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Resumo. Estuda-se neste trabalho a convecção mista em um canal retangular inclinado. Três 
fontes de calor com fluxo q constante e comprimentos finitos são localizadas na superfície inferior 
do canal, enquanto que o restante desta mesma superfície é isolado. A superfície superior em 
contato com o fluido é mantida fria a uma temperatura Tc. Na entrada do canal o escoamento tem 
perfis constantes de velocidade Uo e de temperatura To. O número de Reynolds, o número de 
Grashof e a inclinação do canal são variados da seguinte forma: 1 ≤ Re ≤ 1000, 103 ≤ Gr ≤105, e 
0° ≤ γ ≤ 90°, respectivamente. O sistema das equações governantes é solucionado empregando-se o 
método de elementos finitos com a formulação Pênalti nos termos de pressão e as perturbações 
Petrov-Galerkin nos termos convectivos. São realizadas duas comparações para validar o código 
computacional. É verificado que o ângulo de inclinação tem uma maior influência  no escoamento 
e na transferência de calor, para baixos números de Reynolds, principalmente entre 0° e 45°. Em 
alguns casos as fontes são atingidas pelo fluido aquecido em uma fonte anterior. O escoamento 
apresenta recirculações primárias e secundárias e refluxos em algumas situações como por 
exemplo, Re = 10 e γ = 45° e 90°. Os casos que apresentam menores temperaturas nas fontes são 
aqueles onde os ângulos de inclinação são 45° e 90°, havendo pouca diferença entre eles. Uma 
exceção é para o caso onde Gr = 105 e Re = 1000, sendo γ = 0° a melhor inclinação para o canal. 
 
Palavras-chave: Elementos Finitos, Fonte de Calor, Petrov-Galerkin, Convecção Mista 
 
1. INTRODUÇÃO 
 

Trabalhos anteriores estudam a convecção natural, mista e forçada em canais inclinados por 
causa de suas aplicações práticas incluindo, por exemplo, sistemas eletrônicos, trocadores de calor 
de alta performance, equipamentos que possuem processos químicos, câmaras de combustão, 
sistemas de controle ambiental, e assim por diante. 

Guimarães e Menon (2003) estudam a convecção mista em um canal retangular inclinado com 
uma fonte de calor localizada na parede inferior utilizando o método de Petrov-Galerkin. Mostra-se 
que o efeito do ângulo de inclinação nas distribuições de temperatura e velocidade tem um papel 
fundamental na transferência de calor para baixos números de Reynolds e altos números de 
Grashof. Para altos números de Reynolds, o efeito da orientação é desprezível. Conclui-se neste 
trabalho que, em geral, um ângulo de inclinação entre 60° e 75° fornece  as condições de trabalho 
mais desejáveis quando o resfriamento é requisitado. Alguns casos apresentam escoamento reverso 
para baixos números de Reynolds e altos números de Grashof. O escoamento reverso não influencia 



notavelmente na troca de calor no módulo. Os resultados encorajam o uso de circuitos inclinados 
em gabinetes, entretanto outros parâmetros geométricos devem ser levados em conta. 

Bae e Hyun (2003) conduzem um estudo sobre o resfriamento do ar através da convecção 
natural laminar no regime não-permanente em uma cavidade retangular vertical com três fontes 
discretas. Os resultados mostram a influência da condição térmica não-permanente da fonte mais 
baixa na temperatura das outras fontes. As evoluções dos campos de temperatura e do escoamento 
em geral apresentadas fornecem interpretações físicas. O estudo enfatiza que as temperaturas 
transientes podem exceder os valores médios no tempo. Isto é importante para o projeto de 
equipamentos eletrônicos.  

Madhavan e Sastri (2000) fazem um estudo paramétrico da convecção natural em um conjunto 
de placas com fontes de calor localizadas dentro de uma cavidade. Esta situação em particular tem 
relevância direta em aplicações no resfriamento de aparelhos eletrônicos. É visto que o número de 
Rayleigh, de Prandtl e a condição de contorno afetam fortemente o escoamento do fluido e as 
características da transferência de calor. Conclui-se que a temperatura não-dimensional é máxima 
para Pr = 150. Correlações numéricas para a temperatura máxima nas saliências e para os números  
de Nusselt são apresentadas para uma grande faixa de Pr, Ra, e de condições de contorno. 

Choi e Ortega (1993) investigam numericamente o efeito do escoamento forçado laminar nas 
células de convecção induzidas por empuxo nas regiões de convecção forçada, mista e natural em 
canais com placas planas paralelas com uma fonte de calor discreta. Os resultados indicam que o 
número de Nusselt, de um modo geral, na fonte de calor, depende fortemente do ângulo de 
inclinação (γ- de acordo com a convenção deles � 0° corresponde à posição vertical) na convecção 
mista e forçada quando γ > 45°. À medida que o número de Grashof aumenta para um número de 
Reynolds fixo, um refluxo de ar na saída do canal é observado quando o canal na posição a favor do 
escoamento.  

O presente trabalho conduz um estudo da transferência de calor em um canal retangular 
inclinado com três fontes de calor discretas. As posições verticais e horizontais também são 
consideradas. Uma ênfase também é dada à distribuição de temperatura nas superfícies dos módulos 
verificando seu ponto máximo como também uma análise das características da transferência de 
calor em geral devido à importância do controle térmico em equipamentos eletrônicos para se 
manter a temperatura abaixo do valor da temperatura de operação especificado pelo fabricante. 
 
2. DESCRIÇÃO DO PROBLEMA 
 

Neste trabalho é estudada a convecção mista em um canal retangular inclinado com altura H e 
comprimento L.  Três fontes de calor iguais e constantes q�1, q�2 e q�3 de comprimento finito B 
estão localizadas na parede inferior do canal em x1, x2 e x3 , respectivamente, enquanto que o 
restante da parede inferior é mantido isolado. A superfície superior em contato com o fluido é 
mantida a uma temperatura constate fria Tc. Na entrada do canal, perfis constantes para velocidade e 
para temperatura, Uo  e To respectivamente, são impostos como condições de contorno. Para a 
condição de contorno da fronteira aberta OBC, ela é considerada ser convectiva e dependente do 
tempo. Na verdade, no método aplicado aqui, as condições de contorno da fronteira aberta na saída 
são calculadas, assim nada é diretamente aplicado nela. Em todo este estudo a geometria estudada 
tem x1 = 6.75 cm, x2 = 14.50 cm, x3 = 22.25 cm, B = H = 1cm e L = 30 cm. As temperaturas To e Tc 
são iguais. 
 
3. FORMULAÇÃO DO PROBLEMA 
  
As equações governantes do problema são dadas pelas equações de conservação da massa, de 
Navier-Stokes e da energia. As variáveis u e v são respectivamente as componentes de velocidade 
em x e y, T é a temperatura do fluido, t� é o tempo, q� é o fluxo de calor, TD  é a difusividade 
térmica, Tβ é o coeficiente de expansão térmica, ν é a viscosidade cinemática,  g  é  a  aceleração  
da gravidade, 0ρ  é a massa específica do fluido e 0T  é a temperatura de referência T0 = Tc. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 1. Geometria do canal e condições de contorno. 

 
Com a aproximação de Boussinesq e os seguintes parâmetros adimensionais: 
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onde Fr, Pr, Gr, Re, Um , e µ  são, respectivamente, o número de Froude, o número de Prandtl,  o 
número de Grashof, o número de Reynolds, a velocidade média, e a viscosidade dinâmica, as 
equações governantes adimensionais podem ser escritas como: 
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As condições de contorno adimensionais são: 
 

0VU == (nas paredes); 0θ= (entrada e parede superior); 1U = (entrada) e 1 -
Y∂
θ∂

= (nas fontes). 

Aplicando a formulação de Petrov-Galerkin às equações acima, Eqs. (2) a (5), juntamente com a 
técnica Pênalti, a forma fraca das equações de conservação são: 
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onde as variáveis dependentes são aproximadas com o método de elementos finitos (MEF) com: 
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Ni e Nj  são as funções de forma lineares paraΦ , isto é,  para U, V, e θ , e Mk representa as 
funções de forma para as pressões constates no elemento. ijP  são as perturbações de Petrov-Galerkin 
aplicadas aos termos convectivos somente. Os termos ijP  são definidos como: 
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onde γ é o número de Péclet do elemento, V  é o valor absoluto do vetor velocidade que representa 
a velocidade média do fluido dentro do elemento, h  é o tamanho médio do elemento, 

Pe/1εRe,/1ε 21 == , e λ  é o parâmetro Pênalti considerado ser igual a 109, que de acordo com 
Bercovier e Engelman (1979) e Carey e Krishnan (1982), é um valor independente do problema, 
dado que os parâmetros governantes não variem bastante. Este valor é alto para fazer com que se 
tenha o efeito da �quase � incompressibilidade do problema, uma vez que as pressões são calculadas 
pelas velocidades. Na verdade a teoria pênalti provém da lei da viscosidade de Stokes. A integração 
no tempo é feita pelo método de Euler (backward) semi-implícito. Além disso, os termos 
convectivos são calculados explicitamente e os termos viscosos e Pênalti implicitamente.  

O número de Nusselt médio, ao longo da superfície S de uma fonte, pode ser escrito como: 
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A primeira comparação para validação é feita não somente com resultados experimentais 
apresentados por Lee e  Mateescu (1998) e Armaly et al. (1983), mas também por resultados 
numéricos encontrados por Lee e  Mateescu (1998), Gartling (1990), Kim e Moin (1985), e  Sohn 
(1988).  O escoamento do ar da presente análise de comparação é considerado bidimensional, 
laminar, incompressível e não permanente. O domínio é um canal horizontal com uma expansão em 
seu início e também um perfil de velocidade parabólico e Re = 800. Distâncias de recolamento e 
separação do escoamento são comparadas obtendo-se ótimos resultados. A segunda comparação é 
realizada com os  resultados numéricos encontrados por Comini et al. (1997) para o escoamento de 
Poiseuille bidimensional, laminar e incompressível no regime não-permanente em um canal 
horizontal aquecido na parede inferior. Neste caso, alguns valores são escolhidos  tais como Re=10, 
Pr = 0.67, e  Fr = 1/150. O número de Nusselt médio na parede superior versus o tempo é 
comparado e um desvio de aproximadamente 4% é encontrado. 
 
4. RESULTADOS 
 

Os resultados apresentados aqui são gerados com  MEF usando-se uma malha estruturada com 
elementos retangulares isoparamétricos com quatro nós com ∆X = 0.1 e ∆Y = 0.05. Após o estudo 
da sensibilidade da malha com 4000, 5000, 6000 e 7000 elementos, e levando-se em conta o custo 
computacional e um desvio máximo de 7% da malha com 7000 elementos, optou-se pelo uso da 



θ

malha com 6000 elementos. O tempo computacional máximo encontrado para convergência pode 
chegar até 6 horas. 

A Figura 2 mostra as distribuições das temperaturas para números de Reynolds Re iguais a 1, 
10, 50 e 100 , número de Grashof Gr igual a 105, inclinações γ iguais a 0° (horizontal), 45° e 90° 
(vertical). Para Re = 1 e γ = 0°, 45°, há a formação de células térmicas, as quais estão localizadas 
em regiões bem próximas aos módulos das fontes. Para Re = 1, tem-se um problema 
predominantemente de convecção natural. À medida que se aumenta Re, estas células se alongam 
dando lugar à predominância da convecção forçada, Re = 1000 (não mostrado nesta figura). 
Mantendo-se Re constante, a variação do ângulo de inclinação tem um papel importante na 
distribuição da temperatura. A influência de γ na temperatura é maior quando se tem menores 
velocidades do fluido. Por exemplo, onde Re = 10 para γ = 0°, 45° e 90°, nota-se este 
comportamento, ou seja, para γ = 0°, Re = 10, quase existe uma formação de célula térmica, já para 
Re = 10 e γ = 45°, esta formação já desaparece. Este processo é ainda mais evidente para Re =1 e 
γ = 45° e 90°. É interessante notar que em alguns casos, o fluido aquecido na primeira fonte atinge a 
segunda e sendo novamente mais aquecido na segunda fonte, atinge a terceira. Este fenômeno faz 
com que haja menor transferência de calor e assim maiores temperaturas. 
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Figura 2. Isotermas para Gr = 105, Re = 1, 10, 50 e 100 e γ = 0°, 45° e 90°. 



A Figura 3 apresenta os vetores de velocidade para Re = 10 e 100 e Gr = 105 para γ = 0°, 45° e 
90°. Pode ser notado que para Re = 10 e γ = 0°, 45° e 90°, aparecem recirculações geradas pelo 
fluido aquecido nas fontes. Para Re = 10 e γ = 0°, existem três recirculações independentes. O 
espaçamento entre as fontes possibilita uma reorganização do perfil parabólico até quando o fluido 
encontra a próxima fonte e a recirculação começa novamente. Já para Re = 10 e γ = 45° e 90°, 
existem dois tipos de recirculação, ou seja, uma recirculação primária ao longo de todo o canal que 
envolve outras recirculações secundárias localizadas logo após as fontes. Também para estes dois 
últimos casos há a presença de refluxo na saída do canal. A medida que se aumenta Re, mantendo-
-se γ constante, estas recirculações ficam menores até que desaparecem para altos Re. Nitidamente, 
pode ser notado que o efeito da inclinação sobre os vetores considerando Re = 10 e variando-se γ. A 
maior influência do ângulo de inclinação se encontra entre 0° e 45° do que entre 45° e 90° Para 
baixos Re, o ângulo de inclinação tem maior influência nos vetores velocidade. Mais adiante será 
visto o efeito desta influência na troca de calor entre o fluido e os módulos. 

A Figura 4 mostra as distribuições dos números de Nusselt médio nas fontes, NUH1, NUH2 e 
NUH3 para números de Reynolds Re = 1, 10, 50, 100 e 1000, Gr = 103, 104 e 105 e, finalmente, 
para as inclinações γ = 0°, 45° e 90°. De uma maneira geral, o número de Nusselt médio para cada 
uma das fontes aumenta com o aumento do número de Reynolds. Analisando cada gráfico 
isoladamente, pode ser observado que NUH1 tende a distanciar de NUH2 e NUH3 a medida que se 
aumenta Reynolds, partindo de um valor inicial para Re =1, igual ao NUH2 e NUH3. Este valor 
praticamente igual no começo significa que uma fonte não está interferindo na outra. Aqui se 
percebe melhor o fenômeno observado na Fig. 2, de uma fonte ser atingida por uma fonte 
antecedente. Por isso, NUH1 apresenta maiores valores. Pode ser visto que de uma maneira geral  
NUH2 e NUH3 têm valores próximos, sendo que a medida que se aumenta Re, seus valores 
também tendem a se distanciarem. O único caso em que para Re = 1 as fontes apresentam valores 
bem diferentes é quando Gr = 105 e γ = 90°. Esta diferença também é notada na Fig. 2. De uma 
maneira geral, a maior influência no Nusselt está entre 0° e 45°. Praticamente em todos os casos, 
NUH1, NUH2 e NUH3 aumentam entre 0° e 45°, ao passo que para Gr = 105 e Re = 1000, NUH2 e 
NUH3 decrescem. Geralmente, em se tratando de circuitos eletrônicos, caso ideal é aquele que 
apresenta maior número de Nusselt. Sendo assim, os ângulos 45° e 90° são ideais, não havendo 
muita diferença entre eles. Uma exceção seria quando Gr = 105 e Re = 1000, onde γ = 0° seria o 
caso com maior número de Nusselt. 

 
 

 
 

 
 

 
 

 
 

 
 

 
Figura 3. Isotermas para Gr = 105, Re = 1, 10, 50 e 100 e γ = 0°, 45° e 90°. 
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Figura 4. Número de Nusselt versus número de Reynolds para Gr = 103, 104 e 105 e γ = 0°,45°e 90°. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figura 5. Temperatura sobre as fontes para Re = 10, 100, 1000; Gr = 105, γ = 0°, 45° e 90°.  
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Figura 6. Número de Nusselt médio nas fontes ao longo do tempo para Re = 10 e 100 , Gr = 103, 

104, 105 e γ = 90°. 
 

A Figura 5 apresenta as distribuições de temperatura local adimensional nas três fontes para 
Re = 10, 100 e 1000, Gr = 105 e γ = 0°, 45°, e 90°. Novamente aqui, pode ser notado que os casos 
em que γ = 45° e 90° e Re = 10 e 100 apresentam menores temperaturas quando γ = 0°. Isso já não 
ocorre para Re =1000, onde a posição horizontal do canal apresenta menores temperaturas ao longo 
dos módulos. Todos os casos em que γ = 0°, a segunda e terceira fontes apresentam temperaturas 
iguais. Já a primeira fonte apresenta temperaturas menores. Esta última característica vale também 
para os outros casos. Como falado anteriormente, isto caracteriza  o fluido sendo aquecido pela 
fonte anterior, prejudicando o resfriamento da fonte posterior. 

A Figura 6 mostra a variação do número de Nusselt médio nas fontes H1, H2 e H3, ao longo do 
tempo adimensional t, considerando Re = 10 e 100 , Gr = 103, 104, 105 e γ = 90°. No início do 
tempo todas as três fontes têm um mesmo comportamento, ou seja, os números de Nusselt médios 
em H1, H2 e H3, diminuem e têm um mesmo valor,considerando cada gráfico isoladamente. Estes 
valores estão convergindo. Mas mesmo após ou antes de atingir a convergência, estes valores 
bifurcam no decorrer do tempo. Estas bifurcações denotam o momento em que o fluido aquecido 
em uma fonte afeta a fonte posterior. 
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5. CONCLUSÕES 
 
 Neste trabalho, a transferência de calor, por convecção mista em um canal retangular inclinado 
com três fontes dispostas na parede inferior, é estudada utilizando-se o método de elementos finitos 
com a técnica de Petrov-Galerkin. São verificados os efeitos do ângulo de inclinação γ (0°, 45°, 
90°), do número de Reynolds (1, 10, 50, 100, 1000), do número de Grashof (103, 104, 105), na 
distribuição de temperatura no canal e sobre as fontes, no número de Nusselt médio nas fontes e nos 
vetores velocidade. Duas comparações são realizadas e uma boa   concordância   com   resultados 
experimentais e numéricos é encontrada. De uma maneira geral, o ângulo de inclinação tem uma 
maior influência  no escoamento e transferência de calor quanto menores forem as velocidades 
forçadas, principalmente entre 0° e 45°. Nota-se pelas isotermas que em alguns casos as fontes são 
atingidas pelo fluido aquecido em uma fonte anterior. É importante conhecer este fenômeno, uma 
vez que ele pode influenciar na troca de calor das fontes. Aparecem recirculações primárias e 
secundárias e refluxos no escoamento em algumas situações como por exemplo, Re = 10 e γ = 45° e 
90°. Em problemas de análise de transferência de calor em placas de circuitos eletrônicos, os casos 
que apresentam menores temperaturas nas fontes são os ideais. Portanto, ainda em concordância 
com o trabalho de Guimarães e Menon (2003) e Choi e Ortega (1993), os ângulos 45° e 90° são os 
melhores, havendo pouca diferença entre eles. Uma exceção é para o caso onde Gr = 105 e Re = 
1000, sendo γ = 0° a melhor inclinação para o canal. 
 
6. AGRADECIMENTOS 
 

Os autores agradecem a CAPES pelo apoio financeiro com bolsas de demanda social, sem o 
qual seria impossível a realização deste trabalho. 
 
7. REFERÊNCIAS 
  
Armaly, B.F., Durst, F., and Pereira, J.C.F. & Schonung, B., (1983), �Experimental and Theoretical 

Investigation of Backward-Facing Step Flow�, J. Fluid Mechanics, Vol. 127, pp. 473-496. 
Bae, J.H. and Hyun, J.M., 2003, �Time-Dependent Buoyant Convection in an Enclosure with 

Discrete Heat Sources�, Int. J. Thermal  Sciences, In press. 
Bercovier, M. and Engelman, M., (1979), �A Finite Element for the Numerical Solution of Viscous 

Incompressible Flow�, J. Comput. Phys., Vol. 30, pp. 181-201. 
Carey, G. F., and Krishnam (1982) �Penalty Approximation of Stokes Flow�, Comput. Methods 

Appl. Mech. Eng., Vol. 35, pp. 169-206. 
Choi, C.Y. and Ortega, A., (1993), �Mixed Convection in an Inclined Channel With a Discrete Heat 

Source�, Int. J. Heat Mass Transfer, Vol. 36, pp. 3119-3134. 
Comini, G., Manzam, M. and Cortella, G., (1997), �Open Boundary Conditions for the 

Streamfunction �Vorticity Formulation of Unsteady Laminar Convection�, Num. Heat Transfer, 
Part B, Vol. 31, pp. 217-234. 

Gartling, D.K., (1990), �A Test Problem for Outflow Boundary Conditions � Flow over a 
Backward-Facing Step�, Int. J. Num. Meth. in Fluids, Vol. 11, pp. 953-967.  

Gumarães, P.M. e Menon, G. J., (2003), �Mixed Convection in an Inclined Channel with a Discrete 
Heat Source�, Mecanica Computacional - Proceedings of the XII Congresso sobre Métodos 
Numéricos y sus Aplicaciones�, Vol. XXII, Bahía Blanca, Argentina, pp. 1667-1681. 

Kim, J. and Moin, P., (1985), �Application of a Fractional-Step Method to Incompressible Navier-
Stokes Equations�, J. Comp. Physics, Vol. 59, pp. 308-323. 

Lee, T. and Mateescu, D., (1998), �Experimental and Numerical Investigation of 2-D Backward-
Facing Step Flow�, J. Fluids and Structures, Vol. 12, pp. 703-716. 

Madhavan, P.N. and Sastri, V.M.K. Sastri, (2000), �Conjugate Natural Convection Cooling of 
Protruding Heat Sources Mounted on a Substrate Placed Inside an Enclosure: a Parametric 
Study�, Comput. Methods Appl. Mech Engrg., Vol. 188, pp. 187-202. 



Sohn, J., (1988), �Evaluation of FIDAP on Some Classical Laminar and Turbulent Benchmarks�, 
Int. J. Num. Meth. in Fluids, Vol. 8, pp. 1469-1490.  

Sparrow, E.M., Eichhorn, R. and Gregg, J.L., (1959), �Combined Forced and Free Convection in a 
Boundary Layer�, Phys. Fluids, Vol. 2, pp. 319-329. 

 
8.  DIREITOS AUTORAIS 
 
 Os autores são os únicos responsáveis pelo conteúdo do material impresso incluído no seu 
trabalho. 
 
STUDY OF MIXED CONVECTION HEAT TRANSFER IN A SET OF 
DISCRETE HEAT SOURCES IN AN INCLINED RECTANGULAR 
CHANNEL 

 
Paulo M. Guimarães 
Departamento de Engenharia Mecânica,Universidade Federal de Itajubá � UNIFEI 
Av. BPS, 1303, Pinheirinho, 37500-176 - Itajubá - MG � Brasil. TE: 00 55 35 3629-1163 
e-mail: paulomgui@uol.com.br, web page: http://www.unifei.edu.br 
 
Genésio J. Menon 
Departamento de Engenharia Mecânica,Universidade Federal de Itajubá � UNIFEI 
Av. BPS, 1303, Pinheirinho, 37500-176 - Itajubá - MG � Brasil. TE: 00 55 35 3629-1163 
e-mail: genesio@iem.efei.br, web page: http://www.unifei.edu.br 
 
Abstract. In this work, it is studied the mixed convection in an inclined rectangular channel. Three 
constant-flux heat sources q of finite length is placed on the lower surface of the channel, while its 
remaining part is adiabatic. The upper surface in contact with the fluid is kept at a constant cold 
temperature Tc.  It is imposed a constant velocity profile Uo as well as a constant temperature To 
profile at the inlet. The Reynolds number, the Grashof number, and the inclination are ranged as 
follows: 1≤Re≤1000, 103≤Gr≤105, and 0°≤γ≤90°, respectively. The set of governing equations have 
been discretized and solved using the Galerkin finite element method with the Penalty formulation 
in the pressure terms and the Petrov-Galerkin perturbations in the convective terms. Two 
comparisons have been performed to validate the computational code. 
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