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Resumo: Neste trabalho, uma formula¢do do método dos volumes finitos anteriormente
desenvolvida para tratar modelos bidimensionais (Guimardes, 2003, Lyra et al, 2002) é estendida
para lidar com modelos axissimétricos para solu¢do da equag¢do da condugdo de calor. Esta
formulagdo utiliza volume de controle centrado no no e foi implementada fazendo uso de uma
estrutura de dados baseada nas arestas da malha. A formulag¢do envolvendo a discretizagdo
espacial e temporal para malhas triangulares é descrita em detalhes, incluindo o tratamento de
condigoes de contorno, termos de carregamento térmico e o tratamento de problemas envolvendo
multiplos materiais. Em seguida, para validar e demonstrar a versatilidade da ferramenta, aplica-
se a mesma em problemas-modelo tridimensionais axissimétricos de transferéncia de calor, que
apresentem solugdo analitica, no regime estaciondrio e transiente.
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1. INTRODUCAO

O método dos volumes finitos € particularmente atraente na solucdo de equagdes de
conservagdo, sendo bastante flexivel quando da implementagdo adequada a utilizacdo de malhas
nao-estruturadas pois garante conservagao discreta local e global, permitindo ainda tratar problemas
de geometrias complexas e a utilizacao de técnicas de adaptacdo de malhas (Barth, 1992; Maliska,
1995; Lyra et al., 2002). Nas ultimas duas décadas, o método dos volumes finitos (MVF) tem sido
desenvolvido com o uso de malhas nao-estruturadas em problemas da dindmica dos fluidos (Baliga
& Patankar, 1983; Maliska, 1995).

No estudo de uma certa classe de problemas a utilizagdo de modelos bidimensionais torna-se
muito grosseira. Devido a caracteristica axissimétrica dos mesmos, a modelagem tridimensional,
com seus custos computacionais associados, pode ser evitada. Desta forma, pode-se desenvolver
uma formulagdo do MVF adequada para lidar com modelos axissimétricos, onde apenas a metade
de um plano que contém o eixo do sélido de revolucdo ¢ discretizado. O método dos volumes
finitos (MVF) ¢ entdo aplicado em uma malha triangular ndo-estruturada e implementado com uma
estrutura de dados por arestas. O método ¢ do tipo “vertex centered”, ou seja, centrado no nd ou
vértice das células, e os volumes de controle sdo, formados pelo método das medianas (“median
dual”) (Sorensen, 2001). As formulagdes centradas nos nds requerem menor memoéria € menos
calculos quando estendidas as malhas tetraédricas tridimensionais, e possuem também uma forte
semelhanca com uma formulacdo em elementos finitos por arestas quando elementos triangulares
(tetraedros) lineares sdo usados (Barth, 1992; Peraire et al., 1993 & Sorensen, 2001). A estrutura de
dados adotada ¢ baseada nas arestas a fim de reduzir o tempo da CPU e a memoria requerida. Isto ¢
motivado pelo uso de malhas ndo-estruturadas, as quais requerem o armazenamento de informagoes



topologicas da malha (conectividades), aumentando assim, o uso da memoria do computador e o
enderecamento indireto para recuperar a informacao local necessaria durante a analise via MVF.

A discretizagdo através do método dos volumes finitos serd descrita para um problema de
condugdo de calor transiente sujeito a diferentes tipos de condigdes de contorno (Dirichlet,
Neumann, e Cauchy) e para alguns tipos de fontes térmicas. O tratamento de problemas envolvendo
multiplos materiais também ¢ considerado. A discretizacdo no tempo ¢ feita utilizando o método
das diferencas finitas com o esquema “Euler-forward” de primeira ordem.

2. MODELAGEM MATEMATICA

Como ja foi dito anteriormente, admite-se um modelo axissimétrico, onde o eixo das
coordenadas z ¢ o eixo de simetria. Adotando-se um sistema de coordenadas cilindricas tem-se que
todos os coeficientes sdo independentes de 6, portanto, a distribuigdo de temperatura ¢ fungao
apenas de (7, z). Desta forma a equag@o da conducao € escrita como:

pca—Tzli kra—T +i ka—T +Q em QXT
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onde, p ¢ a massa especifica, ¢ é o calor especifico, T ¢ a temperatura, ¢ Q representa os termos de
fonte ou sumidouro de calor. O dominio espacial do problema ¢ representado por (2, com » sendo a
coordenada radial, e z, a coordenada axial. O intervalo de tempo de integragdo ¢ representado por
T= [t’,tf ] Por simplicidade, o meio ¢ considerado ortotrépico com p, ¢, k, constantes e a Eq. (1)

representa uma equagdo diferencial parcial linear de segunda ordem, parabolica e ndo-homogénea.
O fluxo de calor condutivo ¢ fun¢do do gradiente de temperatura, sendo modelado pela Lei de
Fourier: g; =—k; 0T / Ox ;. Onde k; € a condutividade térmica na dire¢do x; que representa a variavel

espacial independente, e j varia de um ao nimero de dimensdes espaciais. Em coordenadas
cilindricas num modelo axissimétrico x; representa as coordenadas (7, z).

O problema representado pela Eq. (1) estd sujeito a condigdes de contorno e inicial. As
condig¢des de contorno de interesse podem ser de diferentes tipos:

a) Condicdo de Contorno de Dirichlet: temperatura prescrita 7 sobre uma por¢io do contorno /7.

T=T, em Ty XT ()
b) Condicdo de Contorno de Neumann: fluxo de calor normal prescrito g, sobre /.
-q,n;,=q,, em [(XT 3)

onde 7; sdo os cossenos diretores da normal externa ao dominio.

¢) Condicao de Contorno de Cauchy ou Robin: condi¢do de contorno mista, ou seja, fluxo prescrito
e/ou troca de calor por convecgdo sobre /¢.

~q;n;=q, +ag(T-T,), em I'. XT 4)

onde as € o coeficiente de transferéncia de calor e 7, ¢ a temperatura média do ambiente.

A distribuigdo inicial da temperatura 7'é conhecida para um estagio de tempo inicial 7, € a
condigdo inicial ¢ expressa por:



T=T' em Q2 e t=t' %)
3. FORMULACAO AXISSIMETRICA EM VOLUMES FINITOS

A Equacdo (1) pode ser reescrita em termos de fluxos e integrada em torno de um volume
axissimétrico (2, como:

[ p?Laa =19 (rq )i~ | %: gy 4 [oda ©)
0z 5

Q

O volume infinitesimal num modelo tridimensional em coordenadas cilindricas ¢ dado por:
dQ =rdOdrdz =rdOdA . Para o caso axissimétrico d@ = 27, ¢ o volume axissimétrico resulta

em: dQ=2nrdA.
Substituindo na Eq. (6), temos:

oT 10 aq.
J.pca27zm’A = —'[;5 (rq,)2zrdA - J. 5 27rdA + ;[QdQ (7)
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A equagdo anterior pode ser reescrita na forma:
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A Equagdo (8) pode ser reescrita com notacdo indicial. Aplicando, portanto o Teorema da
Divergéncia, temos:

oT
{ pe 2mrdd = - [@rrq),n,ds+ i 0dQ (9)
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onde, S ¢ o contorno da secg¢ao transversal do volume de controle.

Para obter a formulagdo numérica, via MVF, da Eq. (9), procede-se inicialmente a discretizagao
do dominio computacional que ¢ feita no presente trabalho por meio de uma malha de elementos
ndo-estruturada. As integrais sobre o volume na Eq. (9) sdo calculadas para cada volume de
controle axissimétrico associado ao né / da malha. A integral sobre o contorno presente na mesma
equacdo ¢ calculada sobre o contorno do volume de controle associado ao nd /, usando uma
representacdo da malha por arestas. Apds considerar estas aproximagodes (Lyra et al., 2002;
Sorensen, 2001), a formulagao semidiscreta da Eq. (9) pode ser convenientemente expressao como:

A
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onde A; é a area da seccao transversal do volume de controle associado ao n6 I, ¢ € o raio do

centréide do V.C. e T’ , representa a temperatura calculada numericamente para o n6 /.

O centroide do volume de controle ¢ dado por:

re :Zr,.Ai/ZAi (11)



onde 1; € o centrdide de cada sub-elemento que forma o volume de controle e 4; ¢ a area deste sub-
elemento. E importante observar que as coordenadas do centréide ndo coincidem, necessariamente,
com as coordenadas do n(') L

Os coeficientes C;" s Ve DY U, representam as componentes na dire¢do j do vetor area normal

a superficie do volume de controle e que devem multiplicar o fluxo associado a aresta 1J; para
assim obter a contribui¢do do fluxo de calor desta aresta para o n6 /. Sendo que primeiro somatdrio
da Eq. (10) se da sobre todas as arestas do dominio que estdo conectadas ao nd /, enquanto que o
segundo somatorio corresponde a contribui¢do do fluxo em uma aresta L do contorno conectadas ao

r . ~ ~ ’ . AX(j
no I. A seguir sdo apresentadas as expressdes para o calculo dos coeficientes de peso C v, D e

AX(j o . yL .
D] 7 W correspondentes ao modelo axissimétrico proposto no presente trabalho.

AX ' AX(j :
CUL(’) —Z:AKn,f< e DUL(J) =A,nf (12)

onde, 4, =277, Ly, com 7, =(r,, +7.)/2, ou seja, a coordenada radial do ponto médio da

interface K e Lx ¢ o comprimento de cada interface K associada a aresta 1J;. Cada interface liga o
centroide (C) de um elemento em torno do nd / ao ponto médio (MP) de uma das arestas que
pertencem a este elemento. Para cada aresta do contorno deve-se calcular um coeficiente D;})L(U )

com A; =2mnr; L; , onde L; é a metade do comprimento da aresta de contorno em consideragio, e
r, :(3r, +r, )/ 4 paraono l, e r; :(3er +7; )/4, para o n6 J.. As componentes dos vetores
unitarios normais a superficie de controle na diregéo j sdo dados por ny e nj .

A Figura (1) representa um exemplo de volume de controle axissimétrico tipico e o sistema de
coordenadas adotado. A figura mostra, em destaque, a sec¢ao transversal de um volume de controle
interno e nela estdo detalhados os parametros geométricos necessarios para calcular os coeficientes.
Uma descrigdo mais detalhada destes parametros geométricos pode ser encontrada em Guimaraes
(2003) para o caso bidimensional e esta detalhado em Silva (2004) para o caso axissimétrico.

J(4)

Os valores dos fluxos qy, ¢ q] U (Eq 10), para arestas internas e¢ do contorno, sdo

aproximados, respectivamente, pelas expressoes convencionais do MVF dadas por:

al=lgf+q )2 ¢ @l =q

Para calcular os fluxos nas arestas, ¢ necessario conhecer o valor nodal dos fluxos e,
conseqiientemente, os valores nodais dos gradientes de temperatura. Adotando o teorema da
divergéncia e a aproximagao usada para calcular a integral sobre um volume de controle ao redor do
no I, tem-se que:

j ~—dQ= j 27rdd =27 | aa(LT)—B dA=2x [(rT)n,dS - 2r | BdA (13)

X 4, j S, 4,

T ara x,=r (direcdo radial
onde, 27 [BdA=27B 4, ¢ B, =1 P / ( /

M 0  para x; =z (diregdo axial)
' .
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Figura 1 - Solido axissimétrico com um volume de controle tipico em destaque

Por outro lado,

j T 40 = [ onrda = 2nairCA, (14)

3, 8xj 5 8xj 8xj

Igualando as Eq. (13) e (14) e usando a mesma aproximag¢ao adotada para calcular a integral no
contorno na Eq. (9), tem-se a aproximagao nodal do gradiente expressa como:

ar,

ox ;

- AX( ) (4 AX(j) (S
2mred; =Y CX /)TL(]L) +> D J)TISL) _27B, 4, (15)
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Utilizam-se as mesmas aproximagdes adotadas na determinagdo dos fluxos das arestas, ou seja,
(4) _ (s)
=1, +1, )2 ¢ TS =T, .

U,

O uso da Eq. (15) para calcular os gradientes implica no uso recursivo da aproximag¢ao adotada
para calcular uma integral sobre o contorno. Portanto a discretizagdo do termo de difusdo na Eq.
(10) envolve informacgdes de duas camadas de pontos ao redor do ponto / em consideragdo, ou seja,
um esténcil estendido que pode levar a alguma perda de robustez e a reducdo na taxa de
convergéncia do esquema resultante. Este fato pode levar ainda a um “checker-boarding” ou a
oscilagdes “par-impar” (Lyra, 1994 & Sorensen, 2001), uma vez que a contribuicdo dos nds,
diretamente conectados ao n6 /, pode ser cancelada ou contribuirem pouco no céalculo. Para superar
tais deficiéncias, os gradientes sdo calculados através de um procedimento alternativo, sugerido na
literatura (Crumpton et al., 1997 & Sorensen, 2001). Resumidamente, o procedimento consiste em
i
fluxo nas dire¢des paralela e normal a aresta. Sendo que para a contribuicdo paralela ¢ feita uma
nova aproximacao em diferencas finitas central de segunda ordem, e a componente normal se
mantém igual a obtida via aproximacgdo expressa na Eq. (15). Este procedimento estd descrito
detalhadamente em Guimaraes, (2003).

uma nova avaliacdo do fluxo ¢ nas arestas do dominio, considerando as contribui¢des deste

Com a nova aproximag¢ao do fluxo nas arestas, aqui representadas por ¢ ;J(LA ). a Eq. (10) pode

ser reescrita como:



dT,
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3.1 Discretizacao dos Termos de Fontes Térmicas

O termo Q representa a fonte térmica que pode atuar em diferentes por¢des do dominio. A forma
integral da fonte térmica Q, descrita pela Eq. (16), ¢ dada por:

[0dQ =270"+Y Of 27, L, +Of 2mr 4, 17)
Q L

onde os sobrescritos P, C, R informam se as fontes térmicas ou sumidouros de calor agem em um
ponto, uma curva ou uma regido, respectivamente. Na Equagdo (17), o somatdrio se da sobre as
duas arestas L que aproximam a curva C no ponto / sob a qual a fonte atua. Vale salientar que a
expressao proposta na Eq. (17) apenas se aplica no caso de fontes térmicas axissimétricas e fontes
pontuais quando aplicadas sobre o eixo.

3.2 Discretizacao das Condicoes de Contorno

Para a por¢cdo do dominio submetido a condicdo de contorno de Dirichlet, o valor nodal da
temperatura ¢ conhecido, sendo o valor da temperatura prescrita 77 .

Para a imposi¢ao da condi¢do de contorno de Neumann, a componente normal do fluxo (vinda
do céalculo via MVF) deve ser substituida pelo fluxo prescrito g,, enquanto que a componente

paralela € proveniente de uma aproximacao por diferencas finitas centrais de segunda ordem.

A condicao de contorno de Robin, ¢ implementada de modo semelhante a condi¢cdo de contorno
de Neumann, uma vez que na formulagdo explicita adotada para o tempo o lado direito da Eq. (4) ¢
conhecido se tomarmos o valor da temperatura 7 do estagio de tempo anterior.

3.3 Dominio com Multiplos Materiais

Quando os problemas de transferéncia de calor envolvem diferentes propriedades de materiais, a
discretizacdo das equagdes governantes deve garantir a solugdo correta nas interfaces das sub-
regides. O gerador de malhas utilizado (Carvalho, 2001) tem flexibilidade para gerar malhas
consistentes sobre o dominio com multiplas regides.

Quando uma aresta pertence a interface entre duas regides, os coeficientes sdo calculados para
cada regido independentemente. Com isto, cada aresta da interface possui dois coeficientes de peso,
definidos de forma semelhante a Eq. (12).

No caso de multiplos materiais, a equagao discreta (16) € agora substituida por:

dT
:007;27”%/11 :_[Z CAX(J)qUL ZD;}i{(j)q]JL + ZZCAX(J)(RA)Q;}S,)j

L k=1 L
+27Q7+> .07 271, S, + 0 271 A
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Vale ressaltar que o terceiro somatério do lado direito ¢ diferente de zero apenas quando o no6 /
esta na interface entre duas ou mais regides de propriedades diferentes. Os fluxos nas arestas da

/(s7)

) N (4
interface ¢q; g, | sdo calculados da mesma forma que g ;J(L )

(18)



Os valores dos gradientes e respectivos fluxos sdo obtidos em trés etapas. Em primeiro lugar ¢
feito o somatorio sobre as arestas do contorno com as condigdes de contorno de Neumman ¢ Robin
jé& prescritas. Em segundo lugar ¢ feito o somatorio sobre todas as arestas do dominio (internas e de
contorno); a terceira etapa consiste em um somatdrio duplo sobre as arestas das interfaces. Durante
cada somatdrio sdo utilizados o coeficiente e propriedades do material correspondentes a cada lado.

Como a constante 27 aparece em todos os termos da equacado, explicitamente ou implicitamente,

. AX (] AX(j . . ~ .
como no caso dos coeficientes C;; DeD v, W, pode ser simplificada, ndo sendo implementada na

pratica nem no célculo dos coeficientes (Eq. 12) nem nos termos da Eq. (18).
3.4 Discretizacio no Tempo

A discretizacdo no tempo ¢ feita através de uma formulagdo explicita (“Euler forward”), onde as
temperaturas do no / sdo calculadas em fungdo das temperaturas dos nos vizinhos avaliadas no
instante anterior, ou seja, ja sdo conhecidas. Obtém-se, assim, um conjunto de equagdes
progressivas no tempo nao constituindo um sistema de equagdes simultdneas e que podem ser
calculadas uma a uma, tantas vezes quantos forem os niveis de tempo desejados.

4. IMPLEMENTACAO COMPUTACIONAL

As malhas aqui utilizadas sdo obtidas através de um gerador de malhas triangulares ndo-
estruturadas desenvolvido por Carvalho (2001). Apos uma etapa de pré-processamento dos dados
geométricos da malha para extrair a estrutura de dados por aresta e célculo dos coeficientes
associados as mesmas, tem-se a etapa de analise via MVF propriamente dita, que pode se descrita
pelo algoritmo abaixo:

Entrada de dados: modelo discreto, propriedades fisicas e parametros de controle;

Célculo do intervalo de tempo ( At ) baseado na condicao de estabilidade;

Calculo dos termos de fonte de calor sobre o contorno € dominio;

Imposi¢ao de condicao de contorno de Dirichlet nos nés correspondentes do contorno;
Célculo dos gradientes e fluxos de calor via MVF (Eq. 15 e Lei de Fourier);

Célculo dos fluxos paralelos as arestas do contorno por diferencas finitas (DF);
Decomposi¢ao dos fluxos nas componentes paralela e normal as arestas e substitui¢do da
componente paralela pela componente vinda do calculo por DF para todas as arestas;

8. Imposi¢ao dos fluxos de calor prescritos (condi¢ao de contorno de Neumann ou de Cauchy)
nos pontos nodais correspondentes do contorno, através da substituigdo da componente
normal do fluxo pelos fluxos de calor prescritos e calculo das componentes paralelas dos
fluxos das arestas destes contornos pelas aproximagdes por DF;

9. Atualizacdo das temperaturas;
10. Iterar entre os itens 3 a 9 até completar o tempo de andlise desejado (caso transiente) ou
alcangar um novo estado estaciondrio.

Nk LD~

5. VALIDACAO DO PROGRAMA

O primeiro exemplo, consiste em calcular o perfil de temperatura em estado estacionario em um
cilindro so6lido sem geracao de calor de dimensdes 0 <r <b e () <z <c. As superficiesem z = 0 ¢
z = ¢ sdo mantidas a temperatura de zero grau. A superficie em » = b ¢ mantida a temperatura
constante 7, = 60°C. O cilindro ¢ feito com um material que possui uma condutividade térmica
k = 2,0 W/m°C, massa especifica p = 1,0 kg/m’ e calor especifico, ¢ = 1,0 J/kg K. As dimensdes do
cilindro sdo b = 6 m e ¢ = 5 m. Para a solug@o numérica do problema, foram utilizadas duas malhas
triangulares nao-estruturadas, a primeira malha com 390 elementos e 225 nds, € a segunda, com
1656 elementos e 884 nds. No tempo ¢ = 0, a placa se encontrava a 7 = 5°C e a solugdo foi obtida



quando o perfil de temperatura atingiu o estado permanente. A Figura (2) mostra as distribui¢cdes de
temperatura e a comparagao com a solugao analitica para as duas malhas.

— analitica — analitica
g | & numérica (r=0] || 1 /‘9—‘& 4 ¢ numérica (r=3m) ||

Temperatura (°C}
Temperatura (°C)

T i / |

i
i mE 1 A sE s EE g D5 e e e e
z (im) z (m)

(@) (b)
Figura 2 — (a) Distribuicao de temperatura no cilindro (1% ¢ 2* malha)em » = 0 e 0 <z <5,0m.
(b) Distribui¢do de temperatura no cilindro (1* malha) em » = 3m e 0 <z <5,0m.

Um segundo exemplo ¢ apresentado, onde ¢ calculado o perfil de temperatura em estado
estacionario para um cilindro sélido sem geragdo de calor de dimensdes e propriedades fisicas
idénticas ao primeiro exemplo. A superficie em z = () agora ¢ mantida a uma temperatura constante
T, = 50°C, a superficie em z = ¢ ¢ mantida a zero grau, e a superficie em » = b dissipa calor por
convecgdo para um ambiente também a zero grau com coeficiente de transferéncia de calor 4 = 10
W/m?°C. Para a solu¢do numérica do problema, foram utilizadas duas malhas triangulares nao-
estruturadas, a primeira malha com 146 nés e 246 elementos e a segunda, com 403 noés e 730
elementos. No tempo ¢ = 0, a placa se encontrava a 7 =25°C e a solugdo foi obtida quando o perfil
de temperatura atingiu o estado permanente. A Figura (3) mostra a distribui¢ao de temperatura e a
compara¢do com a solu¢do analitica.

O terceiro exemplo tem como objetivo calcular o perfil de temperatura transiente para um
cilindro so6lido sem geragdo de calor inicialmente a 7, = 50°C. As propriedades fisicas sdo idénticas
aos exemplos anteriores e as dimensdes sdo b = S m e ¢ = 5 m. As superficiesemz = (0 e z = ¢ sdo
mantidas isoladas, e a superficie em » = b ¢ mantida a zero grau. Para a solugdo numérica do
problema, foi utilizada uma malha triangular ndo-estruturada com 37 nds e 52 elementos. A Figura
(4) mostra a distribui¢do de temperatura em funcao do tempo.

As solucdes analiticas que satisfazem as condi¢gdes de contorno dos problemas apresentados
podem ser encontradas em Ozisik (1980). Os resultados obtidos numericamente no dominio
apresentaram excelente aproximacao com os valores conhecidos analiticamente.

6. CONCLUSAO

Os exemplos de validacdo apresentaram resultados bastante satisfatérios para os dominios
analisados quando comparados com suas respectivas solu¢des analiticas. Pretende-se, futuramente,
aplicar a referida formulagdo na solucao de problemas de biotransferéncia de calor, particularmente
no estudo da distribui¢do de temperatura no globo ocular com implantes retinianos subretinais ou
epirretinais, que comec¢am a ser utilizados em seres humanos que apresentam retinose pigmentar ou
degeneracdo macular, as quais podem ser responsaveis pela perda total da visdo (Margalit, 2002).
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Figura 3 — (a) Distribuicdo de temperatura no cilindroem» =0 e 0 <z <5,0m.
(b) Distribuicdo de temperatura no cilindro em » = 6m e 0 <z <5,0m.
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A FINITE VOLUME AXISYMMETRIC FORMULATION FOR THE
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Abstract: In this work, a finite volume formulation developed for two-dimensional models
(Guimardes, 2003; Lyra et a.l, 2002) is extended to deal with axisymmetric models of heat
conduction applications. This formulation uses a vertex centered finite volume method and it was
implemented using an edge-based data structure. The temporal and domain discretization for
“triangular” meshes is described in details, including the treatment of boundary conditions, source
terms, and domains with multiple materials. Heat transfer model problems, which exact solutions
are known, are used to validate the computational tool developed.
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