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Resumo: O processo de solidificação rápida (Planar Flow Casting) de um metal é modelado através de um 
balanço de energia. As equações de camada limite em duas dimensões são transformadas, através de uma 
mudança de variável, em um problema de condução de calor unidimensional. Soluções híbridas para o 
problema são obtidas através da Técnica da Transformada Integral Generalizada (GITT). Resultados são 
apresentados para a distribuição de temperatura e para a evolução da frente de solidificação na fita de metal. 
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1. INTRODUÇÃO 
 
 Problemas de mudança de fase transientes envolvem o caminho trilhado por um movimento da fronteira 
de solidificação, separando as fases líquidas e sólidas de uma substância. Dentro da fase líquida e da fase sólida 
o processo de transferência de calor é governado principalmente por condução. A têmpera a partir do metal 
líquido é um processo de solidificação rápida que envolve o choque com espalhamento e surgimento da 
solidificação a partir da poça de metal líquido sobre a superfície de um substrato. Contrário ao processo 
tradicional de fabricação, onde a têmpera é feita sobre amostra de material sólido, o resfriamento rápido a partir 
do metal líquido representa uma categoria separada de têmpera em que o estado inicial do metal é líquido 
(Amantharaman e Suryanarayana, 1971; Jones, 1982). Isto leva a uma definição característica do método de 
resfriamento rápido a partir do metal líquido, o qual é imposto pelas velocidades de resfriamento do metal 
líquido e que são tipicamente muitas ordens de grandeza mais rápidas do que os métodos convencionais de 
têmpera. Esta situação ocorre quando o mecanismo de transferência de calor, principalmente condução, é capaz 
de remover muito mais rápido o calor que sai da camada de deposição do que o calor que é depositado pelo 
material líquido. 
 Particularmente a indústria tem tomado interesse na tecnologia do resfriamento rápido de metais a partir 
do estado líquido, por causa de sua forma compacta e capacidade de produção com rápida performance, bem 
como um aperfeiçoamento das propriedades dos materiais (Brooks et al., 1977; Bricknell, 1986; Annavarapu et 
al., 1990). 



 

 

  A modelagem e a simulação do problema físico é considerada uma ferramenta importante para 
acompanhar o projeto de máquinas e equipamentos. Com a redução dos custos computacionais, em virtude dos 
avanços tecnológicos, o uso de métodos avançados e computadores mais velozes passaram a ser mais usados, 
fazendo com que a parte experimental deixasse de ser um dos poucos recursos de projeto. Com este objetivo a 
Técnica da Transformada Integral Generalizada (GITT) que é uma técnica de natureza híbrida (Cotta, 1993) é 
aplicada na busca da solução do problema de solidificação rápida (Planar Casting Flow). Esta técnica, mantém 
características semelhantes à solução analítica o que proporciona mais simplicidade para implementação 
computacional. Os erros relativos dos resultados são definidos a priori e controlados automaticamente (Cotta, 
1993; Cotta e Mikhalov, 1993 e Cotta, 1994).  
 
 
2. SOLIDIFICAÇÃO RÁPIDA: O PROCESSO “PLANAR CASTING FLOW” 
 
 O processo “Planar Flow Casting”, é usado para solidificação rápida de uma fita fina de metal 
posicionando-se um cadinho bem próximo a um substrato de resfriamento em movimento. Embora, na 
realidade ocorra sub-resfriamento neste processo, a maioria dos modelos negligenciam este aspecto (Wang e 
Matthys, 1992). Uma geometria ilustrativa do processo é mostrada na Figura 1, na Figura 2 é mostrada uma 
ilustração da cinemática do processo de solidificação em estado estável. 
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Figura 1 – Região da poça de solidificação. 
 

Figura 2 – Cinemática de solidificação em estado estável. 
 
 O metal líquido no cadinho é forçado através do orifício e forma a poça de solidificação entre a base do 
cadinho e a superfície do volante. O metal se solidifica pelo contato com o volante e uma fita fina é arrastada 
pelo seu movimento. Resultados experimentais têm demonstrado que a forma da fita depende do formato da 
base do cadinho, bem como da relação de aspecto do orifício (Wang e Matthys, 1992). Dada uma grande 
relação de aspecto da poça e considerando-se que a velocidade axial é muito maior do que a velocidade normal, 
é portanto razoável, aproximar a poça de metal a uma tira retangular de metal líquido. A geometria esquemática 
do processo é mostrada na Figura 2. 
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Figura 2 – Geometria esquemática do “Planar Flow Casting” com sistema de coordenadas. 
 
 Com o objetivo de tornar o modelo o mais simples possível, consideremos que não existe gradiente de 
velocidade na poça. Na realidade, isto não é verdade e representa uma aproximação de um caso real. Para 
identificar tendências relativas e investigar parâmetros importantes no processo, adotaremos um modelo 
unidimensional (Wang e Matthys, 1992), onde as principais hipóteses simplificadoras adotadas foram: O de 
fluxo de metal fluido na poça é assumido em regime permanente; Limitamos nosso estudo à poça abaixo do 
cadinho sobre a roda em movimento; Negligenciamos a transferência de calor convectiva normal à superfície da 
roda; Condução de calor paralelo à superfície do substrato é negligenciada; Solidificação de um metal puro; 
Assumiremos a existência de equilíbrio termodinâmico local na interface sólido/líquido, isto é, a temperatura da 



 

 

interface é igual à temperatura de fusão do metal; A distribuição inicial de temperatura na poça é assumida 
uniforme, sendo “T∞” a temperatura do substrato e To a temperatura de vazamento; A massa específica do metal 
é tomada constante para ambas as fases; A temperatura no topo da superfície da poça é assumida constante e 
igual à temperatura de vazamento; O calor perdido através dos meniscos é negligenciado; A curvatura da roda é 
negligenciada e sua superfície é assumida ser horizontal; É assumida uma condição de não deslizamento na 
superfície da roda; As propriedades do metal são assumidas independentes da temperatura, porém, são 
diferentes para cada região; A contração durante a solidificação é negligenciada. 
  Com as hipóteses acima e assumindo que uma fina camada imóvel de metal líquido seja subitamente 
colocada em contato com o substrato de resfriamento, em um tempo muito pequeno, então o metal líquido se 
solidificará. Se não existe movimento relativo entre fluxo de fluido e o volante, se a camada de metal 
depositada (poça) é fina e, ainda, em virtude do desacoplamento entre a transferência de calor e os mecanismos 
do fluxo de fluido (provocado pela alta velocidade do substrato), podemos aproximar o processo de 
transferência de calor, na camada de metal depositada e no substrato, como uma condução unidimensional. 
Então, com as coordenadas da Figura 2, as equações da energia para a camada limite em cada região são dadas 
por: 
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onde Ts, ℓ, α s, ℓ, k s, ℓ são, respectivamente, as temperaturas, as difusividades térmicas e as condutividades 
térmicas das fases sólida e líquida. U é a velocidade do volante, hw é o coeficiente de transferência de calor, T∞ 
temperatura do ambiente e volante, Tm é a temperatura de mudança de fase, To é a temperatura inicial do metal, 
ρ é a massa específica do metal, ∆H é o calor latente de mudança de fase do metal e Sy(t) é a posição da frente 
de solidificação na direção y. 

 Em função da hipótese da não existência de movimento relativo dentro do metal líquido na poça, o 
problema bidimensional para a camada limite em estado permanente, pode ser reduzido a um problema de 
condução de calor unidimensional. Para isso faremos fx V t= , onde fV  é a velocidade média do metal sobre o 
volante. Considerando que o escoamento na poça seja completamente desenvolvido, de forma que a velocidade 
do volante U seja igual a velocidade média do metal sobre o volante fV , substituindo fx V t=  nas equações (1) 
junto com os seguintes grupos adimensionais 
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onde as coordenadas adimensionais 1η  e 2η  foram adotadas a fim de se trabalhar com um domínio fixo para o 
problema. No entanto, tal transformação acarretará o aparecimento de  termo convectivo nas equações. Tais 
coordenadas 1η  e 2η  requerem os seguintes operadores 
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logo, as equações adimensionais para as fases sólida e líquida são apresentadas por: 
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e a condição de acoplamento na interface sólido/líquido, necessária para a determinação da posição da frente de 
solidificação, é dada por:  
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 Nas equações (4.c, d), s 1f ( )η  e 2f ( )η  são as soluções analíticas obtidas por similaridade para um 
instante oτ = τ  muito pequeno. 
 
 
3. METODOLOGIA DE SOLUÇÃO 
 
  Com o objetivo de melhorar a performance da GITT é necessário homogeneizar as condições de 
contorno do problema, para isso os potenciais sθ  e θ  serão decompostos em duas parcelas na forma 
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2 2 2( , ) ( ; ) ( , )θ η τ = Φ η τ + Θ η τ  (5.b) 
 
onde os potenciais sΦ  e Φ  são obtidos a partir dos seguintes problemas: 
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21;    em  0Φ = η =                                             (7.b) 
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com as seguintes soluções 
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e as EDP´s para os potenciais s 1( , )Θ η τ  e 2( , )Θ η τ  serão obtidas substituindo-se as equações (5.a, b) nas 
equações (4) e fazendo-se uso das equações (6) e (7). Então, teremos: 
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onde  
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 Seguindo os passos básicos da GITT (Cotta, 1993), os problemas auxiliares, apropriados para o 
processo de transformação integral, são dados a seguir.  
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onde as autofunções, normas e autovalores são dados por: 
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Em função dos problemas de autovalor adotados, os seguintes pares transformada-Inversa são desenvolvidos 
para os potenciais s 1( , )Θ η τ  e 2( , )Θ η τ  
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 Seguindo os passos da técnica, faremos agora a transformação integral das equações diferenciais 
parciais (9.a) e (9.b). Para isso, multiplica-se a eq. (9.a) por ( )i 1;Ψ η τ  e a eq. (9.b) por ( )m 2Ω η  e integra-se os 
resultados no domínio de cada equação, originando o seguinte sistema de equações diferenciais ordinário 
infinito e acoplado. 
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 Como conseqüência, o processo de transformação integral elimina as coordenadas 1η  e 2η  e oferece 
um sistema de equações diferenciais ordinário para os potenciais transformados ( )isΘ τ  e ( )m

Θ τ . O sistema 
infinito, equações (17.a-c), deve ser truncado em uma ordem suficientemente grande (Ns e Nℓ para as expressões 
dos potenciais 

isΘ  e 
m

Θ , respectivamente) com o objetivo de se conseguir resultados com uma acurácia 
prescrita pelo usuário. Isto é alcançado através de sub-rotinas bem estabelecidas para problemas de valor inicial, 
tal como a DIVPAG da biblioteca do IMSL (IMSL, 1987), onde se adotou um erro local de 10-5. Uma vez que 
estes potenciais transformados foram avaliados numericamente na variável temporal, os potenciais originais 
serão recuperados analiticamente através das fórmulas de inversão. 
 
 
4. RESULTADOS E DISCUSSÕES 
 
 A simulação do processo “Planar Flow Casting” proporciona o controle e otimização de parâmetros 
envolvidos na fabricação de fitas de materiais metálicos. A relação desses parâmetros com os coeficientes de 
transferência de calor, possibilitam o ajuste do processo e a utilização de materiais diferentes. Os principais 
parâmetros envolvidos são: temperatura de ejeção, distância do cadinho ao substrato de resfriamento, 
temperatura do substrato, velocidade do substrato, altura e comprimento da poça. Para a realização das 
simulações será utilizado o metal alumínio, cujas propriedades foram retiradas da referência Wang e Matthys 
(1992): ∆H = 3.95x105 [J/Kg]; Cpℓ = 1200 [J/Kg K]; Cps = 1060 [J/Kg K]; ks = 200 [W/m K];  
kℓ = 100 [W/m K]; ρ = 2520 [Kg/m3]; Tm = 933 [K]; To = Tm + 50 [K]; T∞ = 300 [K]. Os coeficientes médios 
de transferência de calor hw adotados (Wang e Matthys; 1992) são: hw = 5.0x105, 1.0x106, 1.5x106 e 5.0x106 
[W/m2 K]. Além destes dados, usaremos neste trabalho YD = 350 [µm] (altura da poça de metal), U = 23 [m/s] 
e o tempo de permanência do metal sobre o volante ts = 0.25 [ms]. 



 

 

 A partir dos dados acima, foram gerados resultados para o campo de temperatura na fita e para a posição 
da frente de solidificação. Inicialmente foi realizada uma análise de convergência do campo de temperatura em 
função das coordenadas x e y para uma fita de espessura igual a 114 µm, como mostrado na Tabela 1. Pode-se 
observar, desta tabela, que foi necessário entre 450 e 500 termos em cada série para obtermos uma convergência 
na quarta casa decimal. Se tomarmos como base Ns = Nℓ = 500 estaremos resolvendo via DIVPAG um sistema 
de 1001 equações, incluindo-se a equação para a determinação da posição da fronteira. 
 
 

Tabela 1. – Convergência da distribuição de temperatura em função de x e y para uma fita de  
 espessura igual a 114 µm. 

 T(x, y) [ K] 
 y = 21 µm y = 46 µm y = 88 µm 

x (mm) N = 400 N = 450 N = 500 N = 400 N = 450 N = 500 N = 400 N = 450 N = 500 
0.00 983.00 983.00 983.00 983.00 983.00 983.00 983.00 983.00 983.00 
1.15 896.99 896.85 896.891 936.26 936.27 936.26 944.32 944.34 944.33 
2.30 838.22 838.10 838.17 904.14 904.17 904.16 942.12 942.11 942.10 
3.45 792.47 792.30 792.38 855.95 855.94 855.94 936.72 936.70 936.69 
4.60 755.88 755.69 755.67 816.64 816.59 816.54 912.39 912.37 912.38 
5.75 725.89 725.64 725.52 783.87 783.75 783.62 876.65 876.61 876.59 

    N = Ns = Nℓ 
 
 
 No processo “Planar Flow Casting” a altura da poça é muito pequena e o tempo de processo é muito 
curto. Daí, a necessidade da utilização de número de autovalores razoavelmente elevado, nas séries soluções 
propostas, para a obtenção das convergências.  
 Após a análise de convergência foram gerados resultados para o campo de temperatura e a posição da 
interface sólido/líquido em função dos parâmetros do processo, onde se adotou uma ordem de truncamento para 
as séries de Ns = Nℓ = 500.  
 Na Figura 4 é apresentado as curvas de temperatura em função da distância ao menisco superior, onde a 
solidificação para o metal alumínio tem início sobre um volante de cobre. Elas são os perfis de temperatura 
dentro da poça de metal, referentes às alturas de 15µm, 35µm, 54µm, 66µm e 72µm. Verifica-se que nesta 
simulação uma fita de 72µm de espessura é obtida. A linha horizontal pontilhada na Figura 4 representa a 
temperatura de mudança da fase na poça de metal. No instante t = 0, todo metal se encontra à temperatura 
inicial To, e a medida que o processo se desenvolve, a fronteira de solidificação toma a forma mostrada na 
Figura 5. 
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Figura 4 – Distribuição de Temperatura T(x, y) para o 
alumínio sobre volante de cobre para hw = 5.0x105 W m-2 
K-1, XD = 5.75 mm e uma fita de espessura igual a 72 µm. 
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Figura 5 – Evolução da interface de solidificação para  o 
alumínio sobre volante de cobre para hw = 5.0x105 W m-2 
K-1, XD = 5.75 mm e uma fita de espessura igual a 72 µm. 

 
 

 A fronteira de solidificação se desenvolve em relação às direções positivas de x e y, conforme a forma 
genérica da mostrada na Figura 2. Nesta situação, as forças de inércia são bem maiores do que as forças 
viscosas do fluído, com isso a espessura da fita é limitada pela altura da fronteira de solidificação h(x) no final 



 

 

do comprimento da poça de metal. Pela Figura 5 verifica-se que a forma da fronteira apresenta um 
comportamento quase linear ao longo do comprimento da poça. Isto é atribuído ao curto tempo de processo e a 
alta velocidade do volante. 
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Figura 6 – Velocidade da interface de solidificação em função da posição para o alumínio sobre volante de 

cobre com hw = 5.0x105 W m-2 K-1, XD = 5.75 mm e para uma fita de espessura igual a 72 µm. 
 
 

 Na Figura 6 é mostrada a velocidade da interface em função da posição da interface, para os mesmos 
dados das Figuras 4 e 5. Desta figura pode-se calcular a velocidade média da interface de solidificação, cujo 
valor obtido foi de 0,39 m/s. 
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Figura 7 – Distribuição de Temperatura T(x, y) para o 
alumínio sobre volante de cobre para hw = 1.0x106 W m-2 
K-1, XD = 5.75 mm e uma fita de espessura igual a 114 
µm. 
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Figura 8 – Evolução da interface de solidificação para  o 
alumínio sobre volante de cobre para hw = 1.0x106 W m-2 
K-1, XD = 5.75 mm e uma fita de espessura igual a 114 
µm. 

 
 
 Nas Figuras 7, 8 e 9 são apresentados T(x, y), a evolução da interface e a velocidade da interface para 
hw=1.0x106 W m-2 K-1, YD = 350 µm, XD = 5.75 mm e para uma fita de espessura igual a 114 µm. Observa-se 
que estes resultados são qualitativamente semelhantes aos anteriores, de onde se determinou que a velocidade 
média da interface de solidificação (Figura 9) foi de 0,59 m/s. Como já era esperado, quando o coeficiente de 
troca de calor aumenta de valor maior será a velocidade da frente de solidificação.  

 Na Figura 10 são apresentadas curvas da localização da interface em função da distância ao menisco 
superior para diferentes valores do coeficiente de transferência de calor hw. Verifica-se que a espessura da fita 
aumenta com o valor de hw e as curvas tendem a serem mais lineares para menores valores de hw. 
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Figura 9 – Velocidade da interface de solidificação em 
função da posição para o alumínio sobre volante de cobre 
com hw = 1.0x106 W m-2 K-1, XD = 5.75 mm e uma fita de 
espessura igual a 114 µm. 

 

0 1 2 3 4 5 6
0

15

30

45

60

75

90

105

120

135

150

165
(1)-hw=5.0x106Wm-2K-1

(2)-hw=1.5x106Wm-2K-1

(3)-hw=1.0x106Wm-2K-1

(4)-hw=5.0x105Wm-2K-1

(5)-hw=2.0x105Wm-2K-1

(5)

(4)

(3)

(2)

(1)

τ∗=160µm

τ∗=135µm

τ∗=114µm

τ∗=72µm

τ∗=35µm

E
vo

lu
çã

o 
da

s 
In

te
rfa

se
s 

(1
0-6

m
)

Distância do menisco superior (10-3m)
 

Figura 10 – Localizações das interfaces em função da 
distância  do menisco superior para diferentes valores de 
hw. 

 
 
 No “Planar Flow Casting” o escoamento do fluxo de fluido na direção x desenvolve-se com o tempo. 
Análises feitas por Carpenter e Steen (1997) mostram que a altura da fronteira de solidificação h(x), é 
proporcional a raiz quadrada do tempo, desde que as resistências ao fluxo de calor sejam somente através do 
metal já solidificado (condução limitada). Assim, pela Figura 10 verifica-se que, quando o contato térmico é 
aperfeiçoado (aumentando-se o valor de hw ) ocorre também um aumento da não linearidade das curvas da 
posição da fronteira de solidificação. 
 
 
5. CONCLUSÕES E SUGESTÕES 
 
 A Técnica da Transformada Integral Generalizada (GITT) mostrou-se uma ferramenta capaz de 
solucionar o problema de transferência no calor “Planar Flow Casting”, com isso podemos estudar o 
resfriamento rápido de metais ou ligas e obter fitas de espessura controlada pela velocidade do volante e pelo 
coeficiente de transporte de calor. Observo-se que a taxa de convergência da GITT foi lenta, necessitando de um 
número elevado de autovalores, isto se deu em função do pequeno comprimento da amostra e do curto tempos 
de processo de solidificação. 
 Na representação do “Planar Flow Casting” utilizando os mesmos parâmetros de processo do trabalho 
de Wang e Matthys (1992), foi obtido um valor maior na espessura da fita. No entanto, no presente trabalho não 
foi considerado o aquecimento do substrato de resfriamento durante os processos, a massa específica utilizada 
no presente trabalho foi a média das massas específicas da região sólida e líquida que foi extraída de Wang e 
Matthys (1992). 
 A solução para o processo “Planar Flow Casting”, permite a obtenção de resultados que podem ser 
utilizados ao nível de engenharia. Assim, são verificadas as influências de parâmetros envolvidos no processo e 
a relação destes com o coeficiente de transferência de calor e isto possibilita o ajuste do processo e a utilização 
de materiais diferentes. 
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Abstract: The process of fast solidification (Planar Flow Casting) of a metal is modelling through an energy 
balance. The boundary layer equations in two dimensions are transformed, through a change of variable, in a 
one-dimensional heat conduction problem. Hybrid solutions for the problem are obtained through the 
Generalizada Integral Transform Technique (GITT). Results are then presented for the temperature distribution 
and front of solidification evolution in the metal ribbon. 
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