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Resumo. Apresenta-se neste trabalho o modelo dinâmico de um braço robótico planar vertical, 
com dois elos não-rígidos e duas juntas revolutas, onde se considera a ação da gravidade. Utiliza-
se a formulação de Newton-Euler e a teoria elementar das vigas, junto com o método dos elementos 
finitos. Também, apresenta-se o estudo da estabilidade segundo o método de Liapunov baseando-se 
na analise dos autovalores da matriz de Jacobi. Estudo importante no controle de posição do braço 
e na melhora da sua performance. 
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1. INTRODUÇÃO 
 

No caso particular dos manipuladores robóticos, a análise dinâmica desempenha um papel 
importante no projeto mecânico e no sistema de controle. A flexibilidade existente nos elos, 
acoplamentos ou transmissões, atuadores, etc. resultam em vibrações o que aumentam a 
instabilidade e reduzem a performance do sistema. 

A maioria das análises e dos controles de robôs industriais é baseada na concepção de que o 
braço do robô é formado por um conjunto de corpos rígidos, e que são capazes de levantar cargas de 
pesos variáveis. Estudos relacionados com o comportamento de braços robóticos leves (não-
rigidos), de material adequado e dimensões - área da seção reta - bastante reduzidas, são muito mais 
complexos. Neste caso, o braço tornar-se-á flexível o que, inevitavelmente, causará o aparecimento 
de deflexões ou, pelo menos, vibrações, acarretando problemas de precisão e de estabilidade no 
posicionamento final da extremidade livre. Por isso, a determinação de um modelo matemático para 
um braço não-rígido e o correspondente projeto do seu sistema de controle tem exigido muito dos 
engenheiros que trabalham nesta área (Hollerbach, 1980; Sunada e Dubowsky, 1983; Cannon e 
Schimitz, 1984; Book, 1984 e 1993; Wang e Vidyasagar, 1987; Chang e Hamilton, 1991; e Xi et. 
al. 1993).  

Usoro et. al. 1986, utilizaram a aproximação do Lagrangeano e o método dos elementos finitos 
para a modelagem de um manipulador com dois braços flexíveis. Como em outras pesquisas do 



gênero (Gamarra-Rosado et. al. 1996), o método dos elementos finitos, baseado na teoria elementar 
das vigas, também foi empregado na determinação do modelo matemático deste sistema. 

Neste trabalho, apresenta-se a dinâmica de um braço não-rígido o qual considera os efeitos da 
gravidade junto com a carga na extremidade livre do braço. O modelo é obtido através da 
superposição do movimento elástico de pequenas amplitudes, deslocamento elástico, em relação a 
configuração rígida. E finalmente, apresenta-se o estudo da estabilidade do braço robótico segundo 
o método de Liapunov baseando-se na analise dos autovalores da matriz de Jacobi. Com base nestes 
resultados, pretende-se implementar o controle de posição do braço, evitando níveis de vibração e 
melhorando sua performance. 
 
2. DESCRIÇÃO E DINÂMICA DO BRAÇO ROBÓTICO 
 

O braço robótico planar em estudo consiste de dois elos não-rígidos e duas juntas revolutas. 
Conforme mostra a Fig. (1), considera-se que o braço se movimenta somente ao longo do plano 
vertical (x,z). O elo superior faz um ângulo φ(t) com o eixo z, que é representado na vertical, e o elo 
inferior faz um ângulo β(t) com a mesma direção vertical. O sistema inercial (x,z) é denominado 
sistema de referência e os sistemas de coordenadas locais (x1, z1) e (x2, z2) são afixados no elo 
superior e inferior, respectivamente, e são móveis; l1e l2 são os comprimentos do elo superior e 
inferior, respectivamente; J1, J2 e JP são os momentos de inércia dos atuadores e da carga na 
extremidade livre; MA1 e MA2 são as massas dos atuadores localizadas nas juntas revolutas; e MP a 
massa da carga na extremidade livre do braço; Zi

1 e Zj
2 são as coordenadas local do ponto nodal i e j, 

respectivamente; Ui
1 e Uj

2 são as deflexões locais do ponto nodal i e j, respectivamente; e T1 e T2 
são os torques aplicados nos elos superior e inferior, respectivamente. 
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Figura 1. Configuração do braço robótico. 
 
Para o cálculo das forças e momentos que atuam no braço, a massa própria do elo superior será 

dividida em n elementos infinitesimais de massa e a do elo inferior, em m elementos. Cada um 
destes pontos de concentração de massa será denominado ponto nodal. Portanto, no sistema como 
um todo, existirá um total de (n+m+1) pontos nodais. A carga da extremidade livre do braço 



inferior será considerada como uma carga concentrada e localizada no último ponto nodal do elo 
inferior. As massas dos atuadores são consideradas como massas concentradas nos pontos nodais 
iniciais de cada elo. É conveniente esclarecer que, o asterisco como índice (* ) está relacionado com 

o último ponto nodal de cada elo, de modo que 1
*f  representa a força que atua no último ponto nodal 

do elo superior e 2
*f

, a força que age no último ponto nodal do elo inferior. As massas dos 

atuadores são consideradas como massas concentradas nos pontos nodais iniciais de cada elo. 

A força total que age no elo inferior é calculada no sistema de coordenadas ( ),p px z  paralelo ao 

sistema local ( )1 1,x z  e com origem na junta que liga os dois elos, conforme mostra a Fig. (2). As 

posições das massas dos atuadores MA1 e MA2 e a carga aplicada na extremidade livre do braço 
inferior MP, também são mostradas nessa figura, assim como, RH e RV  os quais são os esforços 
externos de reação relacionados com o apoio do sistema. 

          

 
Figura 2. Diagrama de corpo-livre do sistema robótico 

 
O torque T2 que age no elo inferior no sistema de coordenadas local (x2,z2), onde 22

jf representa 

as componentes dos esforços neste elo, obtém-se a seguir (Gamarra-Rosado, 1999), 
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Da mesma forma, do somatório dos torques, pode-se obter a expressão do torque T1 a seguir, 
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Da teoria elementar das vigas junto com o método de elementos finitos (Clough e Penzien, 

1982), obtém-se na forma matricial a expressão para o elo inferior,  
 

2 2 22K V f=            (5) 
 
onde, K2 é a matriz de rigidez (2m×2m) para uma viga sujeita a esforços, e 
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Para o elo superior, devido à ação do torque T2 na extremidade livre do elo, a expressão será 

dada por, 
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onde, ( )1 1 1 1 1 1 1 1 1
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e, s é a inclinação na extremidade livre do elo superior. 



 
3. MATRIZ DE JACOBI  E ANALISE DA ESTABILIDADE 
 

A seguir, apresenta-se o estudo da estabilidade do sistema e para isto, consideram-se algumas 
hipóteses a fim de viabilizar a análise. Entre elas, observa-se que a deformação ao longo do eixo z1,2 
é desprezível e não compromete os resultados. Desta forma, como a aceleração em z é nula, as 
forcas que agem num ponto nodal qualquer do elo superior e inferior somente terão componentes 
em x. Assim, as expressões dos torques nos respectivos atuadores serão simplificadas. 

Mesmo fazendo estas simplificações, obtém-se um sistema de equações totalmente acopladas e 
não-lineares devido aos esforços centrífugos e de Coriolis que, após sofrerem uma reorganização de 
seus termos pode ser escrito na forma matricial, 

   
τωωωω =+ ),()( ��� hM           (7) 

 

onde, { }φβω ������������������ ,,,,...,,,...,, 122
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Linearizando esta expressão em torno do valor nominal ω~  e assumindo que, δωωω += ~ ; 

ωδωω ��� += ~ ; ωδωω ������ += ~ ; e δτττ += ~ , obtém-se a matriz de Jacobi para este sistema (Hongzhao et. 
al. 1994), 
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Analisando o sistema com apenas um nodo para cada elo, torna-se possível determinar os 

autovalores aplicando-se a relação: 0)~,( =− IytJ λ . Assim, de acordo com os critérios de 

estabilidade segundo o método de Liapunov, se a parte real das raízes for positiva, a resposta do 
sistema divergirá e o sistema será considerado instável. Por outro lado, quando a parte real for 
negativa, o sistema será estável. Portanto, pode-se concluir da analises das expressões dos autovalores 
obtidos que embora o sistema seja estável, a resposta se encontra na margem da região estável. Caso o 
modelo não seja obtido de forma acurada e bastante preciso o sistema pode-se tornar instável com 
muita facilidade. 
 
4. MODELO SIMULADO 

 
O sistema robótico tem sido simulado seguindo o diagrama de blocos segundo a Fig. (3) e tem-

se utilizado os valores dos parâmetros do modelo conforme a Tab. (1). 
 

 Tabela 1. Parâmetros utilizados na simulação 
 

l1 , l2 Comprimentos do 1º e 2º elo 0,3  [m] 
n, m Numero de elementos em cada elo 4 
E Modulo de Elasticidade de Young 1,3x1012  [N/m2] 
ρ Massa por unidade de comprimento 0,1  [Kg/m] 
I Inércia da seção circular dos elos 0,3x10-12  [m4] 
MP Carga na extremidade livre do braço 2x10-3  [Kg] 
MA1 , MA1 Massa de cada Atuador 8x10-2   [Kg] 
φd  , βd Ângulos desejados nas Juntas 0,768 e 0,384  [rad] 
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Figura 3. Diagrama de blocos da simulação 
  

Observa-se na Fig. (4), que a linha contínua corresponde ao comportamento da junta definida 
pelo ângulo φ (Braço), e a linha tracejada corresponde ao comportamento da junta definida pelo 
ângulo β (Antebraço). Para uma manobra bastante brusca e rápida conforme a simulada, podem-se 
observar certas oscilações na resposta permanente devido as perturbações originadas pelas 
deflexões ou deslocamentos que ocorrem nas extremidades finais de cada elo, conforme a Fig. (5).   

 

 
 

Figura 4. Respostas das juntas revolutas 
 

 
 

Figura 5. Deslocamento nas extremidades finais de cada elo 
 



Nesta Figura (5) são visíveis as deflexões ou deslocamentos que ocorrem nas extremidades 
finais dos elos (na junta 2 e na extremidade livre do braço, respectivamente). Como pode-se 
observar estas respostas são totalmente acopladas o que verifica o modelo dinâmico do braço. Estas 
oscilações que ocorrem nos elos, assim como nas juntas, podem causar o aparecimento de 
vibrações, acarretando problemas de precisão e de estabilidade no posicionamento final da 
extremidade livre. 

Estes resultados serão levados em consideração em futuros trabalhos na área de controle para 
efeito de precisão do efetuador do manipulador.  
 
5. CONCLUSÕES 

 
Um fator de importância é o entendimento do que vem a ser estabilidade para sistemas 

dinâmicos. No caso do braço robótico não-rígido, não há dúvidas que a instabilidade está 
relacionada com as deflexões da extremidade de cada elo ou, mais propriamente, está relacionada 
com a vibração a que fica sujeita o braço não-rígido durante a manobra. Porém o fato do braço 
vibrar não quer dizer que ele seja instável. O conceito de estabilidade segundo Liapunov está 
relacionado com a trajetória no espaço dos estados e isto significa que a posição do braço está 
variando continuamente em função do seu deslocamento angular e da deformação a que fica sujeito 
durante o movimento. 

O estudo individualizado de cada elo do braço robótico caracterizou-se como uma boa 
alternativa para a análise da estabilidade de tais sistemas. As equações originais eram muito 
extensas para permitir qualquer tipo de análise, porém, após a separação dos elos elas se tornaram 
mais compactas. Embora tenha sido possível fazer o estudo da estabilidade dos elos, ele está longe 
se ser simples, tendo em vista a grande quantidade de termos que fazem parte das equações 
necessárias para a análise do sistema. A análise independente dos elos só foi viável porque a 
redução das matrizes de quarta ordem do braço robótico para matrizes de segunda ordem dos elos 
foi feita sem descaracterizar a expressão geral do sistema e foi feita, também, levando-se em 
consideração as interações entre os elos. Com base nestes resultados, pretende-se implementar o 
controle de posição do braço robótico, evitando níveis de vibração e melhorando sua performance. 
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