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Resumo: Neste trabalho, uma formulação do método dos volumes finitos anteriormente 
desenvolvida para tratar modelos bidimensionais (Guimarães, 2003; Lyra et al, 2002)  é estendida 
para lidar com modelos axissimétricos para solução da equação da condução de calor. Esta 
formulação utiliza volume de controle centrado no nó e foi implementada fazendo uso de uma 
estrutura de dados baseada nas arestas da malha. A formulação envolvendo a discretização 
espacial e temporal para malhas triangulares é descrita em detalhes, incluindo o tratamento de 
condições de contorno, termos de carregamento térmico e o tratamento de problemas envolvendo 
múltiplos materiais. Em seguida, para validar e demonstrar a versatilidade da ferramenta, aplica-
se a mesma em problemas-modelo tridimensionais axissimétricos de transferência de calor, que 
apresentem solução analítica, no regime estacionário e transiente. 
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1.  INTRODUÇÃO 
 

O método dos volumes finitos é particularmente atraente na solução de equações de 
conservação, sendo bastante flexível quando da implementação adequada à utilização de malhas 
não-estruturadas pois garante conservação discreta local e global, permitindo ainda tratar problemas 
de geometrias complexas e a utilização de técnicas de adaptação de malhas (Barth, 1992; Maliska, 
1995; Lyra et al., 2002). Nas últimas duas décadas, o método dos volumes finitos (MVF) tem sido 
desenvolvido com o uso de malhas não-estruturadas em problemas da dinâmica dos fluidos (Baliga 
& Patankar, 1983; Maliska, 1995). 

No estudo de uma certa classe de problemas a utilização de modelos bidimensionais torna-se 
muito grosseira. Devido à característica axissimétrica dos mesmos, a modelagem tridimensional, 
com seus custos computacionais associados, pode ser evitada. Desta forma, pode-se desenvolver 
uma formulação do MVF adequada para lidar com modelos axissimétricos, onde apenas a metade 
de um plano que contém o eixo do sólido de revolução é discretizado. O método dos volumes 
finitos (MVF) é então aplicado em uma malha triangular não-estruturada e implementado com uma 
estrutura de dados por arestas. O método é do tipo “vertex centered”, ou seja, centrado no nó ou 
vértice das células, e os volumes de controle são, formados pelo método das medianas (“median 
dual”) (Sorensen, 2001). As formulações centradas nos nós requerem menor memória e menos 
cálculos quando estendidas às malhas tetraédricas tridimensionais, e possuem também uma forte 
semelhança com uma formulação em elementos finitos por arestas quando elementos triangulares 
(tetraedros) lineares são usados (Barth, 1992; Peraire et al., 1993 & Sorensen, 2001). A estrutura de 
dados adotada é baseada nas arestas a fim de reduzir o tempo da CPU e a memória requerida. Isto é 
motivado pelo uso de malhas não-estruturadas, as quais requerem o armazenamento de informações 



 
 
topológicas da malha (conectividades), aumentando assim, o uso da memória do computador e o 
endereçamento indireto para recuperar a informação local necessária durante a análise via MVF.  

A discretização através do método dos volumes finitos será descrita para um problema de 
condução de calor transiente sujeito a diferentes tipos de condições de contorno (Dirichlet, 
Neumann, e Cauchy) e para alguns tipos de fontes térmicas. O tratamento de problemas envolvendo 
múltiplos materiais também é considerado. A discretização no tempo é feita utilizando o método 
das diferenças finitas com o esquema “Euler-forward” de primeira ordem. 

 
2. MODELAGEM MATEMÁTICA 

 
Como já foi dito anteriormente, admite-se um modelo axissimétrico, onde o eixo das 

coordenadas z é o eixo de simetria. Adotando-se um sistema de coordenadas cilíndricas tem-se que 
todos os coeficientes são independentes de θ, portanto, a distribuição de temperatura é função 
apenas de (r, z). Desta forma a equação da condução é escrita como: 

 
onde, ρ é a massa específica, c é o calor específico, T é a temperatura, e Q representa os termos de 
fonte ou sumidouro de calor. O domínio espacial do problema é representado por Ω , com r sendo a 
coordenada radial, e z, a coordenada axial. O intervalo de tempo de integração é representado por 

[ ]fi t,t=Τ . Por simplicidade, o meio é considerado ortotrópico com ρ, c, k, constantes e a Eq. (1) 
representa uma equação diferencial parcial linear de segunda ordem, parabólica e não-homogênea. 

O fluxo de calor condutivo é função do gradiente de temperatura, sendo modelado pela Lei de 
Fourier: jjj xTkq ∂∂−= . Onde kj é a condutividade térmica na direção xj que representa a variável 
espacial independente, e j varia de um ao número de dimensões espaciais. Em coordenadas 
cilíndricas num modelo axissimétrico xj representa as coordenadas (r, z).  

O problema representado pela Eq. (1) está sujeito a condições de contorno e inicial. As 
condições de contorno de interesse podem ser de diferentes tipos: 
a) Condição de Contorno de Dirichlet:  temperatura prescrita T sobre uma porção do contorno ΓD. 
 

 
b) Condição de Contorno de Neumann: fluxo de calor normal prescrito nq  sobre ΓN.  

 
T X    em       , NΓ=− njj qnq                                                                                                    (3) 

 
onde nj são os cossenos diretores da normal externa ao domínio. 
 
c) Condição de Contorno de Cauchy ou Robin: condição de contorno mista, ou seja, fluxo prescrito 
e/ou troca de calor por convecção sobre ΓC. 
 

T X    m    , )( CΓ−+=− eTTqnq aSnjj α                                                                                    (4) 
 

onde αS é o coeficiente de transferência de calor e Ta é a temperatura média do ambiente. 
A distribuição inicial da temperatura iT é conhecida para um estágio de tempo inicial ti, e a 

condição inicial é expressa por: 
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3. FORMULAÇÃO AXISSIMÉTRICA EM VOLUMES FINITOS 

 
A Equação (1) pode ser reescrita em termos de fluxos e integrada em torno de um volume 

axissimétrico Ω, como: 
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O volume infinitesimal num modelo tridimensional em coordenadas cilíndricas é dado por: 

dAdrdzdrdrd θ=θ=Ω . Para o caso axissimétrico dθ = 2π, e o volume axissimétrico resulta 
em: dArd π=Ω 2 . 

Substituindo na Eq. (6), temos: 
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A equação anterior pode ser reescrita na forma: 
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A Equação (8) pode ser reescrita com notação indicial. Aplicando, portanto o Teorema da 

Divergência, temos: 
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onde, S é o contorno da secção transversal do volume de controle. 

Para obter a formulação numérica, via MVF, da Eq. (9), procede-se inicialmente a discretização 
do domínio computacional que é feita no presente trabalho por meio de uma malha de elementos 
não-estruturada. As integrais sobre o volume na Eq. (9) são calculadas para cada volume de 
controle axissimétrico associado ao nó I da malha. A integral sobre o contorno presente na mesma 
equação é calculada sobre o contorno do volume de controle associado ao nó I, usando uma 
representação da malha por arestas. Após considerar estas aproximações (Lyra et al., 2002; 
Sorensen, 2001), a formulação semidiscreta da Eq. (9) pode ser convenientemente expressão como: 
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onde AI é a área da secção transversal do volume de controle associado ao nó I, rC é o raio do 
centróide do V.C. e IT̂  representa a temperatura calculada numericamente para o nó I. 

O centróide do volume de controle é dado por: 
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onde ri é o centróide de cada sub-elemento que forma o volume de controle e Ai é a área deste sub-
elemento. É importante observar que as coordenadas do centróide não coincidem, necessariamente, 
com as coordenadas do nó I. 

Os coeficientes )( jAX
IJ L

C  e )( jAX
IJ L

D  representam as componentes na direção j do vetor área normal 
à superfície do volume de controle e que devem multiplicar o fluxo associado à aresta IJL para 
assim obter a contribuição do fluxo de calor desta aresta para o nó I. Sendo que primeiro somatório 
da Eq. (10) se dá sobre todas as arestas do domínio que estão conectadas ao nó I, enquanto que o 
segundo somatório corresponde à contribuição do fluxo em uma aresta L do contorno conectadas ao 
nó I. A seguir são apresentadas as expressões para o cálculo dos coeficientes de peso )( jAX

IJ L
C  e 

)( jAX
IJ L

D , correspondentes ao modelo axissimétrico proposto no presente trabalho. 
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onde, KkK LrA π2= , com  ( ) 2CMPk rrr += , ou seja, a coordenada radial do ponto médio da 
interface K e LK é o comprimento de cada interface K associada à aresta IJL. Cada interface liga o 
centróide (C) de um elemento em torno do nó I ao ponto médio (MP) de uma das arestas que 
pertencem a este elemento. Para cada aresta do contorno deve-se calcular um coeficiente )( jAX

IJ L
D  

com LLL LrA π= 2 , onde LL é a metade do comprimento da aresta de contorno em consideração, e 
( ) 43

LJIL rrr += ,para o nó I, e ( ) 43 IJL rrr
L
+= , para o nó JL. As componentes dos vetores 

unitários normais à superfície de controle na direção j são dados por j
Kn  e j

Ln .  
A Figura (1) representa um exemplo de volume de controle axissimétrico típico e o sistema de 

coordenadas adotado. A figura mostra, em destaque, a secção transversal de um volume de controle 
interno e nela estão detalhados os parâmetros geométricos necessários para calcular os coeficientes. 
Uma descrição mais detalhada destes parâmetros geométricos pode ser encontrada em Guimarães 
(2003) para o caso bidimensional e está detalhado em Silva (2004) para o caso axissimétrico. 

Os valores dos fluxos ( )Aj
IJL

q  e ( )Sj
IJ L

q (Eq. 10), para arestas internas e do contorno, são 
aproximados, respectivamente,  pelas expressões convencionais do MVF dadas por: 
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Para calcular os fluxos nas arestas, é necessário conhecer o valor nodal dos fluxos e, 

conseqüentemente, os valores nodais dos gradientes de temperatura. Adotando o teorema da 
divergência e a aproximação usada para calcular a integral sobre um volume de controle ao redor do 
nó I, tem-se que: 
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Figura 1 - Sólido axissimétrico com um volume de controle típico em destaque 

 
Por outro lado, 
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Igualando as Eq. (13) e (14) e usando a mesma aproximação adotada para calcular a integral no 

contorno na Eq. (9), tem-se a aproximação nodal do gradiente expressa como: 
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Utilizam-se as mesmas aproximações adotadas na determinação dos fluxos das arestas, ou seja, 
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O uso da Eq. (15) para calcular os gradientes implica no uso recursivo da aproximação adotada 
para calcular uma integral sobre o contorno. Portanto a discretização do termo de difusão na Eq. 
(10) envolve informações de duas camadas de pontos ao redor do ponto I em consideração, ou seja, 
um estêncil estendido que pode levar a alguma perda de robustez e à redução na taxa de 
convergência do esquema resultante. Este fato pode levar ainda a um “checker-boarding” ou a 
oscilações “par-ímpar” (Lyra, 1994 & Sorensen, 2001), uma vez que a contribuição dos nós, 
diretamente conectados ao nó I, pode ser cancelada ou contribuírem pouco no cálculo. Para superar 
tais deficiências, os gradientes são calculados através de um procedimento alternativo, sugerido na 
literatura (Crumpton et al., 1997 & Sorensen, 2001). Resumidamente, o procedimento consiste em 
uma nova avaliação do fluxo )( Aj

IJL
q  nas arestas do domínio, considerando as contribuições deste 

fluxo nas direções paralela e normal à aresta. Sendo que para a  contribuição paralela é feita uma 
nova aproximação em diferenças finitas central de segunda ordem, e a componente normal se 
mantém igual à obtida via aproximação expressa na Eq. (15). Este procedimento está descrito 
detalhadamente em Guimarães, (2003).  

Com a nova aproximação do fluxo nas arestas, aqui representadas por )( *Aj
IJ L

q , a Eq. (10) pode 
ser reescrita como: 



 
 

 

( ) ( ) ∫∑∑
Ω

Ω+







+−=πρ dQqDqCAr

dt
Td

c
L

Sj
IJ

jAX
IJ

L

Aj
IJ

jAX
IJIC

I
LLLL

)()( *
2

ˆ
                                      (16) 

 
3.1 Discretização dos Termos de Fontes Térmicas 

 
O termo Q representa a fonte térmica que pode atuar em diferentes porções do domínio. A forma 

integral da fonte térmica Q, descrita pela Eq. (16), é dada por: 
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onde os sobrescritos P, C, R informam se as fontes térmicas ou sumidouros de calor agem em um 
ponto, uma curva ou uma região, respectivamente. Na Equação (17), o somatório se dá sobre as 
duas arestas L que aproximam a curva C no ponto I sob a qual a fonte atua. Vale salientar que a 
expressão proposta na Eq. (17) apenas se aplica no caso de fontes térmicas axissimétricas e fontes 
pontuais quando aplicadas sobre o eixo.  
 
3.2 Discretização das Condições de Contorno  

 
Para a porção do domínio submetido à condição de contorno de Dirichlet, o valor nodal da 

temperatura é conhecido, sendo o valor da temperatura prescrita IT . 
Para a imposição da condição de contorno de Neumann, a componente normal do fluxo (vinda 

do cálculo via MVF) deve ser substituída pelo fluxo prescrito nq , enquanto que a componente 
paralela é proveniente de uma aproximação por diferenças finitas centrais de segunda ordem. 

A condição de contorno de Robin, é implementada de modo semelhante à condição de contorno 
de Neumann, uma vez que na formulação explícita adotada para o tempo o lado direito da Eq. (4) é 
conhecido se tomarmos o valor da temperatura T do estágio de tempo anterior. 

  
3.3 Domínio com Múltiplos Materiais  
 

Quando os problemas de transferência de calor envolvem diferentes propriedades de materiais, a 
discretização das equações governantes deve garantir a solução correta nas interfaces das sub-
regiões. O gerador de malhas utilizado (Carvalho, 2001) tem flexibilidade para gerar malhas 
consistentes sobre o domínio com múltiplas regiões.  

Quando uma aresta pertence à interface entre duas regiões, os coeficientes são calculados para 
cada região independentemente. Com isto, cada aresta da interface possui dois coeficientes de peso, 
definidos de forma semelhante à Eq. (12). 

No caso de múltiplos materiais, a  equação discreta (16) é agora substituída por: 
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Vale ressaltar que o terceiro somatório do lado direito é diferente de zero apenas quando o nó I 
está na interface entre duas ou mais regiões de propriedades diferentes. Os fluxos nas arestas da 

interface ( )*
I

L

Sj
IJq  são calculados da mesma forma que ( )*Aj

IJL
q .  



 
 

Os valores dos gradientes e respectivos fluxos são obtidos em três etapas. Em primeiro lugar é 
feito o somatório sobre as arestas do contorno com as condições de contorno de Neumman e Robin 
já prescritas. Em segundo lugar é feito o somatório sobre todas as arestas do domínio (internas e de 
contorno); a terceira etapa consiste em um somatório duplo sobre as arestas das interfaces. Durante 
cada somatório são utilizados o coeficiente e propriedades do material correspondentes a cada lado. 

Como a constante 2π aparece em todos os termos da equação, explicitamente ou implicitamente, 
como no caso dos coeficientes )( jAX

IJ L
C  e )( jAX

IJ L
D , pode ser simplificada, não sendo implementada na 

prática nem no cálculo dos coeficientes (Eq. 12) nem nos termos da Eq. (18).  
 
3.4   Discretização no Tempo 

 
A discretização no tempo é feita através de uma formulação explícita (“Euler forward”), onde as 

temperaturas do nó I são calculadas em função das temperaturas dos nós vizinhos avaliadas no 
instante anterior, ou seja, já são conhecidas. Obtém-se, assim, um conjunto de equações 
progressivas no tempo não constituindo um sistema de equações simultâneas e que podem ser 
calculadas uma a uma, tantas vezes quantos forem os níveis de tempo desejados. 
 
4. IMPLEMENTAÇÃO COMPUTACIONAL 

 
As malhas aqui utilizadas são obtidas através de um gerador de malhas triangulares não-

estruturadas desenvolvido por Carvalho (2001). Após uma etapa de pré-processamento dos dados 
geométricos da malha para extrair a estrutura de dados por aresta e cálculo dos coeficientes 
associados às mesmas, tem-se a etapa de análise via MVF propriamente dita, que pode se descrita 
pelo algoritmo abaixo: 

1. Entrada de dados: modelo discreto, propriedades físicas e parâmetros de controle; 
2. Cálculo do intervalo de tempo ( t∆ ) baseado na condição de estabilidade; 
3. Cálculo dos termos de fonte de calor sobre o contorno e domínio; 
4. Imposição de condição de contorno de Dirichlet nos nós correspondentes do contorno; 
5. Cálculo dos gradientes e fluxos de calor via MVF (Eq. 15 e Lei de Fourier); 
6. Cálculo dos fluxos paralelos às arestas do contorno por diferenças finitas (DF); 
7. Decomposição dos fluxos nas componentes paralela e normal às arestas e substituição da 

componente paralela pela componente vinda do cálculo por DF para todas as arestas; 
8. Imposição dos fluxos de calor prescritos (condição de contorno de Neumann ou de Cauchy) 

nos pontos nodais correspondentes do contorno, através da substituição da componente 
normal do fluxo pelos fluxos de calor prescritos e cálculo das componentes paralelas dos 
fluxos das arestas destes contornos pelas aproximações por DF; 

9. Atualização das temperaturas; 
10. Iterar entre os itens 3 a 9 até completar o tempo de análise desejado (caso transiente) ou 

alcançar um novo estado estacionário. 
 
5. VALIDAÇÃO DO PROGRAMA 
 

O primeiro exemplo, consiste em calcular o perfil de temperatura em estado estacionário em um 
cilindro sólido sem geração de calor de dimensões 0 ≤ r ≤ b e 0 ≤ z ≤ c. As superfícies em z = 0 e    
z = c são mantidas à temperatura de zero grau. A superfície em r = b é mantida à temperatura 
constante To = 60°C. O cilindro é feito com um material que possui uma condutividade térmica       
k = 2,0 W/m°C, massa específica ρ = 1,0 kg/m3 e calor específico, c = 1,0 J/kg K. As dimensões do 
cilindro são b = 6 m e c = 5 m. Para a solução numérica do problema, foram utilizadas duas malhas 
triangulares não-estruturadas, a primeira malha com 390 elementos e 225 nós, e a segunda, com 
1656 elementos e 884 nós. No tempo t = 0, a placa se encontrava a T = 5°C e a solução foi obtida 



 
 
quando o perfil de temperatura atingiu o estado permanente. A Figura (2) mostra as distribuições de 
temperatura e a comparação com a solução analítica para as duas malhas. 

 

  
                                        (a)                                                                          (b) 

Figura 2 –  (a) Distribuição de temperatura no cilindro (1ª e 2ª malha) em r = 0 e 0 ≤ z ≤ 5,0m. 
                 (b) Distribuição de temperatura no cilindro (1ª malha) em r = 3m e 0 ≤ z ≤ 5,0m. 
 
Um segundo exemplo é apresentado, onde é calculado o perfil de temperatura em estado 

estacionário para um cilindro sólido sem geração de calor de dimensões e propriedades físicas 
idênticas ao primeiro exemplo. A superfície em z = 0 agora é mantida a uma temperatura constante 
To = 50°C, a superfície em z = c é mantida a zero grau, e a superfície em r = b dissipa calor por 
convecção para um ambiente também a zero grau com coeficiente de transferência de calor h = 10 
W/m²°C. Para a solução numérica do problema, foram utilizadas duas malhas triangulares não-
estruturadas, a primeira malha com 146 nós e 246 elementos e a segunda, com 403 nós e 730 
elementos. No tempo t = 0, a placa se encontrava a T =25°C e a solução foi obtida quando o perfil 
de temperatura atingiu o estado permanente. A Figura (3) mostra a distribuição de temperatura e a 
comparação com a solução analítica. 

O terceiro exemplo tem como objetivo calcular o perfil de temperatura transiente para um 
cilindro sólido sem geração de calor inicialmente a To = 50°C. As propriedades físicas são idênticas 
aos exemplos anteriores e as dimensões são b = 5 m e c = 5 m. As superfícies em z = 0 e z = c são 
mantidas isoladas, e a superfície em r = b é mantida a zero grau. Para a solução numérica do 
problema, foi utilizada uma malha triangular não-estruturada com 37 nós e 52 elementos. A Figura 
(4) mostra a distribuição de temperatura em função do tempo. 

As soluções analíticas que satisfazem as condições de contorno dos problemas apresentados 
podem ser encontradas em Özisik (1980). Os resultados obtidos numericamente no domínio 
apresentaram excelente aproximação com os valores conhecidos analiticamente.  

 
6. CONCLUSÃO 

 
Os exemplos de validação apresentaram resultados bastante satisfatórios para os domínios 

analisados quando comparados com suas respectivas soluções analíticas. Pretende-se, futuramente, 
aplicar a referida formulação na solução de problemas de biotransferência de calor, particularmente 
no estudo da distribuição de temperatura no globo ocular com implantes retinianos subretinais ou 
epirretinais, que começam a ser utilizados em seres humanos que apresentam retinose pigmentar ou 
degeneração macular, as quais podem ser responsáveis pela perda total da visão (Margalit, 2002). 



 
 

  
                                        (a)                                                                           (b) 

Figura 3 –  (a) Distribuição de temperatura no cilindro em r = 0 e 0 ≤ z ≤ 5,0m. 
                              (b) Distribuição de temperatura no cilindro em r = 6m e 0 ≤ z ≤ 5,0m. 

 
 

                     
(a)                                                                           (b) 

Figura 4 –  (a) Distribuição de temperatura no cilindro em r = 3,0 m e  z = 0. 
                                (b) Distribuição de temperatura no cilindro em z = 0 para t = 3s. 
 
 

7. REFERÊNCIAS 
 
Baliga, B.R., Patankar, S.V., 1983, “A Control Volume Finite-Element Method for Two-

Dimensional Fluid Flow and Heat Transfer”, Numerical Heat Transfer, Vol. 6, pp. 245-261. 
Barth, T. J., 1992, “Aspects of Unstructured Grids and Finite-Volume Solvers for The Euler and 

Navier-Stokes Equations”, AGARD Report 787, pp. 6.1-6.61. 
Carvalho, D.K.E. de, “Um Sistema Computacional para Geração e Adaptação de Malhas Não-

Estruturadas Bidimensionais”, Recife, (Dissertação de Mestrado – Departamento de Engenharia 
Mecânica/Universidade Federal de Pernambuco), 70p, 2001. 

Crumpton, P.I., Moinier, P. & Giles, M.B.T.J., 1997, “An Unstructured Algorithm for High 
Reynolds Number Flows on Highly Stretched Grids”. In: TAYLOR, C. & Cross, J. T, ed., 
Numerical Methods In Laminar and Turbulent Flow, Pineridge Press, pp. 561-572. 

Guimarães, C.S.C., “Modelagem Computacional da Biotransferência de Calor no Tratamento por 
Hipertermia em Tumores de Duodeno através do Método dos Volumes Finitos em Malhas Não 
Estruturadas”, Recife, (Dissertação de Mestrado – Departamento de Engenharia 
Mecânica/Universidade Federal de Pernambuco), 80p, 2003. 



 
 
Lyra, P.R.M., 1994, “Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat 

Conduction”, Ph.D. thesis C/PH/182/94, University of Wales – Swansea. 
Lyra, P.R.M., Lima, R de C.F. de, Guimarães, C.S.C. & Carvalho, D.K.E. de, “Uma formulação 

com estrutura de dados por arestas do método dos volumes finitos na solução de problemas de 
potencial”, 2002, Anais do MECOM'2002 - First South American Congress on Computacional 
Mechanics, Parana - Santa Fé, Argentina. 

Maliska, C.R., 1995, Transferência de Calor e Mecânica dos Fluidos Computacional; Fundamentos 
e Coordenadas Generalizadas, Ed. LTC, Rio de Janeiro.  

Margalit, E., Maia, M., Weiland, J.D., Greenberg, R.J., Fujii, G.Y., Torres, G., Piyathaisere, D.V., 
O´Hearn, T.M., Liu, W., Lazzi, G., Dagnelie, G., Scribner, D.A., de Juan Jr, E., Humayun, M.S., 
2002, “Retinal prosthesis for the blind”, Survey of ophthalmology, vol. 47 (4), pp. 335-356. 

Özisik, M.N., 1980, Heat Conduction, New York, Ed. John Wiley & Sons.  
Peraire, J., Peiró, J. & Morgan, K., 1993, “Finite Element Multigrid Solution of Euler Flows Past 

Installed Aero-Engines”, J. Computational Mechanics, Vol.11, pp. 433-451. 
Silva, G.M.L.L. da, “Análise da biotransferência de calor nos tecidos oculares devido à presença de 

implantes retinianos através da utilização do Método dos Volumes Finitos em malhas não-
estruturadas”, Recife, (Dissertação de Mestrado – Departamento de Engenharia 
Mecânica/Universidade Federal de Pernambuco), 2004. 

Sorensen, K.A., 2001, “A Multigrid Procedure for The Solution of Compressible Fluid Flows on 
Unstructured Hybrid Meshes”, Ph.D. thesis C/PH/251/01, University of Wales – Swansea. 

 
A FINITE VOLUME AXISYMMETRIC FORMULATION FOR THE 

SOLUTION OF TRANSIENT HEAT TRANSFER PROBLEMS USING 
UNSTRUCTERED MESHES 

 
Paulo Roberto Maciel Lyra   
e-mail: prmlyra@demec.ufpe.br 
Rita de Cássia Fernandes de Lima  
e-mail: ritalima@ufpe.br 
Giselle Maria Lopes Leite da Silva   
e-mail: gisellemlls@aol.com 
Darlan Karlo Elisiário de Carvalho 
e-mail: darlan@demec.ufpe.br 
Departamento de Engenharia Mecânica - UFPE 
R. Acadêmico Hélio Ramos, s/n – Cidade Universitária, 50740-530- Recife- PE 
 
Abstract: In this work, a finite volume formulation developed for two-dimensional models 
(Guimarães, 2003; Lyra et a.l, 2002) is extended to deal with axisymmetric models of heat 
conduction applications. This formulation uses a vertex centered finite volume method and it was 
implemented using an edge-based data structure. The temporal and domain discretization for 
“triangular” meshes is described in details, including the treatment of boundary conditions, source 
terms, and domains with multiple materials. Heat transfer model problems, which exact solutions 
are known, are used to validate the computational tool developed.  
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