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Resumo: Trata este trabalho de uma andlise de pontos criticos e extremos em uma classe de
sistemas de controle lineares continuos de terceira ordem com polos e dois zeros reais estaveis. Sao
obtidas condi¢des necessarias e necessarias e suficientes para a determinacdo de pontos criticos e
extremos em uma tal classe de sistemas de controle, levando-se em conta as posic¢des relativas dos
polos e zeros.
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1. INTRODUCAO

Atualmente os sistemas de controle automatico se encontram difundidos em todas as sociedades
desenvolvidas. Tais sistemas agem como elemento catalisador na promogéo do desenvolvimento e
do progresso. O controle automatico é essencial no estudo de sistemas de veiculos espaciais,
guiamento de misseis, pilotagem de avides, robdticos e outros, além de ser aplicado em modernos
processos industriais e de fabricacdo, sistemas biologicos, biomédicos, econémicos e
socioecondmicos, de acordo com Franklin (1991), Dorf (1995), Ogata (1998) e Bolton (1995).

Existem alguns problemas como o de controle do eixo de maquinas ferramentas e os de controle
de um robd, os quais necessitam seguir uma trajetoria pré-definida, onde a resposta a degrau nédo
pode apresentar extremos. Desta forma, o estudo de condi¢Ges que permitam avaliar overshoot na
resposta a degrau é de grande importancia na teoria de controle, de acordo com Ogata (1998), El-
Khoury (1993), Howell (1997), Rachid (1995), Leon de la Barra (1994, 1994-a), Reis (2003, 2002,
2001), Silva (2001).

Muitas contribuicdes teoricas recentes tém sido feitas no sentido de clarificar a influéncia dos
zeros e das localizagdes de polos e zeros da planta na parte transiente da resposta a degrau (EI-
Khoury, 1993; Rachid, 1995; Howell, 1997; Goodwin, 1999; Ledn de la Barra, 1994, 1994-a; Lin
e Fang, 1997; Moore, 1990; Reis, 2001, 2002, 2003; Silva, 2001).

Apesar de bastante valiosas, essas contribui¢fes ainda ndo oferecem um quadro claro de como e
quais variacdes extensas nas localizagcBes de pdlos e zeros podem influenciar o overshoot e o
undershoot. Por exemplo, o problema de determinar 0 nimero exato de extremos da resposta a
degrau permanece em aberto (ElI-Khoury, 1993) e mesmo determinando os extremos da resposta a
degrau, ndo existe uma técnica que permita classifica-los, ou seja, faltam condicGes necessarias e
suficientes para a prova da existéncia de overshoot e undershoot.

Como contribuic6es dos autores (Reis, 2001, 2002, 2003), foram obtidas condi¢Bes necessarias
e suficientes para a existéncia de extremos, overshoot e undershoot em sistemas de segunda e
terceira ordem, com polos e zeros reais estaveis. Dessa forma, nesse trabalho, sera apresentada uma
analise dos pontos criticos e extremos de uma classe de sistemas de controle lineares continuos de
terceira ordem com polos e dois zeros reais estaveis. Acreditamos que as caracteriza¢fes obtidas
sdo de importancia na teoria de controle ja que permitem uma visdo mais esclarecida das condicGes
que possibilitam avaliar pontos criticos e extremos em sistemas lineares continuos no tempo, além
de clarificar um pouco mais a influéncia dos zeros e localizacdes de polos e zeros da planta na parte



transiente da resposta a degrau. Esse trabalho estd organizado como segue. Na secdo dois
apresentam-se as consideragdes iniciais sobre o trabalho. Na secéo trés apresentam-se 0s resultados
principais relativos a pontos criticos e extremos da resposta a uma entrada degrau unitario. Na secéo
quatro as conclusdes do trabalho.

2. CONSIDERACOES INICIAIS

Considera-se o sistema de controle linear continuo no tempo, monovariavel e estavel descrito
pela fungéo de transferéncia:

lg[(TiS+1)
G(s):igl— 2.1)
(Z’jS+1)
=1

J

sendo que:
= T i=1,2sdao constantes reais estritamente positivas;

rj >0, j=1, 2, 3 sdo as constantes de tempo do sistema;

zi =—1/T;, sédo os zeros de G(s);
2 :_1/71-, j=1,2,3 sdo os polos de G(s);
/Ij # A, /1j #Zj paratodoi=1,2, j=1,2,3.

Considera-se, ainda, que o tempo t pertenca ao intervalo [0, +) e que:

M<HL<A3<0 e 21<2,<0. (2.2)

Observa-se que G(s) pode ser escrita, na forma de pélos e zeros, do seguinte modo:
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O lema, dado a seguir, fornece a resposta a uma entrada degrau unitario, para a classe de
sistemas cuja funcdo de transferéncia tem a forma dada por (2.3). A prova é feita levando-se em
conta a expansdo em fragdes parciais de G(s).

LEMA 2.1: A resposta a uma entrada degrau unitario da classe de sistemas de controle linear, cuja
funcéo de transferéncia seja dada por (2.3), tem a forma:
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Além disso, considera-se que y(0) =0e y'(0) = —M.
2123

3.  DETERMINACAO E CLASSIFICACAO DOS PONTOS CRITICOS DE y(t).

Considera-se o sistema de controle linear estavel, continuo no tempo, monovariavel, com trés
polos reais distintos e com dois zeros reais distintos e negativos, descrito pela funcdo de
transferéncia (2.3), cuja resposta a uma entrada degrau unitario y(t) tem a forma (2.4) - (2.7).

Inicialmente, de (2.4), tem-se que:

y(t)= Soielit (3.1)
i=1

Entdo, de (3.1), tem-se que:

y(1)=0 < cidy +codpel?2 7ty eapae(A3=A0 _ (3.2)
Em (3.2), fazendo:

ki=ciZi,i=1,23 e Bj=ij-4. =23, (3.3)

e substituindo (3.3) em (3.2), obtém-se:

y’(t)=0c>1+k—zeﬂ2t +Xaemt g (3.4)
kq kq
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Em (3.4) defina o = k—' i =2, 3. Entdo, de (3.4), tem-se que:
1

y(1)=0 < 1+ayef2t 4 gaef3t =0, (3.5)
Seja f(t) a funcéo definida a partir de (3.5), dada por:
f(t)=1+ay,ef2t +aqef3t, (3.6)

De (3.5) e (3.6), observa-se que os pontos criticos de y(t) sdo os pontos t, pertencentes a
[0, +o0) para os quais f(t,) = 0. Além disso, nota-se ainda, que:
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Tem-se, entdo, o seguinte resultado principal, o qual fornece uma condicdo necessaria e
suficiente para a determinacao dos extremos de y(t), além da classificacdo dos mesmos.

TEOREMA 3.1: Sob as hipoteses anteriormente postas, y(t) apresenta um Unico extremo em t, se e

somente se for véalida uma das seguintes condigdes:

(I) M<Lb<1< <ol L<zu< < Az<z0U Zl</11</12<23<22;

(i), (hW<bh<Bb<nu<pouhs<h<nu<zp<i)ef(l)=0e f'(t,)=0, sendo f(t) dada
por (3.6).

Além disso, o extremo apresentado por y(t) € um ponto de maximo.

Para a prova do Teorema 3.1, sdo necessarios alguns resultados, os quais serdo enunciados a
sequir.

LEMA 3.1: f(t) dada por (3.6) apresenta um Unico ponto critico se e somente se __szﬁz >1.
a3p3
Prova: f'(t)=0< oBa=pak _ 2P 1 In(— a2 j o %P4
azfs3 B3 = P2 Paas a3 f3

LEMA 3.2:
OF Se a3 <0 e ky > 0 entdo y(t) apresenta um Unico extremo;
(i), a3<0ek;>0seesomentese Lh< L <zi<A3<z0u L<zuu<AH<A<z.
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Prova: Tem-se de (3.6) que f(t)= 1+052eﬂ2t +oz3eﬂ3t e f(0)= " Como
212Ky
A A L « :
278 0, f(0)>0jaqueky >0. Mas 0 < S < /%, entdo a parcela a3eﬂ3tdom|na f(t) e
2123
entdo, como o3 <0, tem-se que f(0) >0e [im f(t)=—. Assim a Fig. 01, dada a seguir, mostra
t—>+400

as possibilidades para o grafico de f(t). Pelo Lema 3.1, f(t) possui no maximo um ponto critico e
entdo, existe um unico t, pertencente a [0, + «) tal que f(t,) = 0 0 que implica na existéncia de um
y'(t)

anico ponto critico de y(t) em t,. Agora, de (3.7), f(t)= 1
k]_e 1

. Comok; >0ef(t)>0set<t,

entdo y'(t)>0 set<t, Além disso,comok; >0ef(t)>0set>1t, y'(t)<0 set<t, Portanto,
y(t) possui um méaximo em t, e o item (i) esta provado.

N f(t)
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Figura 01. Possibilidades para a forma do grafico de f(t).
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Para a prova de (ii), de (2.5), (2.7) e (3.3) e como «; = :—' i =2, 3, observa-se que:
1
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e (3.7)
k1>0<:>01/11>0<:>(/11—21)(/11—22)>0<:>/1%—(21+22)/11+2122 >0.

Assim, de (3.7), s <0eki1 >0 @Af —(z9+2 )41 +2729 >0 e i% —(21+29 )A3 +2729 <0
Sh<h<u<A<0u A1 <2<l <A3<120queprovao Lema 3.2.

LEMA 3.3:
(). az<0eky<Oseesomentesez; < 1< <z < 30U 1 < 1 <2< A < A3
(ii).  Se a3 <0 e k; < 0 entdo y(t) ndo apresenta extremos;
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(/13—21)(/13—22)<0©/13—(21+22)3~3+2122 -
(L -71 )4 —-122) 22 (21 +179)q + 12125

K1 <0<:>2f—(21+22)/11+2122 <0.Dai, 3s<0ek <0< l%—(zl+22)/11+2122 <0 e

Prova: Tem-se que a3 <0< Oe

ﬂ%—(zl+22)/13+zlzz >0 <M <h<<Aou z;< 4 <2< A <43 0que prova o

item (i). Por Rachid (1995), a resposta a uma entrada degrau unitario do sistema G(s) com uma tal
configuracdo de pdlos e zeros ndo possui extremos e 0 Lema 3.3 esta provado.

LEMA 3.4:
. Se a3 > 0 e ky <0 entdo y(t) apresenta um Unico extremo;
(i), a>0ek;<Oseesomentesez; < <A <A3<z.

ey .
Prova: De (3.6), tem-se que f(0)= 2472738 6 comoky < 0, f0)<0e lim f(t)=+o0.Assim
2125k t—>+o0
a Fig. 02, dada a seguir, mostra as possibilidades para o grafico de f(t). Pelo Lema 3.1, f(t) apresenta
um unico ponto critico e entdo, existe um Unico t, pertencente a [0, + «) tal que f(t,) = 0 0 que
y'(t)

. Como
1ellt

implica na existéncia de um Unico ponto critico de y(t) em t,. Agora, de (3.7), f(t) =

kiy<Oef(t)<Oset<ty,entdo y'(t)>0 set <t, Além disso, comok; <Oef(f)<Oset>t,e
entdo y'(t) <0 set<t,. Portanto, y(t) possui um maximo em t, e 0 item (i) estd provado.
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Figura 02. Possibilidades para a forma do grafico de f(t).

Para a prova de (ii), tem-se que:
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(13—21)(/13—22)>0©13—(21+22)/13+2122 S

Oe
(/11—21)(/11—22) ﬂ%—(21+22)/11+2122

asz >0

k1<0<:>/1%—(21+22)21+2122 <0.
Assim,
o3>0 ¢e kg <0 @i%—(zl+zz)/11+zlzz <0 e/lg—(zl+zz)}t3+zlzz <0en<is<i
< A3 < 2p, 0 que prova (ii).

LEMA 3.5:
(). Se a3 > 0 e k; > 0 entdo y(t) pode apresentar até dois extremos;
(i), a3>0ek;>0seesomentese 1< L, < B<71<Z0U4 <A <21<2</s

2
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Prova: Tem-se que a3 >0 < 5
(/11_21)(/11_22) /11—(Zl+22 )/11+le2

0

k]_ >0<:>ﬂ%—(21+22)ﬂ,1+2122 >0.

Assim, a3 >0ek; >0 @ﬂ%—(Z]_-FZZ )ﬂl+2122 >0 e ﬂ%—(21+22 )Z3+2122 >0 < A
< B<71<Z0U A < A <Z3 <2< A30que prova (ii).

A prova de (i), segue do fato que se a3 > 0 e k; > 0, entdo f(0) > 0e |im f(t)=+w, ja que
t—>+4o0

A Ao A . A - -

f(0)= —Lk?’. Assim, podem ocorrer trés possibilidades para o grafico de f(t), mostradas na
£122Kq

Fig. 03, a seqguir.

A )

f(0)

t

Figura 03. Possibilidades para a forma do grafico de f(t).

Prova do TEOREMA 3.1: A prova segue diretamente dos Lemas 3.2, 3.4 e 3.5.

Observa-se, do Lema 3.3, quese 21 < 441 < 1, <2 < A30u 21 < A3 <72, < A, < Az entdo y(t),
dada por (2.4) - (2.7), ndo apresenta overshoot e nem undershoot, ja que ndo apresenta extremos.
Tal resultado coincide com os resultados obtidos por Rachid (1995).

EXEMPLO: Considere o sistema cuja funcdo de transferéncia seja dada por:



Gs + 1)(55 +1)

Tea)Laafern) -

Observa-se que G(s) possui zeros z; = -2 e z, = -0.2, além dos polos 4, = -4, 1, = -3 e A3 = -1,
satisfazendo entdo as condicdes do Teorema 3.1. A Fig. 04, a seguir, mostra o grafico da resposta a
uma entrada degrau unitario y(t) para esse sistema. Observa-se que o sistema apresenta um Unico
ponto de maximo e um overshoot de aproximadamente 300 %.

G(s)=

Resposta a Degrau

445

________________________________________________________________________

______________________________________________________________________

________________________________________________________________________

Tempo (5)

Figura 04: Resposta a uma entrada degrau unitario para G(s) dada por (3.8).

4. CONCLUSOES

Foram obtidas nesse trabalho, condigbes necessarias e necessarias e suficientes para a
determinacdo e classificacdo dos extremos da resposta a uma entrada degrau unitario em sistemas
de controle lineares continuos no tempo, de terceira ordem com polos e dois zeros reais estaveis, em
funcdo das posicOes relativas dos poélos e zeros desse sistema. Acredita-se que com os resultados
obtidos foi dado um passo importante para um melhor entendimento da influéncia das posicdes
relativas de polos e zeros para a ocorréncia de pontos criticos e extremos em sistemas de controle
lineares e continuos no tempo.
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Abstract: This paper analysis critical points and extremes that can occur in the step-response of a
linear control continuous time system of third order with zeros and real stable poles. It is presented
a necessary and necessary and sufficient condition for the existence of extremes in the step-
response of third order continuous time transfer functions, based on its poles and zeros.
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