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Abstract. Many processes in chemical and biochemical industries deal with mass transfer involving
bioconversion in immobilized cell packed bed bioreactors. The evaluation of the concentration distribution in
the reactor is extremely important to design and control the dynamic of the bioprocess, in this context it is
necessary an accurate technique to predict reliable solutions which is valid within the reactor. The generalized
integral transform technique (GITT) and the FDM-Gear approaches are utilized in the present work to solve the
equation of conservation species related to the bioconversion of sugars to ethanol in a packed bed bioreactor.
Therefore, computational codes were developed to analyze the parameters that influence the concentration
distribution, and the present results were then compared with those previously reported in the literature for
typical situations.
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1. INTRODUCTION

Continuous processes of bioconversion using immobilized cells present a great industrial interest,
mainly due to the crescent interest in reducing equipment sizes and the operation costs. The use of immobilized
cells provides a process of heterogeneous catalytic fermentation and the knowledge of the dynamics of the
transport processes is important for its control and operation.

In the last years, some studies has been presented on the modeling and simulation of bioconversion of
sugars to etanol in an immobilized cell packed bed bioreactor (Gupta and Chand, 1990; Soletti et al., 1992). It
has been observed that most of the studies of bioconversion deals with the process in steady state, a time that the
mathematical treatment of the phenomenon is simplified if compared with unsteady state.

In a pioneering work, Gupta and Chand (1990) developed a theoretical and experimental study of the
bioconversion of sugars to ethanol in a immobilized cell packed bed bioreator. In this work the authors
presented a mathematical model to analyze the dynamic behavior resulting from perturbations in feed sugar
concentration and feed flow rate. The partial diferential equations were numerically solved by the Crank-
Nicolson method.

Soletti et al. (1992) using the Gupta and Chand model applied a polynomial approach to solve the
related equations. Also the authors have made a dynamic approach for the production of etanol through the
action of immobilized cells.

In present work, a new model is developed to study the bioconversion sugars in a bioreactor. This model
differs from that considered for Gupta and Chand (1990) by the fact of presenting a partial differential equation
for the product similar to one for the substrate. In the model of Gupta and Chand (1990) the calculation of the
product concentration is taken by a direct relation with the substrate concentration. Therefore, the purpose of the
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present study is also to solve the partial differential equations related to the new model applied to the
bioconversion of sugars to ethanol in a packed bed bioreactor by employing the GITT approach (Cotta, 1993)
and to establish reliable numerical results for the concentration field. In addition, another methodology by
making use of the finite difference method in the spatial coordinate and the Gear's method in the time variable
(FDM-Gear Approach) is employed in the solution of equations of the model.

2. MATHEMATICAL FORMULATION

The physical problem under picture in this work consists of an immobilized cell packed bed bioreactor,
initially at the uniform substrate concentration S;. For times t>0, the feed substrate concentration is givem by Sg,
where a Danckwerts (1953) boundary condition is used. The rate of conversion of substrate to product was
adopted to have a general order kinetic (n). The main hypotheses adopted in developing the present model are
described by Gupta and Chand (1990). Then, the unsteady mass balance for the substrate and the product are
given by:
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Equations (1.a,b) are subject to the following initial and boundary conditions:

d(n, 1)=D; and O(n, 1)=0 fort=0, 0<n<1 (1.c,d)
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where in Egs. (1) @ and 6 are the dimensionless substrate and product concentrations, respectively, Pe is the
Peclet number, K is the dimensionless kinetic parameter, n is the order of reaction and o, is the product yield
coefficient.

In Gupta and Chand (1990) the following relationship is used in the place of the partial differential
equation (1.b):
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In the above formulation, the following dimensionless groups were employed:
n=z/L; t=ut/L; Pe=uL/D,; ®=S/Sp; 6=P/Sp; ®, =S,;/Sp; K=(1-e)kLS} " /eu (3.a-g)

where L is the length of the bioreactor, z is the longitudinal coordinate, S; and Sg are the initial and feed
concentrations, respectively, u is the linear velocity of the medium, D, is the dispersion coefficient, k is the
kinetic parameter and ¢ is the bioreactor porosity.

3. SOLUTION METHODOLOGY
3.1. The GITT Approach

Four approaches will be focused in the application of the Generalized Integral Transform Technique for
the solution of the problem. The first approach consists in the application of GITT in the original problem
without a filter to homogenize the boundary condition. The last three approaches present alternatives of filters to
homogenize the boundary condition. The main objective in this analysis is to evaluate the influence of the
filtering strategy in the convergence rate of the series solutions.



3.1.1 Formal Solution
In order to apply the generalized integral transform approach (Cotta, 1993) the appropriate eigenvalues

problems are taken as:
- For the potential ®(n,1):

Y,

¢’ +p1 Y, =0, in 0<n<l (4.2)
dn’

dy,
di—Pe‘P =0 at n=0; —=0 atn=1 (4.b,c)
dn dn
- For the potential 6(n,7):
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where the eigenfunctions, eigenvalues and norms are computed as
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Q,(m)=Si[p,n]; B, =@¢-Dr/2; M,=1/2;
These eigenvalues problems allow the development of the following integral transform pairs
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To perform the integral transformation, Eq. (1.a) should be multiplied by ‘T’i and Eq. (1.b) multiplied
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by Q ¢ ; after that they are integrated over the domain of solution [0,1]. Later, employing the inversion formulae
Egs. (8.b) and (9.b), and boundary conditions, then the resultant transformed equations are written as:
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In the case of the Gupta and Chand (1990) model, the integral transformation of Eq. (2) is given by

1
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3.1.2 Filter Strategy I

In order to employ the GITT approach in its more efficient form, it is necessary to homogenize the
boundary condition in the direction to be integral transformed, specifically the boundary condition at n = 0 to
potential @, through a filtering process. This is accomplished by splitting up the analyzed potentials as:

O, 1) =Py (M, +D,(M); B(n, 1) =0y (M, 1) +6,(n) (13.a,b)

For simplicity, in order to avoid computationally involved mathematical expressions, the filters employed in the
present analysis are the solutions of the linear steady-state version of the original problem, given by:
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where the solution for the problems defined by Egs. (14) and (15) are given by:
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Following the basic steps of the GITT methodology, making use of the appropriate eigenvalues
problems (4) and (5) and integral-transform pairs (8) and (9) results the following systems of ordinary
differential equations:
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where Aly, A2,,,Bl;, B2, and éi were defined by Egs. (11), and the coefficients fi, g, and ﬁ[ are given by:
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This is a particular case of the Filter Strategy I, where only the potential ®(n,t) will be filtered in the
form shown in Egs. (13.a), (14) and (16.a). Then, the following problems for ®y(n, t) and 6(n,t) are given
by:
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Again, following the basic steps of the GITT approach, making use of the appropriate eigenvalues
problems (4) and (5) and integral-transform pairs (8) and (9) results the following ordinary differential equations
system:
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Now, to employ the GITT approach, we homogenize the boundary condition (1.e) in the following
form:

DM, 1) =Py (M,7) +1 (22)

Making use of the eigenvalues problems and integral-transform pairs previously defined, results the
following ODE system:
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Therefore, the integral transformation process eliminates the longitudinal coordinate, 1, and offers an
ordinary differential system for the transformed potentials in the time variable. The infinity system should be
truncated to sufficiently large finite orders, Ny and N, in order to achieve numerical results to within a user
prescribed accuracy target. This is attained through well-established subroutines for initial value problems such
as DIVPAG from the IMSL package (IMSL, 1991). Once these transformed potentials have been numerically
evaluated at any time, 7, the related potentials are analytically recovered by recalling their inversion formulae.



3.2. The Gear-FDM Approach

Now, following the idea of the Finite Difference Method (Ozisik, 1994), the discretization in the spatial
variable is derived in accordance with following aproximations for first and second derivatives, over the mesh
shown in Fig. (1):
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Figure 1. Scheme for the domain discretization.

Applying Egs. (24.a,b) in Eqgs. (1.a,b) for each internal point of the mesh and making use of the
boundary conditions, the following ODE system results:

do; 85 Tg!
dt PeAn2 An
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K)o K(0F) =12, M

dr PeAn2 An
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where M is the number of the equal parts of mesh size (An = 1/M), k + 1 is the time level and 8% and rk

are given by:
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Equations (25.a,b) above, form a set of coupled first order ODEs subjected to the initial conditions
given by Egs. (25.c,d). For computational purposes, the domain is discretized at sufficiently large finite number
of meshes M, which correspond to 2(M-1) ODEs. The ODE system of size 2(M-1) is computationally solved
with the use of the subroutine DIVPAG from IMSL library (1991), where the ODE solver was employed with a
required tolerance of 10°.

4. RESULTS AND DISCUSSION

Fortran codes were built and implemented on a Pentium IV 1.7 GHz computer imposing a relative
error criterion of 10 for the subroutine DIVPAG (IMSL, 1991), i.e., an error control in the sixth significant
digit for all potentials is searched. Results for the dimensionless substrate (®) and product (8) potentials are
illustrated, for various combinations of the dimensionless parameters Pe, K and n. Convergence behavior for
®(1,t) and 6(1,7) are shown for different times. All figures presented here are illustrated with converged results.

Tables (1) and (2) present numerical values for a representative case, including all procedure of solution
studied here for comparative purposes. These tables show a convergency analysis in the series solution with the
several strategies adopted in the GITT approach and the mesh analysis convergency in the GEAR-FDM
approach. The parameters analyzed were Pe = 10 and 100, n = 1 and K = 4. Also, are presented the results
obtained by the solution methodologies (GITT and GEAR-FDM approaches) applied in the model proposed by
Gupta and Chand (1990).

It can be observed that the formal solution in the GITT approach presents a very slow convergence rate,
while the filter strategies shown to be more efficient and equivalent. In these tables, it can be verified that the
filter strategies I, Il and III converge in the fourth significant digit with less than 100 terms in the series, this
provides a small computacional cost in the GITT approach. The effectiveness of the filtering strategies is quite
noticeable from these tables.



An analysis of mesh convergence is accomplished in the GEAR-FDM approach, where it is observed
that the most critical case needed a mesh with 400 to 500 points. In this case the computacional cost was also
low. A comparison among the results obtained by the GITT and the GEAR-FDM approaches shows a excellent
agreement. Also, the results obtained by Gupta and Chand (1990) model are presented, but only the results for
the product present differences in relation to those obtained with the model proposed here.

Table 1. Convergence behavior of the exit concentration for @ and 0 with times T = 0.1 and 0.8, and for Pe = 10,

K=4andn=1.
GITT Approach | GEAR-FDM Approach
d(n=1,7=0.1)
NT F.S.” Filter 1™ | Filter 1™ | Filter III"" | GITT* M FDM™ FDM*
10 0.6684 0.6703 0.6703 0.6703 0.6703 25 0.6703 0.6703
25 0.6707 0.6703 0.6703 0.6703 0.6703 50 0.6703 0.6703
50 0.6702 0.6703 0.6703 0.6703 0.6703 100 0.6703 0.6703
100 0.6703 0.6703 0.6703 0.6703 0.6703 200 0.6703 0.6703
200 0.6703 0.6703 0.6703 0.6703 0.6703 400 0.6703 0.6703
d(n=1,7t=0.8)
10 0.0532 0.0610 0.0610 0.0611 0.0610 25 0.0674 0.0804
25 0.0585 0.0610 0.0610 0.0610 0.0610 50 0.0640 0.0640
50 0.0595 0.0610 0.0610 0.0610 0.0610 100 0.0625 0.0625
100 0.0603 0.0610 0.0610 0.0610 0.0610 200 0.0617 0.0617
200 0.0607 0.0610 0.0610 0.0610 0.0610 400 0.0614 0.0614
0Mm=1,71=0.1)
10 0.1617 0.1616 0.1615 0.1615 0.1590 25 0.1615 0.1615
25 0.1615 0.1615 0.1615 0.1615 0.1625 50 0.1615 0.1615
50 0.1615 0.1615 0.1615 0.1615 0.1610 100 0.1615 0.1615
100 0.1615 0.1615 0.1615 0.1615 0.1613 200 0.1615 0.1615
200 0.1615 0.1615 0.1615 0.1615 0.1614 400 0.1615 0.1615
oM =1,7=0.8)
10 0.3943 0.4187 0.4186 0.4187 0.4564 25 0.4129 0.4570
25 0.4077 0.4187 0.4187 0.4187 0.4616 50 0.4157 0.4586
50 0.4132 0.4187 0.4187 0.4187 0.4594 100 0.4172 0.4594
100 0.4160 0.4187 0.4187 0.4187 0.4597 200 0.4180 0.4597
200 0.4173 0.4187 0.4187 0.4187 0.4599 400 0.4184 0.4599

NT =Ng = Ng; ** — Present Model; ## — Gupta and Chand (1990) Model; F.S. — Formal Solution.

In Table (2) the results for dimensionless substrate (@) and product (0) concentrations are shown for
Pe =100, n =1 and K = 4. It is observed that the results of the present model are close of the obtained by the
Gupta and Chand (1990) model. Similar analysis is made in relation to the convergence rates for the
methodologies used here. The same conclusions obtained in the analysis of Table (1) may be extended for the
results of Table (2).

Figures (2) to (5) bring the influence of dimensionless parameters Pe, n an K in the exit concentration of
the substract (@) and product (0). A comparison among the results obtained with the model proposed in the
present work and that one proposed by Gupta and Chand (1990) is shown in these figures. Such results,
obtained by the two methodologies adopted here are shown as function of the time variable.

In Fig. (2) (for Pe = 10 and 100, n = 1 and K = 4) can be observed that the Peclet number has little
influence in the exit concentrations for the substract and the product in the Gupta and Chand (1990) model. It is
observed that, when the number of Peclet increases (i.e., Pe = 100) the results of both models become very
close. However, for low values of Pe, it is noticed that the results of 0 are smaller in the steady state. This can be
explained by the fact of the present model to take into account the transport mechanisms during the process of
conversion of substrate to product. This fact is not observed in the model of Gupta and Chand (1990), where
there is a direct relationship with the conversion rate (see Eq. (2)). In this figure a perfect graphic agreement can
be observed among the results obtained by the methodologies here employed.



Table 2. Convergence behavior of the exit concentration for @ and 6 with times T = 0.1 and 0.8, and for
Pe=100,K=4andn=1.

GITT Approach |  GEAR-FDM Approach
d(m=1,t=0.1)
NT F.S.” Filter I ™ | Filter 1™ | Filter II"" | GITT* M FDM"™ FDM™
10 0.6681 0.6699 0.6699 0.6700 0.6699 25 0.6703 0.6703
25 0.6704 0.6703 0.6703 0.6703 0.6703 50 0.6703 0.6703
50 0.6703 0.6703 0.6703 0.6703 0.6703 100 0.6703 0.6703
100 0.6703 0.6703 0.6703 0.6703 0.6703 200 0.6703 0.6703
200 0.6703 0.6703 0.6703 0.6703 0.6703 400 0.6703 0.6703
d(n=1,7t=0.8)
10 0.0388 0.0413 0.0413 0.0414 0.0413 25 0.0469 0.0469
25 0.0398 0.0413 0.0413 0.0413 0.0413 50 0.0436 0.0436
50 0.0403 0.0413 0.0413 0.0413 0.0413 100 0.0423 0.0423
100 0.0407 0.0413 0.0413 0.0413 0.0413 200 0.0417 0.0417
200 0.0410 0.0413 0.0413 0.0413 0.0413 400 0.0415 0.0415
0m=1,71=0.1)
10 0.1612 0.1617 0.1617 0.1617 0.1610 25 0.1615 0.1615
25 0.1615 0.1615 0.1615 0.1615 0.1617 50 0.1615 0.1615
50 0.1615 0.1615 0.1615 0.1615 0.1614 100 0.1615 0.1615
100 0.1615 0.1615 0.1615 0.1615 0.1615 200 0.1615 0.1615
200 0.1615 0.1615 0.1615 0.1615 0.1615 400 0.1615 0.1615
0m=1,7=0.8)
10 0.4465 0.4686 0.4685 0.4685 0.4691 25 0.4635 0.4670
25 0.4544 0.4687 0.4687 0.4687 0.4700 50 0.4661 0.4686
50 0.4595 0.4687 0.4687 0.4687 0.4696 100 0.4674 0.4693
100 0.4635 0.4687 0.4687 0.4687 0.4697 200 0.4681 0.4695
200 0.4660 0.4687 0.4687 0.4687 0.4697 400 0.4684 0.4696

NT =Ng = Np; ** — Present Model; ## — Gupta and Chand (1990) Model; F.S. — Formal Solution.
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Figure 2. Exit concentration as function of the dimensionless time for Pe = 10 and 100, n =1 and K = 4.

In Fig. (3) are presented similar results to those in Fig. (2) for Pe = 10 and 100, n = 2 and K = 4, the
same observations can be applied for this case. However, making a comparison among these figures, it can be
noticed the influence of the reaction order in the results. It is observed that as larger the order of reaction smaller

will be the overall conversion rate of substrate to product.
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Figure 3. Exit concentration as function of the dimensionless time for Pe = 10 and 100, n =2 and K = 4.

In Fig. (4) are presented the results for Pe = 10 and 100, n = 1 and K = 40. Again the same observations

as those in Figs. (2) and (3) are valid here. However, it can be noticed that as the value of K increases, the
overall conversion rate of substrate to product also increases.
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Figure 4. Exit concentration as function of the dimensionless time for Pe = 10 and 100, n =1 and K = 40.

Figure (5) present results for Pe = 10 and 100, n = 2 and K = 40. Also, similar conclusions can be made

for this case.
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Figure 5. Exit concentration as function of the dimensionless time for Pe = 10 and 100, n = 2 and K = 40.



5. CONCLUSIONS

In this work a mathematical model was proposed to study the bioconversion sugar process in a fixed bed
reactor of immobilized cells. With the objective of accomplishing critical comparisons, it was also used the
model of Gupta and Chand (1990) in the present work. Two solution methodologies, the GITT and the GEAR-
FDM approaches were employed to obtain the solutions of equations for the models analyzed. In the GITT
approach four formulation were developed (i. e., Formal solution, Filter Strategies I to III), where the filtering
techniques have presented excellent computational performances, enhancing the convergence rates of the
resulting series. The GEAR-FDM approach, also, presented an excellent mesh convergences rates. In all
methodologies utilized, the computational codes presented small CPU times. Results were presented for various
dimensionless parameters, and comparisons between the two models and the two metodologies were also
performed. The results of the two metodologies demonstrated excellent agreement and furnished direct
validations of computational codes developed, as well as shown their consistencies.
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