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Resumo. Apresenta-se neste trabalho o modelo dindmico de um braco robético planar vertical,
com dois elos ndo-rigidos e duas juntas revolutas, onde se considera a a¢do da gravidade. Utiliza-
se a formulagdo de Newton-Euler e a teoria elementar das vigas, junto com o método dos elementos
finitos. Também, apresenta-se 0 estudo da estabilidade segundo o método de Liapunov baseando-se
na analise dos autovalores da matriz de Jacobi. Estudo importante no controle de posi¢do do brago
e na melhora da sua performance.
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1. INTRODUCAO

No caso particular dos manipuladores robéticos, a andlise dindmica desempenha um papel
importante no projeto mecanico e no sistema de controle. A flexibilidade existente nos €elos,
acoplamentos ou transmissOes, atuadores, etc. resultam em vibragdes o que aumentam a
instabilidade e reduzem a performance do sistema.

A maioria das analises e dos controles de rob6s industriais é baseada na concepcdo de que o
brago do rob6 é formado por um conjunto de corpos rigidos, e que sdo capazes de levantar cargas de
pesos varidveis. Estudos relacionados com o comportamento de bragos robdticos leves (néo-
rigidos), de material adequado e dimensdes - &rea da se¢do reta - bastante reduzidas, sdo muito mais
complexos. Neste caso, 0 brago tornar-se-4 flexivel o que, inevitavelmente, causara o aparecimento
de deflexdes ou, pelo menos, vibragdes, acarretando problemas de precisdo e de estabilidade no
posicionamento final da extremidade livre. Por isso, a determinagdo de um modelo matematico para
um braco ndo-rigido e o correspondente projeto do seu sistema de controle tem exigido muito dos
engenheiros que trabalham nesta &rea (Hollerbach, 1980; Sunada e Dubowsky, 1983; Cannon e
Schimitz, 1984; Book, 1984 e 1993; Wang e Vidyasagar, 1987; Chang e Hamilton, 1991; e Xi et.
al. 1993).

Usoro et. al. 1986, utilizaram a aproximacéo do Lagrangeano e o método dos elementos finitos
para a modelagem de um manipulador com dois bracos flexiveis. Como em outras pesquisas do



género (Gamarra-Rosado et. al. 1996), o método dos elementos finitos, baseado na teoria elementar
das vigas, também foi empregado na determinagéo do modelo matemético deste sistema.

Neste trabalho, apresenta-se a dindmica de um braco n&o-rigido o qual considera os efeitos da
gravidade junto com a carga na extremidade livre do braco. O modelo € obtido através da
superposicdo do movimento elastico de pequenas amplitudes, deslocamento elastico, em relacéo a
configuragdo rigida. E finalmente, apresenta-se o estudo da estabilidade do brago robético segundo
0 método de Liapunov baseando-se na analise dos autoval ores da matriz de Jacobi. Com base nestes
resultados, pretende-se implementar o controle de posi¢do do brago, evitando nivels de vibragdo e
melhorando sua performance.

2. DESCRICAO E DINAMICA DO BRAGO ROBOTICO

O brago robdtico planar em estudo consiste de dois elos ndo-rigidos e duas juntas revolutas.
Conforme mostra a Fig. (1), considera-se que o brago se movimenta somente ao longo do plano
vertical (x,2). O elo superior faz um angulo ¢t) com o eixo z, que € representado na vertical, eo elo
inferior faz um angulo At) com a mesma direcdo vertical. O sistema inercia (x,z) € denominado
sistema de referéncia e os sistemas de coordenadas locais (X, Z) e (X, Z) sdo afixados no elo
superior e inferior, respectivamente, e sio méveis; I'e 1> sd os comprimentos do elo superior e
inferior, respectivamente; J;, J, € Jp S0 0 momentos de inércia dos atuadores e da carga na
extremidade livre; Ma; € Maz S0 as massas dos atuadores localizadas nas juntas revolutas, e Mp a
massa da carga na extremidade livre do braco; Z' e Z,-2 sd0 as coordenadas local do ponto nodal i ej,
respectivamente; U;* e UJ-2 s80 as deflexdes locais do ponto nodal i e j, respectivamente; e T, e T,
s80 os torgues aplicados nos el os superior e inferior, respectivamente.

Maz, J1

Figura 1. Configurac&o do brago robdtico.

Para o célculo das forgas e momentos que atuam no brago, a massa prépria do elo superior sera
dividida em n elementos infinitesimais de massa e a do elo inferior, em m elementos. Cada um
destes pontos de concentracdo de massa sera denominado ponto nodal. Portanto, no sistema como
um todo, existirhd um total de (n+m+1) pontos nodais. A carga da extremidade livre do brago



inferior sera considerada como uma carga concentrada e localizada no Ultimo ponto nodal do elo
inferior. As massas dos atuadores sdo consideradas como massas concentradas nos pontos nodais
iniciais de cada €lo. E conveniente esclarecer que, o asterisco como indice (*) esta relacionado com

o tltimo ponto nodal de cada elo, de modo que £} representaaforca que atua no dltimo ponto nodal
do elo superior e ,2, a forca que age no Ultimo ponto nodal do elo inferior. As massas dos
atuadores sdo consideradas como massas concentradas nos pontos nodais iniciais de cada elo.

A forcatotal que age no elo inferior € calculada no sistema de coordenadas (xp, zp) paralelo ao
sistema local (xl, zl) e com origem na junta que liga os dois elos, conforme mostra a Fig. (2). As

posi¢Oes das massas dos atuadores Ma1 € Ma2 € a carga aplicada na extremidade livre do brago
inferior Mp, também sdo mostradas nessa figura, assim como, Ry e Ry 0s quais sdo 0s esfor¢os
externos de reagéo relacionados com 0 apoio do sistema.

Figura 2. Diagrama de corpo-livre do sistema robético

O torque T que age no elo inferior no sistema de coordenadas local (x°,Z’), onde f * representa
as componentes dos esforgos neste elo, obtém-se a seguir (Gamarra-Rosado, 1999),
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Da mesma forma, do somatorio dos torques, pode-se obter a expressao do torque T, a seguir,
n
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Da teoria elementar das vigas junto com o método de elementos finitos (Clough e Penzien,
1982), obtém-se na forma matricial a expressdo para o €lo inferior,
KAVZ2=1% (5)
onde, K? é amatriz de rigidez (2mx2m) para uma viga sujeita a esforgos, e
v?=(UZ,22,U2,22, U2, 22,.,U2,22) ;e
fz s[ffz(x), f2(2), £,2(x), £2(2), t2(X), 12(2),.... f Z(X), fnfz(z)]T

Para 0 elo superior, devido a acdo do torque T, na extremidade livre do elo, a expresséo sera
dada por,

RN

onde, V' = (U}, U8, L UL Z2,.., UL Z8) s £ 1100, 1, 2090, 1@, B0, @ £ D]
e, séainclinagdo na extremidade livre do elo superior.



3. MATRIZ DE JACOBI E ANALISE DA ESTABILIDADE

A seguir, apresenta-se 0 estudo da estabilidade do sistema e para isto, consideram-se algumas
hipéteses a fim de viabilizar a andlise. Entre elas, observa-se que a deformagéo ao longo do eixo z
€ desprezivel e ndo compromete os resultados. Desta forma, como a aceleracdo em z é nula, as
forcas que agem num ponto nodal qualquer do elo superior e inferior somente terdo componentes
em X. Assim, as expressoes dos torques nos respectivos atuadores serdo simplificadas.

Mesmo fazendo estas simplificagdes, obtém-se um sistema de equacfes totalmente acopladas e
nado-lineares devido aos esforcos centrifugos e de Coriolis que, apds sofrerem uma reorganizagcdo de
Seus termos pode ser escrito naformamatricial,

M(a)e+h(a,a)=1 @)
onde, a)={UllU§UfU22UanU,§,8¢)} e h contém todos os termos nao-lineares.
Linearizando esta expressio em torno do valor nomind « e assumindo que, « =@ +dw;

W= w+d; =W+, er =T +0r, obtém-se amatriz de Jacobi para este sistema (Hongzhao et.
al. 1994),

~ 0 1
J(t,y):[_M_lhl _M_lh} ®)

Anadisando o sistema com apenas um nodo para cada €lo, torna-se possivel determinar os
autovalores aplicando-se a relacéo: |J(t,37)—/1l| =0. Assm, de acordo com os critérios de

estabilidade segundo 0 método de Liapunov, se a parte real das raizes for postiva, a resposta do
sistema divergird e o sistema sera considerado instével. Por outro lado, quando a parte rea for
negativa, o sistema sera estavel. Portanto, pode-se concluir da analises das expressdes dos autoval ores
obtidos que embora o sistema sgja estavel, a resposta se encontra na margem da regido estével. Caso o
modelo ndo sgja obtido de forma acurada e bastante preciso 0 sistema pode-se tornar instével com
muita facilidade.

4. MODELO SSMULADO

O sistema robotico tem sido simulado seguindo o diagrama de blocos segundo a Fig. (3) e tem-
se utilizado os valores dos parametros do modelo conforme a Tab. (1).

Tabela 1. Parametros utilizados na simulagéo

ENE Comprimentos do 1° e 2° elo 0,3 [m]

n, m Numero de elementos em cada elo 4

E Modulo de Elasticidade de Young 1,3x10™ [N/m’]

0 Massa por unidade de comprimento 0,1 [Kg/m]

[ Inércia da secdo circular dos elos 0,3x10™ [m"]

Mp Carga na extremidade livre do braco | 2x10™ [K¢]

Ma1, Ma | Massa de cada Atuador 8x10° [Kg]

@, B Angulos desgjados nas Juntas 0,768 € 0,384 [rad]
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Figura 3. Diagrama de blocos da simulagéo

Observa-se na Fig. (4), que a linha continua corresponde ao comportamento da junta definida
pelo angulo ¢ (Brago), e a linha tracejada corresponde ao comportamento da junta definida pelo
angulo £ (Antebraco). Para uma manobra bastante brusca e rapida conforme a simulada, podem-se
observar certas oscilagbes na resposta permanente devido as perturbacOes originadas pelas
deflexdes ou desl ocamentos que ocorrem nas extremidades finais de cada elo, conforme a Fig. (5).
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Figura 5. Deslocamento nas extremidades finais de cada elo



Nesta Figura (5) sdo visiveis as deflexdes ou deslocamentos que ocorrem nas extremidades
finais dos elos (na junta 2 e na extremidade livre do brago, respectivamente). Como pode-se
observar estas respostas sdo totalmente acopladas o que verifica o modelo dinamico do brago. Estas
oscilagdes que ocorrem nos elos, assm como nas juntas, podem causar 0 aparecimento de
vibragdes, acarretando problemas de precisdo e de estabilidade no posicionamento final da
extremidade livre.

Estes resultados sero levados em consideracdo em futuros trabalhos na area de controle para
efeito de precisao do efetuador do manipulador.

5. CONCLUSOES

Um fator de importancia é o entendimento do que vem a ser estabilidade para sistemas
dindmicos. No caso do braco robético ndo-rigido, ndo h& duvidas que a instabilidade esta4
relacionada com as deflexdes da extremidade de cada €lo ou, mais propriamente, esté relacionada
com a vibragdo a que fica sujeita o bragco ndo-rigido durante a manobra. Porém o fato do brago
vibrar ndo quer dizer que ele sgja instavel. O conceito de estabilidade segundo Liapunov esta
relacionado com a trajetoria no espaco dos estados e isto significa que a posicdo do brago esta
variando continuamente em fungdo do seu deslocamento angular e da deformag&o a que fica sujeito
durante o movimento.

O estudo individualizado de cada elo do bragco robdtico caracterizou-se como uma boa
aternativa para a andlise da estabilidade de tais sistemas. As equagOes originais eram muito
extensas para permitir qualquer tipo de analise, porém, apos a separacdo dos elos elas se tornaram
mais compactas. Embora tenha sido possivel fazer o estudo da estabilidade dos €los, ele esta longe
se ser smples, tendo em vista a grande quantidade de termos que fazem parte das equactes
necessarias para a andlise do sistema. A andlise independente dos elos sO foi vidvel porque a
reducdo das matrizes de quarta ordem do brago robético para matrizes de segunda ordem dos elos
foi feita sem descaracterizar a expressdo geral do sistema e foi feita, também, levando-se em
consideracdo as interagdes entre os elos. Com base nestes resultados, pretende-se implementar o
controle de posi¢do do brago robdtico, evitando niveis de vibragdo e melhorando sua performance.
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Abstract. This work presents the dynamic modeling of a vertical planar robotic arm with two
nonrigid links interconnected by two revolute joints and a payload at its free end, so it is considered
the gravity effects. The dynamic equations was obtained using the Newton-Euler's formulation
together with the elementary beam theory based on the finite element method. Also, it is studied the
stability according to Liapunov's approximation method. The stable criteria are stablished by
means eigenvalue analysis of Jacobi matrix. This study is fundamental to apply a control strategy.
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