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Resumo. Este trabalho apresenta o desenvolvimento de um controle seguidor de posição e orientação 
por meio de realimentação de estados de um modelo não linear de uma mão artificial robótica 
denominada BRAHMA (Brazilian Anthropomorphic Hand) - com 22 graus de liberdade. Neste 
trabalho são utilizados um modelo não linear e um linear de 3 dedos da BRAHMA dos quais foram 
implementados utilizando ferramentas apropriadas para a obtenção e integração das equações de 
movimento. O formalismo matemático que rege a dinâmica da BRAHMA é apresentado de forma 
criteriosa. O controle é testado pela imposição de movimentos à BRAHMA e as respostas são 
apresentadas por meio das simulações numéricas. 
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1. INTRODUÇÃO 
 

Filósofos antigos como Anaxágoras (500?-428 ac) e Aristóteles (384-322 ac) já debatiam a respeito 
da relação entre a mão e a mente humana, pois tanto uma como outra fornece características ao ser 
humano que o diferencia dos outros animais. Paleontologistas mais recentemente, mostraram que a 
destreza mecânica da mão humana foi o maior fator que permitiu ao Homo sapiens desenvolver um 
cérebro superior (Bicchi, 2000).  

A mão humana representa um grande desafio para a robótica devido a sua flexibilidade, destreza e 
por conseqüência grande potencialidade de aplicações. Quando se pensa em termos de cooperação 
entre homem e máquina e no uso de mãos artificiais como próteses, se introduzem novos desafios 
como o conforto, facilidade de uso e integração. 

Quando os seres humanos capturam um objeto, parte do procedimento adotado é preestabelecida e 
parte do procedimento é otimizada instantaneamente. Os dedos posicionam-se de forma coerente e 
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forças são aplicadas de modo a não permitir que o objeto caia ou deslize. Muitos autores (Valero, 2000; 
Toft, 1980) afirmam ser a mão humana, uma das partes mais evoluídas do corpo humano, capaz de 
interagir de forma versátil com o meio ambiente através de movimentos, de sensações de contato, de 
controle de forças e outras habilidades que muitos pesquisadores nesta área gostariam de emular em 
garras robóticas e próteses de mão humana. 

No início do século XX ocorreu uma grande onda de desenvolvimento na área próteses da mão 
humana provocada pela primeira guerra mundial. Atualmente, já se encontram disponíveis 
comercialmente próteses de mãos para crianças e, em desenvolvimento, cotovelos com velocidades 
controláveis. Apesar dos avanços na área, existem estudos recentes que mostram que ainda hoje 
aproximadamente 70% das próteses e órteses de membros superiores são abandonadas após pouco 
tempo de uso (Scherbina, 2002). Os benefícios alcançados com o uso destes equipamentos ainda são 
pequenos se comparados ao esforço de treinamento, adaptação e principalmente aos resultados obtidos. 

Na grande maioria dos trabalhos da área, os modelos da mão foram desenvolvidos para aplicações 
clínicas e não se adaptam bem ao problema da análise de movimentos e dos respectivos comandos e 
acionamento. Muitos destes modelos foram construídos para predizer as forças aplicadas em músculos 
e tendões (Chao, 1976; Berne, 1977; Toft, 1980) ou, exploram considerações importantes para o design 
de órteses ou para cirurgias reconstrutivas.  

Uma das contribuições que se pretende oferecer a área é a modelagem criteriosa da cinemática 
(Glauco et al, 2003) e da dinâmica de uma prótese de mão humana, simulando os movimentos e 
esforços gerados a partir de malhas de controle. 

Este artigo apresenta o desenvolvimento das equações de movimento do projeto de prótese da mão 
humana, denominada BRAHMA (Brazilian Anthropomorphic Hand) e, de um controle multivariável 
de posição e orientação de um modelo não linear de três dedos da BHAHMA (com 8 graus de 
liberdade) por meio de realimentação de estados. 

 

2. MODELAGEM DA BRAHMA 
 

Um novo conceito de mão artificial foi desenvolvido por CAURIN et al (2003), cujo protótipo 
ficou denominado BRAHMA (Brazilian Anthropomorphic Hand), possuindo 22 graus de liberdade, 4 
para cada dedo e 2 para a articulação do pulso, ilustrado na Fig. (1). 
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Figura 1 – Protótipo da BRAHMA 



Neste protótipo foi estabelecida uma metodologia para determinação das coordenadas cartesianas 
das pontas dos dedos em relação a um sistema de coordenadas fixo ao punho (CAURIN et al, 2003), 
onde a cinemática direta é estabelecida de maneira analítica e a inversa de forma numérica. Com 
exceção do polegar (Dedo V), todos os outros dedos da mão artificial são tratados de forma análoga.  

Tomou-se como base para a simulação computacional os dedos III, IV e V: médio, indicador e 
polegar, respectivamente e seus três últimos corpos: falangeta, falanginha e falange (Fig. 1). 

Os dedos formam modelados como corpos rígidos independentes, ligados entre si por juntas de 
revolução e com sistemas fixos de coordenadas independentes para cada corpo rígido do dedo (Fig.2). 
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Figura 2: Modelagem dos três últimos corpos de um dedo genérico (Dedo IV). 

 

2.1. Modelo Dinâmico da BRAHMA  
 

As equações de movimento da BRAHMA são obtidas pelo método de Lagrange. Uma vez que as 
variáveis q constituem um conjunto de coordenadas generalizadas, ou variáveis independentes que 
descrevem os movimentos das jutas de um dos dedos da BRAHMA. As equações de movimento 
segundo Lagrange (CRAIG, 1989) podem ser escritas como: 
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onde n = 1,..., N juntas independentes, F é a força generalizada (torque) e β  é o coeficiente de atrito 
nas articulações. 

Deste modo, a Função Lagrangiana, ou simplesmente Lagrangeano, é determinada pela diferença 
de energia cinemática e energia potencial do sistema, assumindo a seguinte forma: 
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As equações de movimento são obtidas pela substituição da Eq. (2) na Eq. (1) para formar as 
derivadas apropriadas. O modelo dinâmico pode ser expresso, resumidamente, como equações 
diferenciais não-lineares de segunda ordem (KOIVO, 1989): 
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Do lado esquerdo da Equação (3), o primeiro termo representa componentes inerciais, o segundo, 

as componentes de Coriolis quando k ≠ j e centrípeta quando k = j, e o terceiro, a aceleração 
gravitacional. A representação de Dnk, Dnkj e Gn são apresentadas como: 
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onde tr[ ] significa a diagonal da matriz, T são as matrizes de transformadas homogêneas (CAURIN et 
al, 2003), 

i
p  é o centro de gravidade do enésimo link, J são as matrizes de inércia e “N” é o número de 

articulação do manipulador. 
Com a equação dinâmica BRAHMA, determina-se os torques necessários das articulações para 

seguir uma trajetória desejada. Essa equação completa pode ser expressa por: 
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onde a diagonal dessa matriz CN(q) (1.8), encontra-se os componentes de aceleração centrípeta e os 
outros termos estão associados a aceleração de Coriolis. A equação dinâmica da BRAHMA pode ser 
expressa resumidamente por: 
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3. SISTEMA DE CONTROLE 
 

São utilizados dois modelos de um dedo da garra gerados a partir do software de modelagem 
dinâmica ADAMS, um linearizado e um não linear, ambos contendo oito entradas que são os torques 
nos articulações, uma vez que se optou por simular apenas 3 dedos da BRAHMA e seus três últimos 
corpos: falangeta, falanginha e falange (Fig. 1) e dezesseis saídas, das quais oito são os deslocamentos 
angulares nas articulações e as outras oito, a derivada desses deslocamentos. 

O modelo linearizado em variáveis de estados é utilizado para realizar o controle em torno da 
posição de linearização. É formado por quatro matrizes: A, B, C e D. A matriz A possui dimensões 

 onde n é o número de estados sendo igual a duas vezes o número de graus de liberdade do 
sistema, neste caso a dimensão é 16, totalizando 8 graus de liberdade no sistema a ser controlado. A 
matriz B possui dimensões  onde m é igual a 8 que é o número de entradas do sistema. A matriz C 
é  onde p é o número de saídas do sistema, sendo está igual a 16, e a matriz D é 

nn ×

mn×
np × mp ×  com todos 

os seus elementos nulos. 
O modelo não linear é utilizado para simular o comportamento do dedo real e testar a eficiência do 

controle utilizado. 
 
3.1. Sistema de Controle Seguidor 
 

O Sistema linearizado de malha aberta é representado abaixo pelas equações de estado de n-ésima 
ordem e as equações de saída de p-ésima ordem. 
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onde y é um vetor  e  é um vetor 1p× Exw = 1m×  representando as saídas que são requeridas para 
seguir o vetor de entrada θ . 

O controle por realimentação de estados é projetado com o intuito de que o vetor w siga o comando 
de entrada θ quando este seja um comando de entrada constante por partes. Segundo D’Azzo & 
Houpis, (1995) o método do projeto consiste em adicionar um vetor comparador e integrador que 
satisfaça a seguinte equação: 
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O sistema de malha aberta é então governado pelas equações aumentadas de estado e saída 

formadas a partir da Eq. (9) à Eq. (12) 
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D’Azzo e Houpis (1995) mostram que a lei de controle a ser usada é: 
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Satisfeita a condição de controlabilidade e observabilidade (D’Azzo e Houpis, 1995), o diagrama 

representando o sistema de controle por realimentação, consistindo das equações de estado e de saída 
dadas pelas Eq. (9) e Eq. (10) e a lei de controle dada pela Eq. (14), é mostrado na Fig. (3). Esta lei de 
controle atribui o espectro de autovalores de malha fechada. A equação de malha fechada é: 
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A obtenção da matriz K

da planta de malha fechada 
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Figura 3 - Sistema de Controle Seguidor
 é realizada a partir da seleção dos autovalores a serem atribuídos à matriz 
 na equação 12. clA′
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Para satisfazer a equação (16), o vetor [vi

T gi
T]T deve pertencer ao núcleo de: 
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A notação  é usada para definir o espaço nulo que contém todos os vetores [v( )iSker λ i

T gi
T]T para 

que a equação (16) seja satisfeita (D’Azzo e Houpis, 1995). A Eq. (21) pode ser usada para formar a 
igualdade matricial 
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donde se obtém a matriz K como segue: 
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Observa-se que os autovalores podem ter valores repetidos de número igual às entradas do sistema. 
Isso se deve ao fato do espaço nulo ter dimensão igual ao número de entradas. Assim associa-se um 
autovalor repetido a um vetor da base do espaço nulo. Com isso, todas as colunas da matriz  
continuam sendo linearmente independentes e, por isso, a matriz  existe.  
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4. RESULTADOS 
 

Para a implementação do controle, adotou-se o seguinte conjunto de autovalores para a planta em 
malha fechada: 
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Os valores de entrada atribuídos para serem seguidos pelo sistema de controle foram: 
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Figura 4 – Resultados da Simulação do sistema de controle. Têm-se como resultados os deslocamentos 
e velocidades angulares nas articulações, os torques nas articulações e por fim os valores dos erros.  
 
 
4.1. Análise dos Resultados 
 

 Por meio das simulações, procurou-se analisar o comportamento das grandezas físicas envolvidas 
na dinâmica do sistema. Na Figura (3) encontram-se os gráficos de velocidade e força, úteis para 
determinar as características do sistema de acionamentos, como potência e rotação no caso de motores 
elétricos. Nos gráficos de deslocamento angular e erro, observa-se que a influência da componente 
transitória da resposta é menor quanto maior forem os autovalores atribuídos. Ainda analisando os 
gráficos de deslocamento angular e erro constata-se que o sistema controlado apresenta um 
comportamento estável com amortecimento crítico, ou seja, sem overshoot, conforme projetado no 
sistema de controle (atribuição de autovalores reais com valores negativos). O tempo de estabilização 
está abaixo de 0,4 segundos, sendo eficiente para a maior parte das tarefas do sistema, como por 
exemplo: manipulação, fixação, movimentos velozes e precisos.   

 
 

 
 



5. CONCLUSÃO 
 

Os ambientes de desenvolvimento do modelo e do controle se apresentaram eficientes. O ambiente 
de modelagem Adams® se mostrou prático e flexível na obtenção e integração das equações dinâmicas 
da BRAHMA. O controle foi desenvolvido no ambiente de desenvolvimento Matlab/Simulink®. A co-
simulação foi realizada de maneira simples e direta. 

O controle seguidor projetado nesse trabalho é eficiente para controlar a posição do modelo não 
linear da BRAHMA para os autovalores em malha fechada escolhidos, apresentando boa acuracidade 
mesmo com a atribuição de grandes deslocamentos angulares. Pelas respostas apresentadas, pode-se 
constatar que em até 4 décimos de segundos o sistema converge para os valores requeridos, porém, 
simulações para diversos tipos de sinais de entrada (ex. senoidal, rampa, etc.) ainda se fazem 
necessárias para uma melhor análise dos resultados do controle em diferentes condições de trabalho da 
mão.  

Nesse trabalho, desenvolveu-se um sistema de controle multivariável linear para um sistema com 8 
graus de liberdade. O próximo passo é o desenvolvimento do controle para o sistema completo com 22 
graus de liberdade. 
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Abstract. In this work the position control of the five fingers artificial robotic hand BRAHMA 
(Brazilian Anthropomorphic Hand) is investigated. To simulate the behavior of such a complex system, 
a dynamic linear model and a dynamic non-linear model both with 22 degrees of freedom were 
developed. The development of the BRAHMA equations of motion is presented in a  
detailed form. The multivariable control strategy was implemented using a state space representation 
through state feedback of BRAHMA´s non-linear model. The control was tested imposing predefined 
movements to the BRAHMA and analyzing the answers with respect to desired position and velocity 
behavior. 
 
Keywords: modeling, hand prostheses, gripper, robotic, multivariable control.  
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