50°  a 130°.  Durante o processo de otimização adotou-se 
para o algoritmo genético 200 individuos e 1000 gerações. A  energia inicial calculada vale E= 1,83 



Nm. A variação dos ângulos de entrada são representados na Fig. 3(a). Para este caso a trajetória 
resulta em um movimento vertical, como pode ser observado na Fig. 3(b). O tempo ótimo obtido foi 
T=3 s e a energia ótima 1,75 Nm (reduz a 95% do valor inicial). O tempo computacional necessário 
foi de  70 s. 
 O segundo caso considera que os ângulos de entrada de cada mecanismo podem variar de 
forma independente. Adotou-se para o algoritmo genético 200 individuos,  3000 gerações. A 
variação adotada para os ângulo de entrada são: 80°< α1< 90° , 70°< α2< 80°, 50°< α3< 120°. A 
variação dos ângulos de entrada são representados na Fig. 4(a) e a trajetória curvilinea na Fig. 4(b). 
O cálculo da energia inicial resultou em E= 0,25 Nm. O tempo ótimo obtido foi T=2,5 s e a energia 
ótima  E=0,22 Nm (reduz a 88% do valor inicial). O tempo computacional é maior neste caso (em 
torno de 200 s), o número de gerações  é maior devido a  complexidade do  modelo dinâmico.  
 

  
 (a)   (b)   

 
Figura 4. Resultados obtidos para o caso 2, variando os  três angulos: 

  (a) Angulo dos mecanismos , (b) Trajetória do manipulador  
 
 Vale ressaltar que nos primeiros testes o algoritmo genético foi aplicado sem especificar o tipo 
da função de mutação. Desta forma os 4 tipos de mutação disponíveis no GAOT foram aplicados de 
forma aleatória, conforme as probabilidades pré-existentes no programa. Entretanto observou-se 
que, devido à falta de controle sobre o operador mutação, os valores estimados para os coeficientes 
das splines apresentaram saltos, reduzindo a suavidade das curvas que descrevem os ângulos de 
entrada dos mecanismos. Isto resultou em grandes variações de aceleração e fez com que o Jerk 
sempre apresentasse valores superiores ao máximo permitido. Resultados satisfatórios só foram 
obtidos utilizando a mutação não-uniforme (“nonUnifMutation”), onde a variável aleatória tem seu 
valor modificado de acordo com o valor original da variável e de acordo com a geração onde o 
algoritmo está trabalhando, segundo a função: 
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onde: xi' = é o valor da variável após a mutação; xi = é o valor original da variável; r1 e r2 : números 
randômicos entre (0,1); Ger= geração onde o algoritmo se encontra Gmax= número máximo de 
gerações; β = parâmetro de ajuste (quanto maior, menor será a variação da mutação); xl

i e xu
i = os 

limites inferior e superior de busca. 



 Para reduzir ainda mais a variação da mutação, atribuiu-se um valor de 6 ao parâmetro β (duas 
vezes o valor “default” do GAOT). Assim, foi possível manter o processo de mutação sem 
ocorrência de variação excessiva dos coeficientes das splines. 
 Para aumentar a velocidade do processo, foi atribuída uma nova restrição à rotina de cálculo 
dos coeficientes. Tal restrição implica que se um indivíduo apresenta uma variação de coeficientes 
grande, este será eliminado do processo de otimização. Após estes cuidados, todas as restrições 
impostas foram obedecidas.  
  
8. CONCLUSÃO 
 
 Neste trabalho é apresentada uma formulação genérica para a otimização de trajetórias de 
estruturas paralelas. O problema ótimo foi definido pela minimização da energia mecânica 
consumida pelos atuadores. A trajetória é modelada por B-splines cúbicas. É apresentado um 
modelo analítico para a dinâmica inversa do CaPaMan, utilizando as equações de Newton-Euler. A 
cadeia cinemática peculiar e as propriedades de simetria da arquitetura do CaPaMan são úteis nesta 
formulação, que permite calcular os torques de entrada, responsáveis pela obtenção da energia. 
Algorítmos genéticos mostrou-se eficiente na solução do problema ótimo, sendo necessário 
controlar o operador mutação para obter curvas suaves.  
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Abstract. Parallel manipulators are of great interest to industry, mainly because they present 
advantages in many applications: more strength, more positioning precision, greater load carrying 
capacity when compared with serial manipulators, and can be operated at great velocities and 
accelerations. CaPaMan (Cassino Parallel Manipulator) is a three-degree of freedom parallel 
mechanism that has been designed and built at Laboratory of Robotics and Mecatronics in Cassino, 
Italy. The main objective of this work is to optimize CaPaMan trajectories in terms of the energy 
consumed by actuators connected to the robots legs. The kinematics and inverse dynamics of the 
CaPaMan parallel structure are described in a closed form in order to compute the input torque on 
mechanism legs. The inertia effects of the movable platform have been obtained using Newton-
Euler formulation and the kinetostatic analysis of mechanism computing the inertial effects of the 
parallelogram legs.  From this formulation a general optimum path planning procedure is 
presented. Given the initial and final input angles the trajectory is defined using cubic spline 
functions. The minimal mechanical energy consumed by actuators is considered to build an 
objective function. The numerical solution of the optimization problem is investigated by using 
genetic algorithm. Some numerical results of the optimum procedure is presented in order to show 
the efficiency of the proposed formulation.  
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