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Abstract. Large-scale usage of phosphogypsum — a by-product from phosphate fertilizer industry —
may point to an alternative material for civil engineering. Yet, it should cope with environmental
issues concerning “*’Rn exhalation rates. This work investigates steady-state two-dimensional ***Rn
transport into room air from a vertical isothermal wall assumed to exhale this radionuclide at a
fixed rate. Activity decay terms are accounted for in the analysis although sources related to
emanation from “°Ra are not included since this radionuclide is supposedly absent in air. Natural
convection is modeled under Boussinesq approximation for buoyant forces. The resulting coupled
dimensionless governing equations are numerically solved following a finite-volume method on
staggered orthogonal grid. Grashof number is varied from 10° to 10° and the corresponding effects
on heat and mass transfers are presented. For the set of controlling parameters adopted for this
particular **>Rn problem, decay effects are of minor importance.
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1. INTRODUCTION

Huge amounts of phosphogypsum have been by-produced worldwide as a result of demands for
phosphate fertilizers (Rutherford et al., 1994). Both large-scale utilization of this by-product (e.g.
alternative building material and soil amendment in agriculture) and its embankment and/or stack
disposal have given rise to environmental issues as far as “’Rn exhalation rates are concerned.

The effective dose owing to **’Rn and its short-lived decay products counts for most of human
exposure to radiation from natural sources (UNSCEAR, 2000). Such radioactive gas results from
the o-decay of *°Ra, an impurity commonly found in phosphogypsum. Therefore, *°Ra present in
phosphogypsum-bearing materials decay to **’Rn, which may percolate through the interstices,
reach up the free surface and be inhaled by nearby humans. A reliable model for **Rn transport can
then be useful for radiation exposure assessment as well as for radiological protection design.

Several physical parameters influence the *’Rn transport since different phases may be
involved in the simultaneous processes of emanation, adsorption, absorption, diffusion, convection
and decay. Accordingly, a comprehensive model is likely to become complex and the nuclear
physicist or engineer should then rely on numerical simulation.



A previous work presented a diffusion-dominated mathematical model for **’Rn transport

through phosphogypsum embankments in dimensionless form (Rabi and Mohamad, 2004). The
model was limited to one-dimensional steady-state transport and natural convective effects were
ignored. Three dimensionless groups arose in the analytical solution process, namely, an
emanation-to-diffusion ratio, a decay-to-diffusion ratio and a surrogate emanation-to-decay ratio.

The present paper intends to alter that aforementioned work twofold: by extending the solution
domain up to two-dimensions and by considering natural convection. The problem investigated is
of an isothermal vertical wall which contains a given amount of phosphogypsum and exhales *’Rn
at constant rate into room air whose temperature is lower.

It 1s assumed that air density variations are due to thermal effects only (i.e., negligible solutal
effects due to mass transfer), following Boussinesq hypothesis for the buoyancy driven air flow.
The analysis considers decay rates although activity source terms are not included. The resulting
coupled partial differential equations are written in dimensionless form and numerically solved
following a finite-volume method on a staggered orthogonal grid.

2. PHYSICAL-MATHEMATICAL MODEL
2.1. Primitive Variables Formulation

Figure 1 shows the Cartesian coordinate system and the schematic diagram of the problem under
investigation. The solution domain is a rectangle of height H (m) and width L (m).
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Figure 1. Schematic diagram and coordinate system for natural convective transport of *?Rn over a
constant-exhalation constant-temperature vertical wall.

Natural convection under Boussinesq approximation is assumed for the air laminar flow. Hence,
all thermo-physical properties are supposed to be constant, except for the density p (kg-m ™) in the
buoyant forces in the y-direction momentum equation, for which a linear dependence on local
temperature 7' (K) is assumed, namely,

p(T)=p. [1-B(T-T,)] (D

where B =p_ (ap/ oT )O0 (K" is the coefficient of thermal volumetric expansion and both density

P« and temperature 7., are reference state values.

Indicating u and v (m-s™") as velocity components in x and y directions respectively, p (Pa) as
pressure, v (m>s ') as kinematic viscosity, g (m-s ™) as acceleration due to gravity, o. (m*s ') as
thermal diffusivity, A (s™') as *Rn decay constant, D, (m*s™') and ¢ (Bq-mﬁ3) respectively as *2Rn
diffusivity and activity concentration in open air, the steady-state governing equations for mass,
momentum, energy and species (*?Rn activity) concentration can be written respectively as
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In Eq. (6), —Ac is a sink term but no source terms since it is assumed that room air lacks **°Ra.
This radionuclide is supposed to be evenly distributed inside the wall as a phosphogypsum
impurity, yielding a fixed activity flux Jg, (Bq:m>:s™') into room air. Because such mass flux is
very small compared to the entire air mass content, solutal variations in the bulk density p., can be
neglected.

Boundary conditions for the previous governing equations include no-slip condition at the wall
(x = 0), which is subjected to constant temperature 7, and exhalation rate Jr,. Sufficiently far from
the wall (x = L), air is assumed to be at rest and at fixed temperature 7., < T\, and to exhibit activity
concentration ¢... These last two conditions are also assumed at the lower wall level (y = 0), where
neither momentum back-flow nor fluid cross-flow are allowed. At the wall upper level (y = H), a
free boundary condition is prescribed for all primitive unknown variables. Mathematically,

x=0: u=v=_0 T =T, = const JRn=—DO%=const (7
X

x=1L: u=v=p=0 T =T, =const c=c, =const (8)
ov

y=0: u=—-=p=0 T=T, =const c=c, =const 9)
y

y=H: 6—u=@=p= 6—T=0 §=0 (10)
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2.2. Dimensionless Governing Equations and Boundary Conditions

Governing equations, Egs. (2) to (6), and related boundary conditions, Egs. (7) to (10), can be
conveniently expressed in dimensionless form. Accordingly, the following dimensionless variables
are defined:
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Introduction of the above definitions into Egs. (2) to (10) leads to the following expressions:
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Dimensionless parameters that characterize the physics of the problem are the aspect ratio A,
Prandtl number Pr, Schmidt number Sc, Grashof number Gr, a so-called decay-to-diffusion ratio R
and a dimensionless activity concentration level ¢y. These are defined respectively as
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The above expression for the decay-to-diffusion ratio R may result from the definition suggested in

(Rabi and Mohamad, 2004) by simply setting the so-called partition-corrected porosity to unity.
With respect to the last of Egs. (11), it is observed that the dimensionless activity level ¢, is the

value for ¢ when ¢ = 0. It is then assumed c., = 0 so that ¢p = 0 and Eq. (16) can be rewritten as
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2.3. Local and Average Rate of Heat and Mass Transfer

The rate of heat and mass transfer across the vertical wall is expressed in dimensionless form by
means of the Nusselt and Sherwood numbers respectively. For the problem under investigation, the
latter is a measure of the average **’Rn activity transferred into room air.

By defining a local heat transfer coefficient 4, (W-mK™") according to

=" q.:;/
4y =h, (T, ~T,) < h,= (23)

and evoking Fourier’s law of heat conduction, one can express the local Nusselt number Nuy, with
the help of Egs. (11), as follows
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The average heat transfer coefficient 4 and the average Nusselt number Nu are evaluated as
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Similarly, a local *?Rn activity transfer coefficient Ty (m-s™") can be defined as

JRn ZYy(cw _coo) g Yy = - (26)

where ¢y, is the **’Rn activity concentration at the wall. By evoking Fick’s law of diffusion and

again recalling Eqgs. (11), the local Sherwood number Shy can be expressed as
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Expressions for average “*’Rn activity transfer coefficient y and average Sherwood number Sh are
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3. NUMERICAL METHOD

This work adapted an existing finite-volume simulator which has been successfully used for the
solution of heat and mass transfer problems in porous media (Mohamad, 2003). Equations (12) to
(15) and (22) are converted into a system of algebraic equations after integration over each control
volume in the solution domain. As a preliminary approach, uniformly spaced meshes were used.

Staggered grid arrangement is adopted so as to prevent pressure oscillations. Algebraic
equations are solved iteratively and velocity components are under-relaxed by a factor of 0.7
whereas other relaxation factors are set to unity. Convergence criteria are based on local and global
conservation of mass, momentum, energy and species within pre-selected error tolerances.



In order to ensure that results are grid size independent, 8000 iterations were performed on the
following meshes: 162 x 82, 202 x 102, 252 x 127 and 302 x 152. Controlling parameters adopted
for a test case were A =2, Pr=Sc =1, Gr = 10° and R = 0. It should be noted that by inserting the
latter value in Eq. (22), the **’Rn activity transfer problem becomes similar to that of a vertical wall
subjected to constant heat flux. Hence, the corresponding heat-mass transfer analogy holds.

Table 1(a) compares numerical results obtained for Nuy at ¥ = 1, as calculated by Eq. (24), to
values from correlations for free convection over a uniform temperature vertical wall (Ede, 1967;
LeFreve, 1956; McAdams, 1954; Eckert, 1950). Table 1(b) shows simulated results for Shy at Y =1,
as calculated by Eq. (27), and values for Nuy taken from correlations for free convection over a
constant heat flux vertical wall (Fujii and Fujii, 1976; Vliet, 1969; Vliet and Liu, 1969). This latter
comparison stems from a heat-mass transfer analogy, as discussed in the preceding paragraph.

Table 1. Comparison between numerical results and values computed from correlations
for (a) local Nusselt number Nuy and (b) local Sherwood number Shy, both at Y= 1.

(a) Local Nusselt number Nuy at Y= 1
Numerical result from grid size of Computed value as suggested by
162 x 82 202 x 102 252 x 127 302 x 152 Ede LeFreve McAdams Eckert
15.58517 15.25721 14.93420 14.66468 12.61345 12.67163 13.99308 13.59076

(b) Local Sherwood number Shy at ¥ =1

Numerical result from grid size of Computed value (for Nu,) as suggested by
162 x 82 202 x 102 252 x 127 302 x 152 Fujii and Fujii Vliet and Liu
19.32559 18.88084 18.46145 18.12191 14.48468 16.27068

Differences between predictions for either successive Nuy or Shy remain at approximately 2% or
less, following the above grid size refinement sequence. Numerical values differ from those given
by correlations possibly due to edge effects. As calculations on the 302 x 152 grid demand a
considerable computational effort, results shown in this work were obtained using the 252 x 127
grid. It is worth mentioning that correlations from (Fujii and Fujii, 1976; Vliet, 1969; Vliet and Liu,
1969) are based on the modified local Grashof number, Gry* =Gr, -Nu, . In this case, the required

local Nusselt number Nuy was taken from numerical results on the 302 x 152 grid.
4. NUMERICAL RESULTS AND DISCUSSION

Representative values for *Rn transport problems are D, = 1.1 x 10~ m*s™ (Yu et al., 1993)
and A = 2.098 x 107° s™' (UNSCEAR, 2000). For that reason, the present investigation is limited to
the following controlling parameters: A = 2, Pr = 0.71 (room air), Sc = 1.36 (as from D, above and
v = 1.5x 107 m*s™" for room air) and R = 0.01. The Grashof number is allowed to vary within the
range 10° < Gr < 10°.

Figures 2 and 3 show the dimensionless ¥ and U profiles, respectively, at ¥ = 1 for Gr = 10°, 10’
and 10°. Although full Navier-Stokes equations are being numerically solved, Egs. (12) to (14), the
simulator was able to reproduce the basic features of a free-convection boundary-layer flow over a
vertical wall under Boussinesq approximation. Large values are particularly observed for V' because
velocity components are normalized by v/H, which is quite small. Identical profiles are obtained
for the same set of controlling parameters but assuming R = 0 instead. These profiles are not
presented for clarity. This behavior is expected as it was assumed that “?Rn mass flux causes no
substantial changes to the bulk air density.
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Figure 2. Profiles for the dimensionless V' velocity component at ¥ = 1.
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Figure 3. Profiles for the dimensionless U velocity component at ¥ = 1.

Figure 4 exhibits the dimensionless temperature 0 profiles at ¥ = 1 for Gr = 10°, 10" and 10°.
Similar to what happens to 7 and U, identical 0 profiles are obtained for both R = 0.01 and R =0
(profiles for R= 0 are not shown for clarity). This is also expected for the same rationale discussed
in the previous paragraph. It should be noted that only an initial portion of the X domain is
presented (instead of the whole 0 < X < A representation) since all 0 profiles drop to zero within a
short range.
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Figure 4. Profiles for the dimensionless temperature 6 at ¥ = 1.

Figure 5 explicitly shows the dimensionless “**Rn activity concentration ¢ profiles at ¥ = 1 for
both R =0.01 and R =0 for Gr=10°, 10" and 10*. Analogous to 0 profiles, only an initial portion of
the X domain is presented as all ¢ profiles drop to zero within a short range. It is also worth noting
that the fixed exhalation rate at the wall, last of Eqgs. (17), was satisfactorily reproduced.
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Figure 5. Profiles for the dimensionless **Rn activity concentration ¢ at ¥ = 1.

Despite of the additional sink (decay) term in Eq. (22), no considerable differences are observed
between profiles from simulations using R = 0.01 and R = 0. This can be explained in terms of the



relatively small decay-to-diffusion parameter suggested by the physical problem under investigation
(R = 0.01), which makes decay effects become negligible. Larger values of R (and hence decay
effects) are likely to be found in **’Rn transport across long distances H, e.g. across the atmosphere
(Piliposian and Applebly, 2003), or through porous media where lower diffusivity D can be found
(Yu et al., 1993; UNSCEAR, 2000).

Finally, Fig. 6 plots both the average Nusselt and Sherwood numbers obtained from simulations
using R = 0.01, as evaluated respectively according to Eqgs. (25) and (28), for Grashof numbers in
the range 10° < Gr < 10®. Results show that the ascending profiles for Nu and Sh with respect to Gr
are virtually parallel in a log-log scale. The upward natural convective flow field increases
inasmuch as Grashof number becomes higher and such more intense air movement seems to
enhance heat and mass transfers basically in the same way.

It is worth bearing in mind that air is assumed to have constant temperature 7, (8 = 0) and **’Rn
activity concentration ¢, (¢ = 0) at the lower level (y = Y = 0), Egs. (9) and (19). Such conditions
demand special analysis as far as a closed cavity (i.e. room) is concerned. All previous results refer
to a limited portion of an isothermal constant-exhalation vertical wall. No attempts were made as to
analyze effects due to windows, fans or opposing and/or adjacent walls in the present investigation.
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Figure 6. Average Nusselt and Sherwood numbers as function of Grashof number for R = 0.01.

5. CONCLUDING REMARKS

A section of a constant-temperature constant-exhalation rate vertical wall was investigated.
Radon activity penetrates into room air whose ascending laminar buoyancy-driven flow is assumed
to follow Boussinesq approximation. Despite full Navier-Stokes equations were numerically solved,
boundary conditions were adopted in order to simulate satisfactorily the expected free convection
flow field over an isothermal vertical wall.

Decay (sink) rates were taken into account but “““Rn activity source terms were not included. In
accordance to a previous definition, the decay-to-diffusion ratio R proved to be relatively small for
the controlling parameters adopted. Numerical results showed no considerable changes if compared
to those obtained assuming a similar mass transfer scenario without the decay term. In other words,
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the **’Rn transfer investigated showed a diffusive dominant nature under the assumptions made. It
is presumed that decay effects should be observed in problems corresponding to higher values of R.

It was found that heat and mass transfer rates are enhanced by increasing the Grashof number.
Activity concentration results were numerically obtained assuming that the incoming fluid (i.e., air
arriving at the lower wall level) exhibits a constant reference value c... Means to guarantee such
condition should then be provided or designed.
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