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Resumo. O problema de identificacdo de sistemas tem recebido atencédo especial nos Ultimos anos,
sobretudo daqueles que estdo estreitamente vinculados ao projeto de sistemas de controle. Este
método € largamente utilizado no segmento aeroespacial, sendo, portanto, perfeitamente aplicavel
em sistemas MIMO — Mudltiplas Entradas/MUltiplas Saidas. O ERA (Eigensystem Realization
Algorithm), também conhecido como Realizagdo de Auto-Sistema, é um método de identificagéo
gue tem como caracteristica principal a utilizacdo do recurso matematico que envolve a
decomposicdo, em valores singulares, da matriz de Hankel, que é montada a partir dos dados
experimentais fornecidos pelos sensores posicionados no sistema. Estas saidas devem ser
provenientes de excitacfes (entradas) impulsivas unitarias aplicadas ao sistema, sendo que para
cada entrada, independentemente da quantidade de saidas, um ensaio deve ser realizado. Uma vez
montada a referida matriz estima-se os parametros do modelo, que deve ser descrito na forma de
espaco de estados. Neste trabalho, o sistema em questéo € linear, possui 2 graus de liberdade e é
invariante no tempo, ou sgja, a matriz da sua dinamica € Unica; diante deste contexto sera feita
uma comparagio entre os modelos real e identificado; para tanto foi codificado, en MATLABO, o
respectivo algoritmo.

Palavras chave: ldentificacdo de Sstemas, Engenharia Aeroespacial, Eigensystem Realization
Algorithm, Hankel, Engenharia de Controle.

1. INTRODUCAO

O estudo de métodos de identificacdo de sistemas € de suma importancia na Engenharia de
Controle, ja que, em muitas metodologias de controle, € imprescindivel conhecer os paréametros do
model o do sistema que se desegja controlar, sobretudo para aquel es casos em que o0 modelo analitico
€ desconhecido ou de dificil determinagéo.

Neste artigo, discute-se 0 método ERA — Eigensystem Realization Algorithm — (Juang, 1994),
que visa encontrar um modelo matemético que reproduza as propriedades de entrada/saida



do sistema real. Ha diferentes formas de representar (ou modelar) um sistema fisico. Uma das
mais comuns € a que relaciona as entradas e saidas do sistema. Na constru¢cado do modelo pode
ocorrer que nenhum significado fisico possa ser abstraido da realizagdo obtida mas que, no entanto,
preserva as propriedades de entrada/saida do sistema real; sob o ponto de vista do controleisso ja é
suficiente (Lim et al, 1998).

Esta assim divido este trabalho: primeiramente € feita uma exposi¢do dos conceitos que regem o
ERA; em seguida seu algoritmo é apresentado e, finalmente, um ensaio experimental € discutido
tendo em vista avaliar o procedimento de identificacdo proposto.

2. IDENTIFICACAO VIA REALIZACAO DE AUTO-SISTEMA —ERA

A identificacdo de sistemas MIMO, multi-entradas e multi-saidas, através do ERA, é baseada na
decomposi¢cdo em valores singulares de uma matriz Hermitiana derivada das saidas do sistema, a
matriz de Hankel, que esta vinculada aos paré@metros de Markov (Sczibor, 2002).

Ta método de identificacdo requer o conhecimento das respostas do sistema (sinal dos sensores)
submetido a excitacdo impulsiva nas entradas.

2.1. Abordagem Mateméatica do M étodo
2.1.1. Descricao do Sistema em Espago de Estados

Um sistema continuo, quando discretizado, se transforma em uma equacéo diferenca, como
descrito pelaEq. (1):

i x(k+1)= Ax(k)+Bu
7 y(k)= Sx(k)+ Du(k)

(k) O

onde: Dt é o tempo de discretizacdo; x(K)é o vetor de estados; y(k)é€ o vetor da resposta do sistema;
u(k)é o sinal de controle; A ¢é a matriz da dindmica do sistema; B € a matriz que posiciona 0s

atuadores, C € a matriz que posiciona os sensores € D € a matriz de perturbacdo dos sensores
devido ao atuador.

2.1.2. Os Parametros de M arkov

Aplicando-se uma entrada impulsiva, u(0) = 1, na Eq. (1) e assumindo x(0) = 0 como condic¢éo
inicial, obtém se, de forma recursiva, a expressao descrita pela Eq. (2)

_iXY)=Ax(0)+B=(0)=8B . iX2)=Ax(1)+Bx(1)=AB

OP T 0)=Cm0)+Bw(0)=D 7 Ly{1)=C 1)+ Bou(t)=CB

o x@)=Ax(2)+Ba(2)=A’B | . ix4)=Ax(3)+Bu(3)=A%B

k=2p y(2)=C x(2)+ D xu(2) = CAB k=3P 1y(3)=C xx(3)+ D «u(3)=CA?B
b ) (n+1)=Ax(n)+B>u(n)=A"B
k=nb fy(n) = Cxx(n)+D »u(n)=CA™B

Este processo iterativo permite, entdo, determinar as seguintes leis de formacdo, onde My.1 €
conhecido como parametro de Markov.



1y(0)=D
: )
%Y(k):ﬁk_lgzlvlk-l (p/X3 1)

Perceba que os parametros de Markov acopla as configuracdes de sensores e atuadores com a
dindmica do sistema e, denota também, informagcfes quanto a controlabilidade e observabilidade do
mesmo.

2.1.3. Construcdo da matriz de Hankel — H(k)

Considerando o elemento yij como sendo a saida i devido a entrada j, monta-se a matriz dos
sinais de saida, que tem dimensdo ns” na, conforme descrito pela Eg. (3), onde ns é o niUmero de
sensores (saidas) e na o de atuadores (entradas). E imprescindivel para o algoritmo que, para cada
entrada adquiram-se todas as saidas, ou sgja, ndo devem ocorrer excitagdes simultaneas em todas as
entradas do sistemas. Cada coluna da matriz y(k), descrita na Eqg. (3), corresponde as aquisices
decorrentes de uma Unica entrada dentre as varias que o0 sistema possua. Este requisito deve ser
atendido para que ndo ocorram eventuais correlagdes entre as varias entradas e as varias saidas
(Bendat et al, 1986), o que invalidaria a técnica ora apresentada.

) violk) v, (K)o
)=¢ gyzl(k) yzz(k) :-- yz,j.(k):

y(k o ©)
§y| 1 y| 2 yi'j(k)%qns'na)
0 que permite entdo a consequiente montagem da matriz de Hankel, descrita pela Eq. (4)
eylk)  yk+1) - yk+s) o
H(k)_gy(k+1) y(k+2) y(k+s+1): 4
I : P “

Sylkrr) ylk+r+1) — ylk+r+9p

onde r e s sdo parametros que determinardo a dimensdo de H(k) e sdo escolhidos segundo os
seguintes critérios. n = rank(A), r>n, s>n; segundo Juang e Pappa (1985) ndo existe um
critério mais apurado quanto aescolhader es.

Ao se substituir os par@metros de Markov, Eq. (2), na Eq. (4), torna-se possivel o
desmembramento da matriz de Hankel de forma que aparecam dois termos notaveis, conforme vé-
se na Eq. (5), que sdo as matrizes de Observabilidade e de Controlabilidade representadas por ¢ e
€, respectivamente (Sczibor e Marques, 2003).

A partir da Equacéo (3), que contempla os parametros de Markov, rescreve-se a Eq. (5), como
abaixo

2 A“'B CA*B CA¥s'B ¢ 2 ®eC 0
. _Ak§ _Ak+1§ Ak+sB - __ . _
Al)=g A5 CATE € =EPAeE AE - AB) O
éC_AkH-lg ﬁkﬂ’g CAk+r+s 1Ba g_ArB



A Equagdo (5) pode ser rescrita, a partir das defini¢gdes de Controlabilidade e Observabilidade,
conforme abaixo:

Hk)=¢ A-'e (6)

onde @ e# s&0, respectivamente, as matrizes de Observabilidade e Controlabilidade.

Segundo Juang e Pappa (1985), diante do exposto até o momento, a realizacdo minima tem a
ordem igual ao rank da matriz de Hankel, pois é sabido que as matrizes A, @ e @ tem rank igual a
n, que é a quantidade de estados. Executa-se, entdo, a decomposicdo em valores singulares de

A (k), oqueresultaem U , S (que contém os autovaloresde A) eV , como mostrado na Eq. (7):

(k+rY (k+r) XS(k+rY(k+s) )\7T(k+s)(k+5) (7)

S

H (k)=
Rescrevendo-se Eq. (7), vem:

N a&a 06 ' 0
H (k): (U U)(kﬂy(kﬂ) %0 §ak J (crs) ~T€q Y (kss) 8
o) (kes k+s) (k+s

Logo U, S eV s as submatrizesde U, S e V. gue contém os valores singulares de
magnitudes insignificantes, se comparados aos que compdem as submatrizes U, S e V, que contém

os valores singulares principais de W(k) e que cujas dimensdes sdo apontadas na Eg. (8). Assm, a
matriz de Hankel relativa a realizagdo minima é a seguinte:

H () = Uy () *Speng n) Vit (o9 ©)

onde, nesta hotacéo, (1: n) significaou as‘n’ primeiras linhas, ou as ‘n’ primeiras colunas da matriz
em questdo, lembrando que n = rank( A).

Este preceito quer dizer que apenas os valores singulares realmente relevantes sdo aproveitados
para a estimacéo dos parametros do modelo.

Fazendo-se k = 1 na Eg. (6) e igualando a parte significativa da decomposi¢cao da Eq. (8), vem:

H(1)=U SVT =U S¥?xs¥/T = o @ (10)

De onde se conclui que:

o=US¥" (11)
¢=S%™" (12)
Como

H(2)=oAe b H(2)=U S?ASVVT (13)
Aplicando-se a decomposicéo em valores singulares e as propriedades, U 'U =V 'V =1, naEq.

(13) e procedendo como abaixo, estima-se amatriz A, mostrada na Eq. (14).

UTH(2V =UTU S¥*A S¥V TV =s¥2As? p A=S#UTH(2v s ¥ (14)



Ja para a estimagéo das matrizes B e C é necessario que sgjam definidas duas auxiliares, como
mostrado abaixo:

Ew=(lns O - 0), (15)

E.=(,, 0 - 0] (16)

na sxs

Associando-se as Eq. (15) e EQ. (16) com as matrizes de Controlabilidade e Observabilidade,
respectivamente, obtém:-se as matrizes B e C.

a6
go
B=vE,=(F A'B - AB)E.L (17)
éoﬂ
®&C 0
. CGA -
C=E_o=(I 0 - o)xg i (18)
ro

Substituindo-se as Eq. (11) e Eg. (12) nas Eqg. (15) e Eq. (16) respectivamente, obtém-se as

matrizes B e C estimadas e também, a partir da Eq. (2), a matriz D. Logo, as matrizes do sistema
identificado estéo agrupadas abaixo.

A=SV2UTH(2)v s¥2 B=SYWTE C=EU S D=y0) (19)
2.2. O Algoritmo

Assim, resumidamente, o fluxograma mostrado na Fig. (1) ilustra o método.
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Figura 1. O Fluxogramado ERA



3. PROCEDIMENTO EXPERIMENTAL

Paratestar o procedimento proposto foram realizados ensaios num sistema mecanico linear de 2
GDL's cuja representacdo obedece ao esquema mostrado naFig. (2).

Inicialmente o PC enviou um impulso de amplitude 2 volts gerado pelo programa que foi
amplificado e injetado no excitador €letro- mecanico (shaker) que, por sua vez, atuou na Mesa 1. O
sinal do sensor foi entdo adquirido pelo PC e armazenado em disco para posterior processamento.

Para adequar os sinais do experimento ao algoritmo efetuou-se uma normalizacéo destes,
dividindo por 2 (dois) os sinais de saida, y(t), e os de entrada, u(t).

Vae informar que, cada sinal passou filtro passa-baixa de quarta ordem e fregiéncia de corte
igual a 220 Hz. ApGs este procedimento foi calculada a resposta média da saidas a partir das 48
amostras filtradas.

,
AT UMINIO
u(t)+ ¢ ‘
l a

b

» — ey \ | b
PC

Amplificador t | |Placaam b N

r de Poténcia __/ /

Figura 2: Esguema da bancada experimental utilizada

Tabela 1. Dimensdes principais do aparato

a(mm) b (mm) ¢ (mm) h (mm) m (kg)
Mesa 1l 170 170 6 100 2,22
Mesa 2 250 250 5 60 3,30

As dimensdes que aparecem na Fig. (2) sGo mostrados na Tab. (1).

Os equipamentos utilizados no experimento foram: Excitador Eletro-mecénico (shaker) Brie &
Kjaer Tipo 4808; PC c/ placa de aquisicdo United Electronic Industries UEI BNC — 70; Sensor de
proximidade magnético— DY MAC e Amplificador de Poténcia Briel & Kjaer Tipo 2712.

O modelo tedrico (analitico) para o sistema supracitado, que serd utilizado para futura comparacéo,
€ 0 seguinte:

©2 0Uu _ 62004 - 2064 604217 - 04217
M=ey 3300 ©78 20a 53048 KT8 a7 2058340
e 9] & < e (i g, O34 (]
T
6 0 | 6 ‘
A=a . LiB=® 00 -5 c=o 65 0 0] D=0
& MK -MICl g m, g

onde GF =47 V/N (Ganho do Shaker) e GS = 5945 V/m (Ganho do Sensor).



4. RESULTADOS

Primeiramente, plotou-se o gréfico da funcéo de coeréncia para avaliar a fidedignidade dos
sinais adquiridos, conforme a figura abaixo.
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Figura 3. Funcéo de Coeréncia 92uy entre a entrada u(t) e a saida y(t) do sistema fisico

A Figura (3), aém de mostrar a plotagem simultanea das funcbes resposta em freqiiéncia dos
sistemas real e identificado, mostra também a plotagem dos erro no ganho (Deganto) € ha fase (Der)
relativo ao sistema fisico real orde os célculos foram realizados segundo a Eq. (19).

DeGANHO = FRFRE;E';AANLHO - FRFI(I;Q“?O € DQ = quZILEAL - I:RFIfDENT. (20)

onde: FRFSAC ea FRFSAMC sd0 as FRF' s dos sistemas real e identificado (Comparativo de Ganho)

REAL IDENT .

ea FREZ\C ea FRF AW s80 as FRF s dos sistemas real e identificado (Comparativo de Fase)

REAL IDENT .

4.1. Resultados parao Modelodeordem n =6

FUMCAO RESPOSTA EM FREQUENCIA L8 apmo (@)
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Figura 4. Funcdo Resposta em Frequiéncia dos sistema fisico real e do seu modelo estimado com os
erros no ganho e na fase em relacdo ao sistemafisico real (n = 6).
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Figura 5. Respostas Impulsivas dos sistemas fisico e do modelo identificado (n = 6)

4.1. Resultados parao Modelodeordemn =4

FUNCAD RESPOSTA EM FREQUENCIA Legapo (@)
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Figura 6. Funcdo Resposta em Frequiéncia dos sistema fisico real e do seu modelo estimado com os
erros no ganho e nafase em relacéo ao sistemafisico rea (n = 4)
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Figura 7. Respostas Impulsivas dos sistemas fisico e do modelo identificado (n = 4)

Para obtencdo destes resultados foram utilizados os seguinte valores para os parametros. na= 1
(nmero de atuadores), ns = 1 (nimero de sensores) er = s = 250 (dimensdo da matriz de Hankel).
O gréfico abaixo constitue uma forma de truncar o tamanho do modelo. Para tanto normalizou

se a diagonal da matriz S pelo seu maximo valor singular §), adotando como critério de
truncamentos >0,1.
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Figura 8. Critério de truncamento do tamanho do modelo



Os vaores abaixo da linha limite na Fig. (8) corresponde aos valores singulares relativos a
ruidos no sistemas (modos computacionais).
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Figura 9. Comparativo (Magnitude da FRF) entre os Sistemas Fisico (Andlitico) e |dentificado.
5. ANALISE E DISCUSSAO DOS RESULTADOS

Para a ordem n = 6 a Fig. (4) revela uma boa concordancia entre o comportamento do sistema
fisico real e 0 seu modelo no dominio da freqiiéncia, ja para o modelo de ordem n =4, aFig. (6)
revela um pequeno mas perceptivel deslocamento na freqiiéncia. As maiores diferencas ocorrem a
partir de 40 Hz, conforme as préprias Fig. (4) e Fig. (6). Este comportamento € explicado pela Fig.
(3), onde a partir de 40 Hz a func&o de coeréncia decresce notoriamente. Veja que na freqiiéncia de
anti-ressonancia a coeréncia é baixa (0,25). Este fato que justifica a dificuldade de identificacdo da
amplitude do ganho nesta fregliéncia, o que era esperado (Bendat e Piersol, 1986). Ainda na Fig.
(4) percebe-se que o erro, tanto no Ganho quanto na Fase, se mantém em patamares bastante
aceitaveis, em niveis adequados tendo em vista o projeto de controladores.

6. CONCLUSOES

O dgoritmo de identificacdo ERA foi aplicado em um sistema de 2 GDL’s e revelou-se, como
esperado, bastante eficiente.

Alguns elementos de ordem prética merecem destaque no experimento realizado. O primeiro se
refere a necessidade de se redlizar inimeros experimentos para, a partir destes, extrair o
comportamento médio do sistema, e que serdo usados para aplicacdo no algoritmo. O uso do filtro
passa-baixa nos sinais de saida melhorou o desempenho do identificador. A presenca desse filtro
devera ser considerada quando, por exemplo, o modelo identificado for utilizado no projeto de
controladores.



Outro elemento importante é a escolha da dimensdo do sistema. Neste trabaho, as
caracteristicas fisicas do sistema ensaiado, indicaram, claramente, a presenca de dois modos de
vibrar. Apesar disso, 0 sistema tinha, de fato, 3 GDL’s, pois o excitador eletromecanico (shaker)
estava acoplado as mesas, 0 que adicionou um grau de liberdade, determinando os tamanhos das
matrizes de estado (n = 6). Ainda sm o foco do trabalho estava na identificacdo do sistema de 2
GDL'’s; vejaque a Fig. (8) revela areal ordem do sistema. Apesar da ordem reveladaser n=4 a
Fig. (6) mostra um diferenca apreciavel no ganho DC que se traduz num erro de 7,8% em relacéo
ao sistemafisico real.

A potencialidade do método € ratificada pela Fig. (9), onde é feita uma comparacéo entre 0s
model os analitico e identificado, ja que, ate 0 momento, foram comparados os sistemas fisico real e
identificado.

Em outras situacBes devera ser feita uma andlise de sensibilidade do comportamento do
algoritmo para diferentes valores de ‘n’. Na construcdo da matriz de Hankel os par@metrosr e s
devem também ser escolhidos com cuidado para que ndo sejam comprometidos o desempenho
computacional e a precisdo naidentificacao.

Uma virtude do método € a sua simplicidade de implementacdo computacional.

Ta método foi gplicado em outros sistemas existentes no Laboratério de Sistemas Mecénicos da
FEMEC-UFU, revelando-se, também, bastante eficiente, o que mostrou uma caracteristica de
generalidade bastante importante do método. Um ensaio com multiplas-entradas e multiplas-saidas
€ 0 préximo passo na investigacao da robustez do método

Investigar a sensibilidade do métodos aos seus parametros intrinsecos, como por exemplor e's,
e estudar eventuais melhoramentos para tratar sistemas com atraso e peguenas ndo-linearidades,
também sfo temas para trabal hos posteriores.
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Abstract. The system identification problem has received special attention in recent years, mainly
for those people who are narrowly involved with control system design. This method is widely used
within aerospace sector, being, therefore, perfectly applicable in MIMO systems, Multiple
Input/Multiple Output. The ERA is an identification method whose main characteristic is to
decompose, in singular values, the Hankel matrix, which is built from the experimental data
supplied by the sensors placed on the system. These outputs must be obtained by the unitary
impulsive excitements (inputs) applied to the system, where, for each input, irrespectively of the
outputs quantity, a experiment must be executed. Once built the related matrix the model
parameters are estimated, that must be described under the state-space form. In this paper, a
comparision is made between the real physical model of a 2 DOF s linear mechanical system and
the identified model; to get it, the respective algorithm was codified in MATLABO .

Keywords: System Identification, Aerospace Engineering, Eigensystem Realization Algorithm,
Hankel, Control Engineeringl.



