CONTROLE LQG APLICADO A UM ROBO AEROSTATICO

Firmino N. Veroneze Dos Santos e Vitor I. Gervini
ITA- Instituto Tecnoldgico de Aeronautica
Praca Mal. Eduardo Gomes, 50- Vila das Acacias
S. J. dos Campos- S. Paulo — Brasil - CEP 12228-900
e-mails: veroneze@mec.ita.br, gervini@ele.ita.br

Luiz Carlos S. Gées e Alberto Adade Filho.
ITA- Instituto Tecnoldgico de Aeronautica
Praca Mal. Eduardo Gomes, 50- Vila das Acacias
S. J. dos Campos- S. Paulo — Brasil - CEP 12228-900
e-mails: goes@mec.ita.br , adade@mec.ita.br

Resumo:Este trabalho tem por finalidade a obtencdo do Lagrangeano (modelo matematico)
utilizando o método do formalismo discreto para representar o sistema do robd aerostatico com dois
graus de liberdade, efetuar uma discretizagdo utilizando parametros concentrados seguido de uma
linearizagdo para a obtencdo de uma equacdo de estado, para finalmente projetar e implementar um
sistema de controle LQG (Linear Quadratico Gaussiano) que é o principal foco deste trabalho. Este
sistema de controle em ambiente MatLAB Simulink ira controlar a posi¢do angular das duas juntas
motoras com o0 menor deslocamento da base do robd e atenuando as vibragdes dos dois elos seriais
flexiveis no menor tempo possivel. Serdo obtidos resultados tedricos e simulados que posteriormente
serdo comparados com resultados praticos obtidos com os testes que serdo realizados com o robd.

PALAVRAS-CHAVE: Controle Robusto, Robd Aerostatico, Elos Flexiveis, Mancais
Aerostaticos, Simulador De Gravidade Zero.




Introducéo

Os manipuladores espaciais utilizados na captura e liberacdo de satélites ou montagem de
estruturas espaciais, funcionam como um bra¢o mecanico cuja base geralmente é uma espaconave ou
satélite. No entanto, quando efetuam qualquer movimento, transmitem uma reacdo que altera o
posicionamento de sua base, sendo necessaria a aplicacdo de medidas corretivas para fazé-la retornar a
posicdo inicial ou de referéncia. A simulacdo e o estudo na Terra dessa situacdo é a motivacao do
desenvolvimento desse sistema. Tanto a base do robd como suas articulagdes sdo apoiadas sobre
mancais aerostaticos axiais, que deslizam sobre uma superficie de vidro nivelada, garantindo, assim,
um atrito minimo (gravidade zero). O controle LQG deve ndo somente posicionar o 6rgao terminal de
uma forma otimizada, movendo a sua base o minimo possivel, como também eliminar as vibragdes dos
elos flexiveis no menor tempo. O monitoramento e realimentacdo de posicdo serdo realizados por
sensores angulares, acoplados aos motores. Sensores de flexdo distribuidos estrategicamente nos dois
elos flexiveis possibilitardo um controle para eliminar as vibracdes estruturais. Assim, o trabalho
apresenta e discute o método de controle LQG, obtém resultados tedricos e simulados que
posteriormente serdo comparados com resultados praticos obtidos com os testes que serdo realizados
com o robd.

E importante ressaltar que este trabalho é pioneiro no Brasil e segue referéncias internacionais como
Yoshida, K (1989) e Heppler, G.R. (1999).

O grande desafio deste trabalho é contornar a dificuldade que este sistema com apenas dois
graus de liberdade com elos flexiveis apresenta a um controle de malha fechada.. Portanto, qualquer
resultado obtido neste sentido € de grande valia para evolucdo e desenvolvimento tecnoldgico deste
projeto.

Modelamento

Neste trabalho utilizamos o formalismo discreto (lumped mass approach) [MACHADO, C. C.
1998]. A técnica consiste em dividir cada elo em duas partes de mesmo comprimento e posicionar as
articulac@es ficticias na metade de cada uma dessas partes, surgindo assim seis elementos rigidos
conectados por quatro articulagdes ficticias (passivas) e duas reais que promovem o torque (ativas)
conforme o esquema do robé.
A equacdo de Euler-Lagrange que descreve 0 movimento é dada por :
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Onde T € a coenergia cinética total e V a energia potencial total do sistema.

Deve-se ressaltar que as componentes rotacionais de energia cinética (em torno do centro de
massa), tanto dos elementos rigidos quanto da carga terminal, foram negligenciadas, Isto €, foram
consideradas pequenas em relagdo as de translacéo.

T= Tri + Tmi + Tmc + TmB

1 -, 1 - S
Ti= 2l o, + ki 0, (energia cinética dos rotores)

N

Tmi = Z

6
2 1 \2 o : .
m; (%7 +Y;) (energia cinética devido ao movimento das
i=1

massas m; (elos))

1 . .
Tme =5 M (%2 +Y2) (energia cinética devido ao movimento da
carga no end point.)



T,
C.
2
Y,
A
Y5
Y
1
Y4
A
\/‘\
O,
Xy
il | —
Ya TN % X, X% % X, X%
0 X x>
BASE | [npREaS ELOS FLEXIVEIS
B -\ R0 DE MASSA I UNTAS FICTICIAS B cc0 TERMINAL
Fig. 02-Esquema do sistema mecéanico do robd
T _ 1 .2 .2 . . L. . .
= oM (Xg + ¥s) (energia cinética devido ao movimento da

base)
4
V= Zlkn (en _en 1)2
n=1 2 )

E a parcela de energia potencial relativa a deformagéo nas juntas ficticias, onde k, representa a
constante elastica da mola equivalente na junta, relativa a elasticidade do elo.  Portanto:
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Analisando as forcas externas que interagem no sistema, com o auxilio da ferramenta
Matematic para aplicar as equacdes de Euler-Lagrange (1) ao Lagrangeano (2), introduzindo os
parametros de estado e simprificando, obtém-se a seguinte equacdo matricial:

[Im]é+[cat]9+[Kel ]6: B,Tm1+B’Tm2 (02)

Onde:



, matriz de inércia

SRS RS S S NS RSy
]

o o o o o
| © ~ 9] S
© 0 © © ©
[¥e} © ~ ) =
~ ~ ~ ~ ~ ~
< [} © ~ o =)
© © © © © © ©
2} < e} © ~ 9] >
rel [To) 79} [Te) [Tol e) 0
~ ] < [re] © ~ ]
< < < < < < <
— [ ] <~ O © ~
[ae} ™ ") [ar) 32} 3}
i N ] < 7o) ©
o~ [\ [N o o
—i ~ 32} < Lo
— — i — P
— ~ %] < =)

(03)
Xy = 96

, de atritos

X6 = 05

, de constantes elasticas

0
_C4
C4
_ K5
X5 = ‘94

C,+C,
_C4

K, + K,
X14 :93

_Crz
C,, +C,
—C3

-K,
X3 = ‘92

C,+C,
_Crz
-K,

X =

K, +K,
X1 :95

_Kl

0
0
0
0
0
0
0

0
0
0
0 00 C,+C,
0
0
0
0
0
0 0O
X0 = Xg

Tanto os termos k, quanto os termos C, sdo as constantes elasticas e coeficientes de

amortecimento respectivamente das juntas ficticias mostradas no esquema da (fig. XI).
A equacdo matricial que representa o sistema de equagdes diferenciais é de 2% ordem, podendo

ser reduzida a uma de 1° ordem a partir da seguinte redefinicdo de variaveis:

Xo = Ya
X9:y5

[Ca]
[Kq]



resultando a seguinte equacgéo de estado :

Xx=Ax+BT _+BT , (04)
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Sendo [0],,, a matriz nula de ordem 9 e [I],,, a matriz identidade de ordem 9 a equagdo (...)

representa 0 modelo dinamico para dois modos flexiveis.
Os parametros utilizados nas simulagées foram:
- Comprimento do elo: 1=0,350 m
- Alturadoelo: h=0,035m
- Espessura do elo: e =0,00168 m
- Inércia do rotor: | ,= 0,065 Kgm?
- Massa do elo: m=0.06 Kg
- Massa da base: mg = 3,950 Kg
- Massa da primeira junta: me; = 0,790 Kg
- Massa do 6rgdo terminal: mc; = 0,325 Kg
- Coeficiente de atrito viscoso no rotor: C, = 2,56 Nm rad/s

onde:

CONCEPCAO DE CONTROLE

Podemos obter as fungbes de transferéncia para o caso ndo colocado, quando o sensor ndo
ocupa a mesma posicdo que o atuador. Utilizando a modelagem de formalismo discreto [Machado,
1999], considerando apenas os trés primeiros modos flexiveis. Obtemos as matrizes do modelo
dindmico conforme (fig: 02)

Esta equacdo representa um sistema de equagdes diferenciais de segunda ordem, Onde

0(t)=1[6,,(t)6,(t)8, 1), (t)a,, ()8, (t)o; ()6, (t)] € o vetor com as posicdes angulares, sendod,,(t) e
6,,(t) relativo aos rotores dos motores 1 e 2, com o indice de redugdo de 1:1, enquanto &, (t), com i
variando de 1 a 6 correspondem aos angulos das articulagdes ficticias. I,,C, e K, sdo as matrizes de
inércia, atritos e constantes elésticas, respectivamente, sendo B =[1001000] e u(t) os torques dos

motores 1 e 2 no instante (t) As frequéncias analiticas podem ser conhecidas a partir da massa da

extremidade, das dimensdes, da massa especifica e do médulo de elasticidade do elo [Pereira, 1999].
Define-se entdo um vetor de estado dado por:

X(t) = [0, (00,110, (08, (00, ()0, ()65 (10, ()6, 00, ()6 ()0, 1), ()6 (005 00, 1) 05)

Para a simulacdo do sistema em malha fechada adotou-se uma estratégia de controle
descentralizado de junta. Onde o torque de entrada nas juntas é dado por uma alimentacdo direta de
estado:

T=K,({0,)-10}))-K.0 (06)
onde 6, sdo as posicdes desejadas das juntas, K, e K, sdo as matrizes diagonais de ganho de posigao

e velocidade, respectivamente.
Em termos de variavel de estado pode-se escrever também:

u=K,K,].(X, - {x}) (07)



onde X, é o estado desejado com a componente de velocidade nula (6, =0) e X(t) o estado do

sistema.
ESTRUTURA LQG

Conforme a equacédo diferencial na forma de varidvel de estado representa a dindmica do
sistema nomimal, e esta escrita conforme segue:

No controle classico LQG, é assumido que a dindmica da planta € linear e conhecida, e que 0s
ruidos de estado e de medida sdo estocasticos com propriedades estatisticas também conhecidas.
Assim, para a insercdo de incertezas considera-se 0 modelo estocastico

X = Ax+Bu+Gw (08)
com o processo de observacdo dado por
y=Cx+Fv (09)

onde G e F sdo as matrizes de intensidade dos ruidos de estado w(t) e de observacao v(t).
Como hipoteses usuais, sdo consideradas
E{w(t)}=0, E{v(t)}=0,
Ewt)w(z)" }=P,5(t-1), P, >0 (10)
EVv(tV(D) }=P5(t-7), P,>0 e E{w'}=0 (11)

onde E é o operador esperanca matematica e S(t—z) é a funcdo delta de Dirac. Estes ruidos séo,

portanto, ndo correlacionados, brancos, Gaussianos, de medias nulas e com covariancia P, de estado e
P, de medida.

O problema de controle LQG é encontrar o controle 6timo u(t) que minimize a fungéo custo:

Too T

.
J :E{liml (XTQx+uTRu)dt} (12)

0
onde Q e R sdo matrizes de pesos constantes e apropriadamente escolhidas (parametros de projeto),
tais que, Q=Q" >0 e R=R" >0. O nome LQG (Linear Quadratic Gaussian) advém do uso de um

modelo linear, uma funcéo custo quadratica, e um ruido branco Gaussiano como distdrbio nos estados
e Sensores.

A solucdo para o problema LQG consiste em primeiro determinar o controle 6timo para um
sistema linear deterministico. O diagrama de blocos do controlador tipo LQG em diagrama de blocos é
apresentado na (fig.03)
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Fig. 03-Diagrama de blocos do controlador tipo LQG.



Iniciaremos primeiramente com parte da solugdo, a que consiste em determinar o controle
Otimo para um sistema linear (controlador LQR — Linear Quadratic Regulator). A segunda parte da
solucdo do problema LQG, consiste em projetar um estimador 6timo para os estados, e finalmente
serdo apresentados resultados de simulacdes para 0 modelo da planta real obtido no capitulo anterior.

PROJETO LQG
Seja a equacdo linear diferencial dada em ... e considere o seguinte indice de desempenho:
T > T

= E{liml (xTQx+uTRu)dt} (13)

onde Q é uma matriz real simétrica positiva semidefinida, que define o custo dos estados, e R é uma
matriz real simétrica positiva definida, expressando o custo do controle.

Assumindo-se que todo o estado esteja disponivel, a lei de controle étimo que minimiza o
funcional J (x(t), u(t)) é dado por

onde K é o vetor com os ganhos definido por
K=R™'B'S (14)

com S=S" >0, sendo o valor em regime de S dado pela solugéo algébrica da equacio de Riccati
A"S+SA-SBR'B'S+Q=0 (15)

O ganho do regulador foi obtido utilizando-se a matriz de custo dos estados Q diagonal e da
forma

diag(Q) =[1010101.1.11.1.1.001.001.001.1.1.1.1.1.1]

com um custo de controle R=1. Com esses parametros, obteve-se o seguinte ganho em reime para o
regulador,

K = m
0 Jous

K= Columns 1 through 7
-0.0917 0.0010 -3.1523 1.9559 -2.5025 -0.4014 -3.2826
0.2738 0.0037 0.3285 1.1052 9.1026 -6.3393 -9.9547

Columns 8 through 14
2.1844 1.1400 18.4288 -0.9192 -1.8160 -1.5019 -1.4706
51.6365 -40.9095 51.4102 5.7028 -0.6748 7.1568 6.2258

Columns 15 through 18
-0.7049 -1.4024 -0.4045 -0.2400
2.9221 6.1261 2.2738 1.3723



Projeto do Filtro de Kalman

Para a estimagdo 6tima dos estados foi utilizado um filtro de Kalman, supondo o sistema com
ruido branco Gaussiano w(t) nos estados e com covariancia Py, isto €,

X = AX+Bu+Gw (16)

sendo G a matriz de intensidade do ruido de estado, com a equacéo de saida da forma
y=Cx+Fv (17)

que representa sensores com ruidos brancos Gaussianos.
O par (A, C) é suposto observavel, ou seja, a matriz de observabilidade

g=[C AC .. AC"'T (18)
possui posto igual a n. Este é o caso dos dois modelos lineares adquiridos, utlilizando-se como

observacdo as medidas dos poténciémetos e dos extensometros acoplados aos motores e aos elos
flexiveis, ou seja a matriz C possui a forma

c_[t0o0000000 19
1000010000 (19)
para o caso de duas articulagdes ficticias em cada elo, e
[to00000000 5
10000010000 (20)
para o caso de quatro articulacGes ficticias.
A dindmica do estimador é dado por
X= AX+Bu+L(y—-CX) (21)
onde L é a matriz ganho do estimador, dada por
L=PCT(FRFT)" (22)
sendo o valor em regime de P obtido da solugdo da equacao algébrica de Riccati
PA" + AP—PCT(FR,F')'CP+GP,G" =0 (23)

L= ( PA" + AP+GP,G" )CP
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CONCLUSAO:

Antes de mais nada, devemos ressaltar que o controle de movimento da base, e de vibracdo dos
elos flexiveis de um sistema um sistema com apenas 2 graus de liberdade apresenta um grau de
dificuldade muito grande. Portanto, qualquer melhoria notada nos resultados serd de importancia
relevante no projeto.

De acordo com os resultados apresentados pelos graficos obtidos nas simulagdes do MATLAB,
notamos alguns detalhes para compreender melhor o sistema de controle aplicado.

Quando aplicamos torques pequenos de 1N no primeiro motor e 0,5N no segundo, e efetuamos
a simulagdo para os angulos de 30, 60 e 90 graus, podemos notar maiores amplitudes e maiores
freqliéncias nas vibracdes dos elos para angulos abaixo de 30 graus.

Quando aplicamos torques altos de 5N para o primeiro motor e 2,5N para o segundo motor para
0os mesmos angulos de 30, 60 e 90 graus, podemos notar uma melhoria relevante quanto ao
deslocamento da base para angulos abaixo de 30 graus, porém em contra partida, temos um aumento
também relevante nas amplitudes e freqiiéncias das vibrac@es, tanto a melhoria do movimento da base
quanto as vibracOes ndo se alteram tanto para angulos maiores que 30 graus.



Com isso, concluimos que se o torque for menor que o necessario para movimentar o elo um
determinado angulo, temos problemas de vibrac¢6es nos elos, por outro lado se os torques forem muito
acima do necessario para mover os elos, também termos problemas de vibragdes.

Quanto a variacdo dos valores de R, notamos que ndo temos uma faixa muito grande de
escolha, ou seja, os valores devem se limitar entre 1,5 e 1,6 para o primeiro e 0,75 e 0,8 para o
segundo, dentro desse limite observamos que os valores menores de 1,5 e 0,75, para angulos menores
que 30 graus, nos déo resultados melhores quanto ao deslocamento da base, para angulos maiores que
30 graus essa melhoria desaparece conforme aumentamos o valor do angulo desejado.
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