
ANÁLISE DE EXTREMOS EM SISTEMAS DE CONTROLE LINEARES 
CONTÍNUOS DE TERCEIRA ORDEM COM PÓLOS E ZEROS REAIS 

ESTÁVEIS 
 

Célia Aparecida dos Reis 
Ali Messaoudi 
Neusa Augusto Pereira 
 
Universidade Estadual Paulista, Campus de Ilha Solteira, Departamento de Matemática, Caixa 
Postal 31, CEP 15385-000, Ilha Solteira, SP, Brasil.  
Email: celia@fqm.feis.unesp.br, messaoudi@fqm.feis.unesp.br, neusa@fqm.feis.unesp.br. 
 
Resumo: Trata este trabalho de uma análise de pontos críticos e extremos em uma classe de 
sistemas de controle lineares contínuos de terceira ordem com pólos e dois zeros reais estáveis. São 
obtidas condições necessárias e necessárias e suficientes  para a determinação de pontos críticos e 
extremos em uma tal classe de sistemas de controle, levando-se em conta as posições relativas dos 
pólos e zeros.   
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1. INTRODUÇÃO 
 

Atualmente os sistemas de controle automático se encontram difundidos em todas as sociedades 
desenvolvidas. Tais sistemas agem como elemento catalisador na promoção do desenvolvimento e 
do progresso. O controle automático é essencial no estudo de sistemas de veículos espaciais, 
guiamento de mísseis, pilotagem de aviões, robóticos e outros, além de ser aplicado em modernos 
processos industriais e de fabricação, sistemas biológicos, biomédicos, econômicos e 
socioeconômicos, de acordo com Franklin (1991), Dorf (1995), Ogata (1998) e Bolton (1995). 

Existem alguns problemas como o de controle do eixo de máquinas ferramentas e os de controle 
de um robô, os quais necessitam seguir uma trajetória pré-definida, onde a resposta a degrau não 
pode apresentar extremos. Desta forma, o estudo de condições que permitam avaliar overshoot na 
resposta a degrau é de grande importância na teoria de controle, de acordo com Ogata (1998), El-
Khoury (1993), Howell (1997), Rachid (1995), Leon de la Barra (1994, 1994-a), Reis  (2003, 2002, 
2001), Silva (2001). 

Muitas contribuições teóricas recentes têm sido feitas no sentido de clarificar a influência dos 
zeros e das localizações de pólos e zeros da planta na parte transiente da resposta a degrau (El-
Khoury, 1993; Rachid, 1995; Howell, 1997; Goodwin, 1999; León de la Barra, 1994, 1994-a;  Lin 
e Fang, 1997; Moore, 1990; Reis, 2001, 2002, 2003; Silva, 2001).  

Apesar de bastante valiosas, essas contribuições ainda não oferecem um quadro claro de como e 
quais variações extensas nas localizações de pólos e zeros podem influenciar o overshoot e o 
undershoot. Por exemplo, o problema de determinar o número exato de extremos da resposta a 
degrau permanece em aberto (El-Khoury, 1993) e mesmo determinando os extremos da resposta a 
degrau, não existe uma técnica que permita classifica-los, ou seja, faltam condições necessárias e 
suficientes para a prova da existência de overshoot e undershoot. 

Como contribuições dos autores (Reis, 2001, 2002, 2003), foram obtidas condições necessárias 
e suficientes para a existência de extremos, overshoot e undershoot em sistemas de segunda e 
terceira ordem, com pólos e zeros reais estáveis. Dessa forma, nesse trabalho, será apresentada uma 
análise dos pontos críticos e extremos de uma classe de sistemas de controle lineares contínuos de 
terceira ordem com pólos e dois zeros reais estáveis. Acreditamos que as caracterizações obtidas 
são de importância na teoria de controle já que permitem uma visão mais esclarecida das condições 
que possibilitam avaliar pontos críticos e extremos em sistemas lineares contínuos no tempo, além 
de clarificar um pouco mais a influência dos zeros e localizações de pólos e zeros da planta na parte 



transiente da resposta a degrau. Esse trabalho está organizado como segue. Na seção dois 
apresentam-se as considerações iniciais sobre o trabalho. Na seção três apresentam-se os resultados 
principais relativos a pontos críticos e extremos da resposta a uma entrada degrau unitário. Na seção 
quatro as conclusões do trabalho. 

 
2. CONSIDERAÇÕES INICIAIS 
 

Considera-se o sistema de controle linear contínuo no tempo, monovariável e estável descrito 
pela função de transferência: 
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sendo que: 

 Ti, i = 1, 2 são constantes  reais estritamente  positivas; 

 3  2,  1, j   ,0j =>τ  são as constantes de tempo do sistema;  

 , são  os zeros de G(s); ii T/1z −=
 jj /1 τλ −= ,  j = 1, 2, 3  são  os pólos de G(s);  

 ij λλ ≠ , ij z≠λ  para todo i = 1, 2,  j = 1, 2, 3. 

Considera-se, ainda, que o tempo t pertença ao intervalo [0, +∞) e que: 
 

 λ1 < λ2 < λ3 < 0   e   z1 < z2 < 0.  (2.2) 
 

Observa-se que G(s) pode ser escrita,  na forma de pólos e zeros, do seguinte modo: 
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O lema, dado a seguir, fornece a resposta a uma entrada degrau unitário, para a classe de 

sistemas cuja função de transferência tem a forma dada por (2.3). A prova é feita levando-se em 
conta a expansão em frações parciais de G(s). 

 
LEMA 2.1: A resposta a uma entrada degrau unitário da classe de sistemas de controle linear, cuja 
função de transferência seja dada por (2.3), tem a forma: 
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Além disso, considera-se que y(0) = 0 e 
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3. DETERMINAÇÃO E CLASSIFICAÇÃO DOS PONTOS CRÍTICOS DE y(t). 
 

Considera-se o sistema de controle linear estável, contínuo no tempo, monovariável, com três 
pólos reais distintos e com dois zeros reais distintos e negativos, descrito pela função de 
transferência (2.3), cuja resposta a uma entrada degrau unitário y(t) tem a forma (2.4) - (2.7).  

Inicialmente, de (2.4), tem-se que: 
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Então, de (3.1), tem-se que: 
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Em (3.2), fazendo: 
 
 ,ck iii λ=  i = 1, 2, 3,        e    1jj λλβ −= ,  j = 2, 3,  (3.3) 
 
e substituindo (3.3) em (3.2), obtém-se: 
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Em (3.4) defina 
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Seja f(t) a função definida a partir de (3.5), dada por: 
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De  (3.5)  e  (3.6), observa-se que os pontos críticos de y(t) são os pontos to pertencentes a 

[0, +∞) para os quais f(to) = 0. Além disso, nota-se ainda, que: 
 

t
1 1ek

)t(y)t(f
λ
′

= .  (3.7) 



Tem-se, então, o seguinte resultado principal, o qual fornece uma condição necessária e 
suficiente para a determinação dos extremos de y(t), além da classificação dos mesmos.  

 
TEOREMA 3.1: Sob as hipóteses anteriormente postas, y(t) apresenta um único extremo em to se e 
somente se for válida uma das seguintes condições: 
(i). λ1 < λ2 < z1 < λ3 < z2 ou  λ1 < z1 < λ2 < λ3 < z2 ou  z1 < λ1 < λ2 < λ3 < z2;  
(ii). (λ1 < λ2 < λ3 < z1 < z2 ou λ1 < λ2 < z1 < z2 < λ3 ) e f(to) = 0 e 0)t(f o =′ , sendo f(t) dada 

por (3.6).  
Além disso, o extremo apresentado por y(t) é um ponto de máximo. 

 
 Para a prova do Teorema 3.1, são necessários alguns resultados, os quais serão enunciados a 
seguir.  

 

LEMA 3.1: f(t)  dada por (3.6) apresenta um único ponto crítico se e somente se 1
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LEMA 3.2:  
(i). Se α3 < 0 e k1 > 0 então y(t) apresenta um único extremo; 
(ii). α3 < 0 e k1 > 0 se e somente se λ1 < λ2 < z1 < λ3 < z2 ou  λ1 < z1 < λ2 < λ3 < z2. 
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. Assim a Fig. 01, dada a seguir, mostra 

as possibilidades para o gráfico de f(t).   Pelo Lema 3.1, f(t) possui no máximo um ponto crítico e 
então, existe um único to pertencente a [0, + ∞)  tal que f(to) = 0 o que implica na existência de um 

único ponto crítico de y(t) em to. Agora, de (3.7), 
t
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então  se t < t0)t(y >′ o. Além disso, como k1 > 0 e f(t) > 0 se t > to, 0)t(y <′  se t < to. Portanto, 
y(t) possui um máximo em to e o item (i) está provado.  
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Figura 01. Possibilidades para a forma do gráfico de f(t). 
 

Para a prova de (ii), de (2.5), (2.7) e (3.3) e como 
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⇔ λ1 < λ2 < z1 < λ3 < z2 ou  λ1 < z1 < λ2 < λ3 < z2, o que prova o Lema 3.2. 
 
LEMA 3.3:  
(i). α3 < 0 e k1 < 0 se e somente se z1 < λ1 < λ2 < z2 < λ3 ou  z1 < λ1 < z2 < λ2 < λ3;  
(ii). Se α3 < 0 e k1 < 0 então y(t) não apresenta extremos; 
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item (i). Por Rachid (1995), a resposta a uma entrada degrau unitário do sistema G(s) com uma tal 
configuração de pólos e zeros não possui extremos e o Lema 3.3 está provado. 
 
LEMA 3.4:  
(i). Se α3 > 0 e k1 < 0 então y(t) apresenta um único extremo; 
(ii). α3 > 0 e k1 < 0 se e somente se z1 < λ1 < λ2 < λ3 < z2. 
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a Fig. 02, dada a seguir, mostra as possibilidades para o gráfico de f(t). Pelo Lema 3.1, f(t) apresenta 
um único ponto crítico e então, existe um único t
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implica na existência de um único ponto crítico de y(t) em to. Agora, de (3.7),
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k1 < 0 e f(t) < 0 se t < to, então  se t < t0)t(y >′ o. Além disso, como k1 < 0 e f(t) < 0 se t > to e 
então  se t < t0)t(y <′ o.. Portanto, y(t) possui um máximo em to e o item (i) está provado.  
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Figura 02. Possibilidades para a forma do gráfico de f(t). 

 
Para a prova de (ii), tem-se que:  
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< λ3 < z2, o que prova (ii). 
 
LEMA 3.5:  
(i). Se α3 > 0 e k1 > 0 então y(t) pode apresentar até dois extremos; 
(ii). α3 > 0 e k1 > 0 se e somente se λ1 < λ2 < λ3 < z1 < z2 ou λ1 < λ2 < z1 < z2 < λ3. 
 

Prova: Tem-se que 3α  > 0 ⇔ 0
zz)zz(

zz)zz(
0

)z)(z(
)z)(z(

21121
2
1

21321
2
3

2111

2313 >
++−

++−
⇔>

−−
−−

λλ

λλ
λλ
λλ

   e  

 
0zz)zz(0k 21121

2
11 >++−⇔> λλ . 
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Fig. 03, a seguir. 
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Figura 03. Possibilidades para a forma do gráfico de f(t). 
 
 
Prova do TEOREMA 3.1: A prova segue diretamente dos Lemas 3.2, 3.4 e 3.5. 
 

Observa-se, do Lema 3.3, que se z1 < λ1 < λ2 < z2 < λ3 ou  z1 < λ1 < z2 < λ2 < λ3 então y(t), 
dada por (2.4) - (2.7), não apresenta overshoot e nem undershoot, já que não apresenta extremos. 
Tal resultado coincide com os resultados obtidos por Rachid (1995). 

 
EXEMPLO: Considere o sistema cuja função de transferência seja dada por: 
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Observa-se que G(s) possui zeros z1 = -2 e z2 = -0.2, além dos pólos λ1 = -4, λ2 = -3 e λ3 = -1, 
satisfazendo então as condições do Teorema 3.1. A Fig. 04, a seguir, mostra o gráfico da resposta a 
uma entrada degrau unitário y(t) para esse sistema. Observa-se que o sistema apresenta um único 
ponto de máximo e um overshoot de aproximadamente 300 %.  
 

 
 

Figura 04: Resposta a uma entrada degrau unitário para G(s) dada por (3.8). 
 
 

4. CONCLUSÕES 
 

Foram obtidas nesse trabalho, condições necessárias e necessárias e suficientes para a 
determinação e classificação dos extremos da resposta a uma entrada degrau unitário em sistemas 
de controle lineares contínuos no tempo, de terceira ordem com pólos e dois zeros reais estáveis, em 
função das posições relativas dos pólos e zeros desse sistema. Acredita-se que com os resultados 
obtidos foi dado um passo importante para um melhor entendimento da influência das posições 
relativas de pólos e zeros para a ocorrência de pontos críticos e extremos em sistemas de controle 
lineares e contínuos no tempo. 
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