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Resumo. O problema de identificação de sistemas tem recebido atenção especial nos últimos anos, 
sobretudo daqueles que estão estreitamente vinculados ao projeto de sistemas de controle. Este 
método é largamente utilizado no segmento aeroespacial, sendo, portanto, perfeitamente aplicável 
em sistemas MIMO – Múltiplas Entradas/Múltiplas Saídas. O ERA (Eigensystem Realization 
Algorithm), também conhecido como Realização de Auto-Sistema, é um método de identificação 
que tem como característica principal a utilização do recurso matemático que envolve a 
decomposição, em valores singulares, da matriz de Hankel, que é montada a partir dos dados 
experimentais fornecidos pelos sensores posicionados no sistema. Estas saídas devem ser 
provenientes de excitações (entradas) impulsivas unitárias aplicadas ao sistema, sendo que para 
cada entrada, independentemente da quantidade de saídas, um ensaio deve ser realizado. Uma vez 
montada a referida matriz estima-se os parâmetros do modelo, que deve ser descrito na forma de 
espaço de estados. Neste trabalho, o sistema em questão é linear, possui 2 graus de liberdade e é 
invariante no tempo, ou seja, a matriz da sua dinâmica é única; diante deste contexto será feita 
uma comparação entre os modelos real e identificado; para tanto foi codificado, em MATLAB, o 
respectivo algoritmo. 
 
Palavras chave: Identificação de Sistemas, Engenharia Aeroespacial, Eigensystem Realization 
Algorithm, Hankel, Engenharia de Controle. 
 
1. INTRODUÇÃO 
 

O estudo de métodos de identificação de sistemas é de suma importância na Engenharia de 
Controle, já que, em muitas metodologias de controle, é imprescindível conhecer os parâmetros do 
modelo do sistema que se deseja controlar, sobretudo para aqueles casos em que o modelo analítico 
é desconhecido ou de difícil determinação. 

Neste artigo, discute-se o método ERA – Eigensystem Realization Algorithm – (Juang, 1994), 
que visa encontrar um modelo matemático que reproduza as propriedades de entrada/saída 



do sistema real. Há diferentes formas de representar (ou modelar) um sistema físico. Uma das 
mais comuns é a que relaciona as entradas e saídas do sistema. Na construção do modelo pode 
ocorrer que nenhum significado físico possa ser abstraído da realização obtida mas que, no entanto, 
preserva as propriedades de entrada/saída do sistema real; sob o ponto de vista do controle isso já é 
suficiente (Lim et al, 1998).   

Está assim divido este trabalho: primeiramente é feita uma exposição dos conceitos que regem o 
ERA; em seguida seu algoritmo é apresentado e, finalmente, um ensaio experimental é discutido 
tendo em vista avaliar o procedimento de identificação proposto. 
 
2. IDENTIFICAÇÃO VIA REALIZAÇÃO DE AUTO-SISTEMA – ERA  
 

A identificação de sistemas MIMO, multi-entradas e multi-saídas, através do ERA, é baseada na 
decomposição em valores singulares de uma matriz Hermitiana derivada das saídas do sistema, a 
matriz de Hankel, que está vinculada aos parâmetros de Markov (Sczibor, 2002).  

Tal método de identificação requer o conhecimento das respostas do sistema (sinal dos sensores) 
submetido à excitação impulsiva nas entradas. 
 
2.1. Abordagem Matemática do Método 
 
2.1.1. Descrição do Sistema em Espaço de Estados 
 

Um sistema contínuo, quando discretizado, se transforma em uma equação diferença, como 
descrito pela Eq. (1): 
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onde: ∆t é o tempo de discretização; (k)x é o vetor de estados; y(k)é o vetor da resposta do sistema; 

u(k)é o sinal de controle; A  é a matriz da dinâmica do sistema; B  é a matriz que posiciona os 
atuadores; C  é a matriz que posiciona os sensores e D  é a matriz de perturbação dos sensores 
devido ao atuador. 
 
2.1.2. Os Parâmetros de Markov 
 

Aplicando-se uma entrada impulsiva, u(0) = 1, na Eq. (1) e assumindo x(0) = 0 como condição 
inicial, obtém-se, de forma recursiva, a expressão descrita pela Eq. (2) 
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Este processo iterativo permite, então, determinar as seguintes leis de formação, onde Mk-1 é 

conhecido como parâmetro de Markov. 
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Perceba que os parâmetros de Markov acopla as configurações de sensores e atuadores com a 

dinâmica do sistema e, denota também, informações quanto a controlabilidade e observabilidade do 
mesmo. 
 
2.1.3. Construção da matriz de Hankel – H(k) 
 

Considerando o elemento yij como sendo a saída i devido à entrada j, monta-se a matriz dos 
sinais de saída, que tem dimensão ns×na, conforme descrito pela Eq. (3), onde ns é o número de 
sensores (saídas) e na o de atuadores (entradas). É imprescindível para o algoritmo que, para cada 
entrada adquiram-se todas as saídas, ou seja, não devem ocorrer excitações simultâneas em todas as 
entradas do sistemas. Cada coluna da matriz y(k), descrita na Eq. (3), corresponde às aquisições 
decorrentes de uma única entrada dentre as várias que o sistema possua. Este requisito deve ser 
atendido para que não ocorram eventuais correlações entre as várias entradas e as várias saídas 
(Bendat et al, 1986), o que invalidaria a técnica ora apresentada. 
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o que permite então a conseqüente montagem da matriz de Hankel, descrita pela Eq. (4) 
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onde r e s são parâmetros que determinarão a dimensão de H(k) e são escolhidos segundo os 
seguintes critérios: n = rank( A ), nr > , ns > ; segundo Juang e Pappa (1985) não existe um 
critério mais apurado quanto à escolha de r e s. 

Ao se substituir os parâmetros de Markov, Eq. (2), na Eq. (4), torna-se possível o 
desmembramento da matriz de Hankel de forma que apareçam dois termos notáveis, conforme vê-
se na Eq. (5), que são as matrizes de Observabilidade e de Controlabilidade representadas por  e 

, respectivamente (Sczibor e Marques, 2003). 
A partir da Equação (3), que contempla os parâmetros de Markov, rescreve-se a Eq. (5), como 

abaixo 
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A Equação (5) pode ser rescrita, a partir das definições de Controlabilidade e Observabilidade, 
conforme abaixo: 
 

( ) =kH 1k−A                                                                                                                         (6) 
 
onde  e   são, respectivamente, as matrizes de Observabilidade e Controlabilidade. 

Segundo Juang e Pappa (1985), diante do exposto até o momento, a realização mínima tem a 
ordem igual ao rank da matriz de Hankel, pois é sabido que as matrizes A ,  e  tem rank igual a 
n, que é a quantidade de estados. Executa-se, então, a decomposição em valores singulares de 

( )kH , o que resulta em U , S  (que contém os autovalores de A ) e V , como mostrado na Eq. (7): 
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Rescrevendo-se  Eq. (7), vem: 
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Logo U
~

, S~  e V
~

 são as submatrizes de U , S  e V  que contém os valores singulares de 
magnitudes insignificantes, se comparados aos que compõem as submatrizes U, Σ  e V, que contém 
os valores singulares principais de ( )kH  e que cujas dimensões são apontadas na Eq. (8). Assim, a 
matriz de Hankel relativa à realização mínima é a seguinte: 
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onde, nesta notação, (1: n) significa ou as ‘n’ primeiras linhas, ou as ‘n’ primeiras colunas da matriz 
em questão, lembrando que n = rank( A ).  

Este preceito quer dizer que apenas os valores singulares realmente relevantes são aproveitados 
para a estimação dos parâmetros do modelo. 

Fazendo-se k = 1 na Eq. (6) e igualando a parte significativa da decomposição da Eq. (8), vem: 
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De onde se conclui que: 
 

 = 21S U                                                                                                                                 (11) 
 
 = T21 VS                                                                                                                                (12) 
 

Como 
 
( ) =2H A  ( ) T21212 VS AS UH =⇒                                                                               (13) 

 
Aplicando-se a decomposição em valores singulares e as propriedades, IVVUU == TT , na Eq. 

(13) e procedendo como abaixo, estima-se a matriz A , mostrada na Eq. (14). 
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Já para a estimação das matrizes B  e C  é necessário que sejam definidas duas auxiliares, como 
mostrado abaixo: 
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( )T
nssnana 00 ⋅×= LIEna                                                                                                       (16) 

 
Associando-se  as Eq. (15) e  Eq. (16) com as matrizes de Controlabilidade e Observabilidade, 

respectivamente, obtém-se as matrizes B̂  e Ĉ . 
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Substituindo-se as Eq. (11) e Eq. (12) nas Eq. (15) e Eq. (16), respectivamente, obtém-se as 

matrizes B̂  e Ĉ  estimadas e também, a partir da Eq. (2), a matriz D̂ . Logo, as matrizes do sistema 
identificado estão agrupadas abaixo. 
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2.2. O Algoritmo 

 
Assim, resumidamente, o fluxograma mostrado na Fig. (1) ilustra o método. 

 

 
 

Figura 1. O Fluxograma do ERA       
 



3. PROCEDIMENTO EXPERIMENTAL 
 

Para testar o procedimento proposto foram realizados ensaios num sistema mecânico linear de 2 
GDL’s cuja representação obedece ao esquema mostrado na Fig. (2).  

Inicialmente o PC enviou um impulso de amplitude 2 volts gerado pelo programa que foi 
amplificado e injetado no excitador eletro-mecânico (shaker) que, por sua vez, atuou na Mesa 1. O  
sinal do sensor foi então adquirido pelo PC e armazenado em disco para posterior processamento. 

Para adequar os sinais do experimento ao algoritmo efetuou-se uma normalização destes, 
dividindo por 2 (dois) os sinais de saída, y(t), e os de entrada, u(t). 

Vale informar que, cada sinal passou filtro passa-baixa de quarta ordem e freqüência de corte 
igual a 220 Hz. Após este procedimento foi calculada a resposta média da saídas a partir das 48 
amostras filtradas.  

 

 
 

Figura 2: Esquema da bancada experimental utilizada 
 

Tabela 1. Dimensões principais do aparato 
 

 a (mm) b (mm) c (mm) h (mm) m (kg) 
Mesa 1 170 170 6 100 2,22 
Mesa 2 250 250 5 60 3,30 

 
As dimensões que aparecem na Fig.  (2) são mostrados na Tab. (1). 
Os equipamentos utilizados no experimento foram: Excitador Eletro-mecânico (shaker) Brüel & 

Kjaer Tipo 4808; PC c/ placa de aquisição United Electronic Industries UEI BNC – 70; Sensor de 
proximidade magnético – DYMAC e Amplificador de Potência Brüel & Kjaer Tipo 2712. 
 
O modelo teórico (analítico)  para o sistema supracitado, que será utilizado para futura comparação,  
é o seguinte:  
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onde GF = 47 V/N (Ganho do Shaker) e GS = 5945 V/m (Ganho do Sensor). 
 

2 
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4. RESULTADOS 
 

Primeiramente, plotou-se o gráfico da função de coerência para avaliar a fidedignidade dos 
sinais adquiridos, conforme a figura abaixo. 

 

 
 

Figura 3. Função de Coerência γ2
uy entre a entrada u(t) e a saída y(t) do sistema físico 

 

A Figura (3), além de mostrar a plotagem simultânea das funções resposta em freqüência dos 
sistemas real e identificado, mostra também a plotagem dos erro no ganho (∆eGANHO) e na fase (∆eφ)  
relativo ao sistema físico real onde os cálculos foram realizados segundo a Eq. (19). 
 

GANHO
.IDENT

GANHO
REALGANHO FRFFRFe −=∆      e    φφ

φ∆ .IDENTREAL FRFFRFe −=                                        (20) 
 
onde: GANHO

REALFRF  e a GANHO
.IDENTFRF são as FRF’s dos sistemas real e identificado (Comparativo de Ganho) 

e a GANHO
REALFRF  e a GANHO

.IDENTFRF são as FRF’s dos sistemas real e identificado (Comparativo de Fase) 
 
4.1. Resultados para o Modelo de ordem n = 6 
 

 
Figura 4. Função Resposta em Freqüência dos sistema físico real e do seu modelo estimado com os 

erros no ganho e na fase em relação ao sistema físico real (n = 6). 



 
 

Figura 5. Respostas Impulsivas dos sistemas físico e do modelo identificado (n = 6)  
 
4.1. Resultados para o Mode lo de ordem n = 4 

 

  
 

Figura 6. Função Resposta em Freqüência dos sistema físico real e do seu modelo estimado com os 
erros no ganho e na fase em relação ao sistema físico real (n = 4) 



 
 

Figura 7. Respostas Impulsivas dos sistemas físico e do modelo identificado (n = 4)  
 
Para obtenção destes resultados foram utilizados os seguinte valores para os parâmetros: na = 1 

(número de atuadores), ns = 1 (número de sensores) e r = s = 250 (dimensão da matriz de Hankel). 
O gráfico abaixo constitue uma forma de truncar o tamanho do modelo. Para tanto normalizou-

se a diagonal da matriz S  pelo seu máximo valor singular (σ), adotando como critério de 
truncamento σ  > 0,1. 
 

 
 

Figura 8. Critério de truncamento do tamanho do modelo 

ORDEM MÍNIMA DO MODELO 
(n = 4) 

VALORES SINGULARES 
RELATIVOS A RUÌDOS 



Os valores abaixo da linha limite na Fig. (8) corresponde aos valores singulares relativos a 
ruídos no sistemas (modos computacionais). 

 

Diagrama de Bode (Magnitude)

Frequencia (Hz)

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

-40

-30

-20

-10

0

10

20

30
Real (Analitico)
Identificado

 
 

Figura 9. Comparativo (Magnitude da FRF) entre os Sistemas Físico (Analítico) e Identificado. 
 

5. ANÁLISE E DISCUSSÃO DOS RESULTADOS 
 

Para a ordem n = 6 a Fig. (4) revela uma boa concordância  entre o comportamento do sistema 
físico real e o seu modelo no domínio da freqüência, já para o modelo de ordem    n = 4, a Fig. (6) 
revela um pequeno mas perceptível deslocamento na freqüência. As maiores diferenças ocorrem a 
partir de 40 Hz, conforme as próprias Fig. (4) e Fig. (6). Este comportamento é explicado pela Fig. 
(3), onde a partir de 40 Hz a função de coerência decresce notoriamente. Veja que na freqüência de 
anti-ressonância a coerência é baixa (0,25). Este fato que justifica a dificuldade de identificação da 
amplitude do ganho nesta freqüência, o que era esperado (Bendat e Piersol, 1986). Ainda na Fig.  
(4) percebe-se que o erro, tanto no Ganho quanto na Fase, se mantém em patamares bastante 
aceitáveis, em níveis adequados tendo em vista o projeto de controladores. 
 
6. CONCLUSÕES 
 

O algoritmo de identificação ERA foi aplicado em um sistema de 2 GDL’s e revelou-se, como 
esperado, bastante eficiente. 

Alguns elementos de ordem prática merecem destaque no experimento realizado. O primeiro se 
refere à necessidade de se realizar inúmeros experimentos para, a partir destes, extrair o 
comportamento médio do sistema, e que serão usados para aplicação no algoritmo. O uso do filtro 
passa-baixa nos sinais de saída melhorou o desempenho do identificador. A presença desse filtro 
deverá ser considerada quando, por exemplo, o modelo identificado for utilizado no projeto de 
controladores.  



Outro elemento importante é a escolha da dimensão do sistema. Neste trabalho, as 
características físicas do sistema ensaiado, indicaram, claramente, a presença de dois modos de 
vibrar. Apesar disso, o sistema tinha, de fato, 3 GDL’s, pois o excitador eletromecânico (shaker) 
estava acoplado às mesas, o que adicionou um grau de liberdade, determinando os tamanhos das 
matrizes de estado (n = 6). Ainda sim o foco do trabalho estava na identificação do sistema de 2 
GDL’s; veja que a Fig. (8) revela a real ordem do sistema. Apesar da ordem revelada ser n = 4 a 
Fig. (6) mostra um diferença apreciável no ganho DC que se traduz num erro de 7,8% em relação 
ao sistema físico real. 

A potencialidade do método é ratificada pela Fig. (9), onde é feita uma comparação entre os 
modelos analítico e identificado, já que, ate o momento, foram comparados os sistemas físico real e 
identificado.  

Em outras situações deverá ser feita uma análise de sensibilidade do comportamento do 
algoritmo para diferentes valores de ‘n’. Na construção da matriz de Hankel os parâmetros r e s 
devem também ser escolhidos com cuidado para que não sejam comprometidos o desempenho 
computacional e a precisão na identificação. 

Uma virtude do método é a sua simplicidade de implementação computacional. 
Tal método foi aplicado em outros sistemas existentes no Laboratório de Sistemas Mecânicos da 

FEMEC-UFU, revelando-se, também, bastante eficiente, o que mostrou uma característica de 
generalidade bastante importante do método. Um ensaio com múltiplas-entradas e múltiplas-saídas 
é o próximo passo na investigação da robustez do método  

Investigar a sensibilidade do métodos aos seus parâmetros intrínsecos, como por exemplo r e s, 
e estudar eventuais melhoramentos para tratar sistemas com atraso e pequenas não-linearidades, 
também são temas para trabalhos posteriores. 
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Abstract. The system identification problem has received special attention in recent years, mainly 
for those people who are narrowly involved with control system design. This method is widely used 
within aerospace sector, being, therefore, perfectly applicable in MIMO systems, Multiple 
Input/Multiple Output. The ERA is an identification method whose main characteristic is to 
decompose, in singular values, the Hankel matrix, which is built from the experimental data 
supplied by the sensors placed on the system. These outputs must be obtained by the unitary 
impulsive excitements (inputs) applied to the system, where, for each input, irrespectively of the 
outputs quantity, a experiment must be executed. Once built the related matrix the model 
parameters are estimated, that must be described under the state-space form. In this paper, a 
comparision is made between the real physical model of a 2 DOF`s linear mechanical system and 
the identified model; to get it, the respective algorithm was codified in MATLAB. 
 
Keywords: System Identification, Aerospace Engineering, Eigensystem Realization Algorithm, 
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