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Resumo:Este trabalho tem por finalidade a obtenção do Lagrangeano (modelo matemático) 
utilizando o método do formalismo discreto para representar o sistema do robô aerostático com dois 
graus de liberdade, efetuar uma discretização utilizando parâmetros concentrados seguido de uma 
linearização para a obtenção de uma equação de estado, para finalmente projetar e implementar um 
sistema de controle LQG (Linear Quadrático Gaussiano) que é o principal foco deste trabalho. Este 
sistema de controle em ambiente MatLAB Simulink irá controlar a posição angular das duas juntas 
motoras com o menor deslocamento da base do robô e atenuando as vibrações dos dois elos seriais 
flexíveis no menor tempo possível. Serão obtidos resultados teóricos e simulados que posteriormente 
serão comparados com resultados práticos obtidos com os testes que serão realizados com o robô. 
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Aerostáticos, Simulador De Gravidade Zero. 
 

 



Introdução 
 Os manipuladores espaciais utilizados na captura e liberação de satélites ou montagem de 
estruturas espaciais, funcionam como um braço mecânico cuja base geralmente é uma espaçonave ou 
satélite. No entanto, quando efetuam qualquer movimento, transmitem uma reação que altera o 
posicionamento de sua base, sendo necessária a aplicação de medidas corretivas para fazê-la retornar à 
posição inicial ou de referência.  A simulação e o estudo na Terra dessa situação é a motivação do 
desenvolvimento desse sistema. Tanto a base do robô como suas articulações são apoiadas sobre 
mancais aerostáticos axiais, que deslizam sobre uma superfície de vidro nivelada, garantindo, assim, 
um atrito mínimo (gravidade zero). O controle LQG deve não somente posicionar o órgão terminal de 
uma forma otimizada, movendo a sua base o mínimo possível, como também eliminar as vibrações dos 
elos flexíveis no menor tempo. O monitoramento e realimentação de posição serão realizados por 
sensores angulares, acoplados aos motores. Sensores de flexão distribuídos estrategicamente nos dois 
elos flexíveis possibilitarão um controle para eliminar as vibrações estruturais. Assim, o trabalho 
apresenta e discute o método de controle LQG, obtém resultados teóricos e simulados que 
posteriormente serão comparados com resultados práticos obtidos com os testes que serão realizados 
com o robô. 
É importante ressaltar que este trabalho é pioneiro no Brasil e segue referências internacionais como 
Yoshida, K (1989) e Heppler, G.R. (1999). 

O grande desafio deste trabalho é contornar a dificuldade que este sistema com apenas dois 
graus de liberdade com elos flexíveis apresenta a um controle de malha fechada.. Portanto, qualquer 
resultado obtido neste sentido é de grande valia para evolução e desenvolvimento tecnológico deste 
projeto. 
  

Modelamento 
Neste trabalho utilizamos o formalismo discreto (lumped mass approach) [MACHADO, C. C. 

1998]. A técnica consiste em dividir cada elo em duas partes de mesmo comprimento e posicionar as 
articulações fictícias na metade de cada uma dessas partes, surgindo assim seis elementos rígidos 
conectados por quatro articulações fictícias (passivas) e duas reais que promovem o torque (ativas) 
conforme o esquema do robô. 
A equação de Euler-Lagrange que descreve o movimento é dada por : 
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L = T – V   

Onde T é a coenergia cinética total e V a energia potencial total do sistema. 
 Deve-se ressaltar que as componentes rotacionais de energia cinética (em torno do centro de 
massa), tanto dos elementos rígidos quanto da carga terminal, foram negligenciadas, Isto é, foram 
consideradas pequenas em relação as de translação. 
 
 T = Tri + Tmi + Tmc + TmB 
 
 
                 (energia cinética dos rotores) 
 
 
      (energia cinética devido ao movimento das  
                                                                        massas mi (elos)) 
  
      (energia cinética devido ao movimento da  
                                                                        carga no end point.) 
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Fig. 02-Esquema do sistema mecânico do robô 

 
(energia cinética devido ao movimento da  

                                                                         base)  
 
       
 
É a parcela de energia potencial relativa a deformação nas juntas fictícias, onde kn representa a 
constante elástica da mola equivalente na junta, relativa à elasticidade do elo. Portanto: 
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Analisando as forças externas que interagem no sistema, com o auxílio da ferramenta 

Matemátic para aplicar as equações de Euler-Lagrange (1) ao Lagrangeano (2), introduzindo os 
parâmetros de estado e simprificando, obtém-se a seguinte equação matricial: 
  
                  (02) 
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Tanto os termos kn quanto os termos Cn são as constantes elásticas e coefícientes de 

amortecimento respectivamente das juntas fictícias mostradas no esquema da (fig. XI).  
 A equação matricial que representa o sistema de equações diferenciais é de a2 ordem, podendo 
ser reduzida a uma de a1 ordem a partir da seguinte redefinição de variáveis: 
 

Byx =0      Bxx =1      Bx θ=2      13 θ=x       24 θ=x      35 θ=x      46 θ=x       57 θ=x        68 θ=x  
 

Byx &=9     Bxx &=10      Bx θ&=11     112 θ&=x      213 θ&=x     314 θ&=x     415 θ&=x      516 θ&=x        617 θ&=x  
 



resultando a seguinte equação de estado :              
 

1mBTAxx +=& + 2mBT                                                                                                                 (04) 
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Sendo [ ] 990 x  a matriz nula de ordem 9 e [ ] 99xI  a matriz identidade de ordem 9 a equação (...) 

representa o modelo dinâmico para dois modos flexíveis. 
 Os parâmetros utilizados nas simulações foram: 

- Comprimento do elo: l = 0,350 m 
- Altura do elo: h = 0,035 m 
- Espessura do elo: e = 0,00168 m 
- Inércia do rotor: 1rI = 0,065 Kgm2 
- Massa do elo: m = 0.06 Kg 
- Massa da base: mB = 3,950 Kg 
- Massa da primeira junta: mC1 = 0,790 Kg 
- Massa do órgão terminal: mC2 = 0,325 Kg 
- Coeficiente de atrito viscoso no rotor: Cr = 2,56 Nm rad/s 

 
CONCEPÇÃO DE CONTROLE 

  
 Podemos obter as funções de transferência para o caso não colocado, quando o sensor não 
ocupa a mesma posição que o atuador. Utilizando a modelagem de formalismo discreto [Machado, 
1999], considerando apenas os três primeiros modos flexíveis. Obtemos as matrizes do modelo 
dinâmico conforme (fig: 02) 

Esta equação representa um sistema de equações diferenciais de segunda ordem, Onde 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]Trr ttttttttt 65423211 θθθθθθθθθ = é o vetor com as posições angulares, sendo ( )tr1θ  e 
( )tr 2θ  relativo aos rotores dos motores 1 e 2, com o índice de redução de 1:1, enquanto ( )tiθ , com i 

variando de 1 à 6 correspondem aos ângulos das articulações fictícias. nI , atC e elK  são as matrizes de 

inércia, atritos e constantes elásticas, respectivamente, sendo [ ]TB 1001000= e ( )tu  os torques dos 
motores 1 e 2 no instante ( )t . As freqüências analíticas podem ser conhecidas a partir da massa da 
extremidade, das dimensões, da massa específica e do módulo de elasticidade do elo [Pereira, 1999]. 

Define-se então um vetor de estado dado por: 
 

( )tx ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]Trrrr tttttttttttttttt 6542321165423211 θθθθθθθθθθθθθθθθ &&&&&&&&=         05) 
 

Para a simulação do sistema em malha fechada adotou-se uma estratégia de controle 
descentralizado de junta. Onde o torque de entrada nas juntas é dado por uma alimentação direta de 
estado: 

( { } { } ) θθθ &
vdp KKT −−=                       (06) 

onde dθ  são as posições desejadas das juntas, pK  e vK  são as matrizes diagonais de ganho de posição 
e velocidade, respectivamente. 
Em termos de variável de estado pode-se escrever também: 
  

[ ]vp KKu = . { } { }( )XX d −                                                                                                          (07) 
 



onde dX  é o estado desejado com a componente de velocidade nula ( 0=dθ& ) e ( )tX  o estado do 
sistema. 

 ESTRUTURA  LQG 
 

Conforme a equação diferencial na forma de variável de estado representa a dinâmica do 
sistema nomimal, e está escrita conforme segue: 

No controle clássico LQG, é assumido que a dinâmica da planta é linear e conhecida, e que os 
ruídos de estado e de medida são estocásticos com propriedades estatísticas também conhecidas. 
Assim, para a inserção de incertezas considera-se o modelo estocástico 

GwBuAxx ++=&                                     (08) 

com o processo de observação dado por 

 FvCxy +=                                          (09) 

onde G e F são as matrizes de intensidade dos ruídos de estado w(t) e de observação v(t). 

Como hipóteses usuais, são consideradas 

{ } 0)( =twE ,  { } 0)( =tvE , 

{ } )()()( τδτ −= tPwtwE w
T ,  0>wP                                  (10) 

{ } )()()( τδτ −= tPvtvE v
T ,   0>vP   e  { } 0=TwvE                                 (11) 

onde E é o operador esperança matemática e )( τδ −t  é a função delta de Dirac. Estes ruídos são, 
portanto, não correlacionados, brancos, Gaussianos, de médias nulas e com covariância Pw de estado e 
Pv de medida.  

O problema de controle LQG é encontrar o controle ótimo u(t) que minimize a função custo: 
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onde Q e R são matrizes de pesos constantes e apropriadamente escolhidas (parâmetros de projeto), 
tais que, 0≥= TQQ  e 0>= TRR . O nome LQG (Linear Quadratic Gaussian) advém do uso de um 
modelo linear, uma função custo quadrática, e um ruído branco Gaussiano como distúrbio nos estados 
e sensores. 

A solução para o problema LQG consiste em primeiro determinar o controle ótimo para um 
sistema linear determinístico. O diagrama de blocos do controlador tipo LQG em diagrama de blocos é 
apresentado na (fig.03) 

 
Fig. 03-Diagrama de blocos do controlador tipo LQG. 

 



Iniciaremos primeiramente com parte da solução, a que consiste em determinar o controle 
ótimo para um sistema linear (controlador LQR – Linear Quadratic Regulator). A segunda parte da 
solução do problema LQG, consiste em projetar um estimador ótimo para os estados, e finalmente 
serão apresentados resultados de simulações para o modelo da planta real obtido no capítulo anterior. 

 
PROJETO LQG 

 

Seja a equação linear diferencial dada em ... e considere o seguinte índice de desempenho: 
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onde Q é uma matriz real simétrica positiva semidefinida, que define o custo dos estados, e R é uma 
matriz real simétrica positiva definida, expressando o custo do controle. 

Assumindo-se que todo o estado esteja disponível, a lei de controle ótimo que minimiza o 
funcional J (x(t), u(t)) é dado por 

Kxu −=                                      (14) 

onde K é o vetor com os ganhos definido por 

 SBRK T1−=                                      (14) 

com 0≥= TSS , sendo o valor em regime de S  dado pela solução algébrica da equação de Riccati 

 01 =+−+ − QSBSBRSASA TT                                   (15) 

O ganho do regulador foi obtido utilizando-se a matriz de custo dos estados Q diagonal e da 
forma 

.1] .1 .1 .1 .1 .1 .001 .001 .001 .1 .1 1 .1 .1 1 10 10 [10)( =Qdiag  

com um custo de controle 1=R . Com esses parâmetros, obteve-se o seguinte ganho em reime para o 
regulador, 
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 K =     Columns 1 through 7  

   -0.0917    0.0010   -3.1523    1.9559   -2.5025   -0.4014   -3.2826 

    0.2738    0.0037    0.3285    1.1052    9.1026   -6.3393   -9.9547 

  

  Columns 8 through 14  

  2.1844    1.1400   18.4288   -0.9192   -1.8160   -1.5019   -1.4706 

   51.6365  -40.9095   51.4102    5.7028   -0.6748    7.1568    6.2258 

 

  Columns 15 through 18  

   -0.7049   -1.4024   -0.4045   -0.2400 

    2.9221    6.1261    2.2738    1.3723 



 
Projeto do Filtro de Kalman 

 
Para a estimação ótima dos estados foi utilizado um filtro de Kalman, supondo o sistema com 

ruído branco Gaussiano w(t) nos estados e com covariância Pw, isto é, 

GwBuAxx ++=&  (16)
 

sendo G a matriz de intensidade do ruído de estado, com a equação de saída da forma 

FvCxy +=  (17)
 
que representa sensores com ruídos brancos Gaussianos. 

O par (A, C) é suposto observável, ou seja, a matriz de observabilidade 
TnACACC ]...[ 1−=ϑ  (18)

 
possui posto igual a n. Este é o caso dos dois modelos lineares adquiridos, utlilizando-se como 
observação as medidas dos potênciômetos e dos extensometros acoplados aos motores e aos elos 
flexíveis, ou seja a matriz C possui a forma 
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para o caso de duas articulações fictícias em cada elo, e 
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para o caso de quatro articulações fictícias. 

A dinâmica do estimador é dado por 

( )xCyLBuxAx ˆˆˆ −++=&  (21)
 
onde L é a matriz ganho do estimador, dada por 
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v
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sendo o valor em regime de P obtido da solução da equação algébrica de Riccati 
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SIMULAÇÃO GRÁFICA NO MATILAB 
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Tm1 = 5N   Tm2 = - 2,5N    Ângulo = 30 e –30 s/ Controle 
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Tm1 = 5N   Tm2 = - 2,5N    Ângulo = 30 e –30 c/ Controle 

 
CONCLUSÃO: 
 
Antes de mais nada, devemos ressaltar que o controle de movimento da base, e de vibração dos 

elos flexíveis de um sistema um sistema com apenas 2 graus de liberdade apresenta um grau de 
dificuldade muito grande. Portanto, qualquer melhoria notada nos resultados será de importância 
relevante no projeto.  

De acordo com os resultados apresentados pelos gráficos obtidos nas simulações do MATLAB, 
notamos alguns detalhes para compreender melhor o sistema de controle aplicado. 

Quando aplicamos torques pequenos de 1N no primeiro motor e 0,5N no segundo, e efetuamos 
a simulação para os ângulos de 30, 60 e 90 graus, podemos notar maiores amplitudes e maiores 
freqüências nas vibrações dos elos para ângulos abaixo de 30 graus. 

Quando aplicamos torques altos de 5N para o primeiro motor e 2,5N para o segundo motor para 
os mesmos ângulos de 30, 60 e 90 graus, podemos notar uma melhoria relevante quanto ao 
deslocamento da base para ângulos abaixo de 30 graus, porém em contra partida, temos um aumento 
também relevante nas amplitudes e freqüências das vibrações, tanto a melhoria do movimento da base 
quanto as vibrações não se alteram tanto para ângulos maiores que 30 graus. 



Com isso, concluímos que se o torque for menor que o necessário para movimentar o elo um 
determinado ângulo, temos problemas de vibrações nos elos, por outro lado se os torques forem muito 
acima do necessário para mover os elos, também termos problemas de vibrações. 

Quanto à variação dos valores de R, notamos que não temos uma faixa muito grande de 
escolha, ou seja, os valores devem se limitar entre 1,5 e 1,6 para o primeiro e 0,75 e 0,8 para o 
segundo, dentro desse limite observamos que os valores menores de 1,5 e 0,75, para ângulos menores 
que 30 graus, nos dão resultados melhores quanto ao deslocamento da base, para ângulos maiores que 
30 graus essa melhoria desaparece conforme aumentamos o valor do ângulo desejado. 
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