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Abstract. Large-scale usage of phosphogypsum – a by-product from phosphate fertilizer industry – 
may point to an alternative material for civil engineering. Yet, it should cope with environmental 
issues concerning 222Rn exhalation rates. This work investigates steady-state two-dimensional 222Rn 
transport into room air from a vertical isothermal wall assumed to exhale this radionuclide at a 
fixed rate. Activity decay terms are accounted for in the analysis although sources related to 
emanation from 226Ra are not included since this radionuclide is supposedly absent in air. Natural 
convection is modeled under Boussinesq approximation for buoyant forces. The resulting coupled 
dimensionless governing equations are numerically solved following a finite-volume method on 
staggered orthogonal grid. Grashof number is varied from 106 to 108 and the corresponding effects 
on heat and mass transfers are presented. For the set of controlling parameters adopted for this 
particular 222Rn problem, decay effects are of minor importance. 
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1. INTRODUCTION 
 

Huge amounts of phosphogypsum have been by-produced worldwide as a result of demands for 
phosphate fertilizers (Rutherford et al., 1994). Both large-scale utilization of this by-product (e.g. 
alternative building material and soil amendment in agriculture) and its embankment and/or stack 
disposal have given rise to environmental issues as far as 222Rn exhalation rates are concerned. 

The effective dose owing to 222Rn and its short-lived decay products counts for most of human 
exposure to radiation from natural sources (UNSCEAR, 2000). Such radioactive gas results from 
the α-decay of 226Ra, an impurity commonly found in phosphogypsum. Therefore, 226Ra present in 
phosphogypsum-bearing materials decay to 222Rn, which may percolate through the interstices, 
reach up the free surface and be inhaled by nearby humans. A reliable model for 222Rn transport can 
then be useful for radiation exposure assessment as well as for radiological protection design. 

Several physical parameters influence the 222Rn transport since different phases may be 
involved in the simultaneous processes of emanation, adsorption, absorption, diffusion, convection 
and decay. Accordingly, a comprehensive model is likely to become complex and the nuclear 
physicist or engineer should then rely on numerical simulation. 

 



A previous work presented a diffusion-dominated mathematical model for 222Rn transport 
through phosphogypsum embankments in dimensionless form (Rabi and Mohamad, 2004). The 
model was limited to one-dimensional steady-state transport and natural convective effects were 
ignored. Three dimensionless groups arose in the analytical solution process, namely, an 
emanation-to-diffusion ratio, a decay-to-diffusion ratio and a surrogate emanation-to-decay ratio. 

The present paper intends to alter that aforementioned work twofold: by extending the solution 
domain up to two-dimensions and by considering natural convection. The problem investigated is 
of an isothermal vertical wall which contains a given amount of phosphogypsum and exhales 222Rn 
at constant rate into room air whose temperature is lower. 

It is assumed that air density variations are due to thermal effects only (i.e., negligible solutal 
effects due to mass transfer), following Boussinesq hypothesis for the buoyancy driven air flow. 
The analysis considers decay rates although activity source terms are not included. The resulting 
coupled partial differential equations are written in dimensionless form and numerically solved 
following a finite-volume method on a staggered orthogonal grid. 
 
2. PHYSICAL-MATHEMATICAL MODEL 
 
2.1. Primitive Variables Formulation 
 

Figure 1 shows the Cartesian coordinate system and the schematic diagram of the problem under 
investigation. The solution domain is a rectangle of height H (m) and width L (m). 

 

 
 

Figure 1. Schematic diagram and coordinate system for natural convective transport of 222Rn over a 
constant-exhalation constant-temperature vertical wall. 

 
Natural convection under Boussinesq approximation is assumed for the air laminar flow. Hence, 

all thermo-physical properties are supposed to be constant, except for the density ρ (kg⋅m−3) in the 
buoyant forces in the y-direction momentum equation, for which a linear dependence on local 
temperature T (K) is assumed, namely, 
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where  (K( ∞

−
∞ ∂ρ∂ρ=β T/1 ) −1) is the coefficient of thermal volumetric expansion and both density 

ρ∞ and temperature T∞ are reference state values. 
Indicating u and v (m⋅s−1) as velocity components in x and y directions respectively, p (Pa) as 

pressure,  (mυ 2⋅s−1) as kinematic viscosity, g (m⋅s−2) as acceleration due to gravity, α (m2⋅s−1) as 
thermal diffusivity, λ (s−1) as 222Rn decay constant, Do (m2⋅s−1) and c (Bq⋅m−3) respectively as 222Rn 
diffusivity and activity concentration in open air, the steady-state governing equations for mass, 
momentum, energy and species (222Rn activity) concentration can be written respectively as 
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In Eq. (6), −λc is a sink term but no source terms since it is assumed that room air lacks 226Ra. 

This radionuclide is supposed to be evenly distributed inside the wall as a phosphogypsum 
impurity, yielding a fixed activity flux JRn (Bq⋅m−2⋅s−1) into room air. Because such mass flux is 
very small compared to the entire air mass content, solutal variations in the bulk density ρ∞ can be 
neglected. 

Boundary conditions for the previous governing equations include no-slip condition at the wall 
(x = 0), which is subjected to constant temperature Tw and exhalation rate JRn. Sufficiently far from 
the wall (x = L), air is assumed to be at rest and at fixed temperature T∞ < Tw and to exhibit activity 
concentration c∞. These last two conditions are also assumed at the lower wall level (y = 0), where 
neither momentum back-flow nor fluid cross-flow are allowed. At the wall upper level (y = H), a 
free boundary condition is prescribed for all primitive unknown variables. Mathematically, 
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2.2. Dimensionless Governing Equations and Boundary Conditions 

 
Governing equations, Eqs. (2) to (6), and related boundary conditions, Eqs. (7) to (10), can be 

conveniently expressed in dimensionless form. Accordingly, the following dimensionless variables 
are defined: 
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Introduction of the above definitions into Eqs. (2) to (10) leads to the following expressions: 
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Dimensionless parameters that characterize the physics of the problem are the aspect ratio A, 

Prandtl number Pr, Schmidt number Sc, Grashof number Gr, a so-called decay-to-diffusion ratio R 
and a dimensionless activity concentration level φ0. These are defined respectively as 
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The above expression for the decay-to-diffusion ratio R may result from the definition suggested in 
(Rabi and Mohamad, 2004) by simply setting the so-called partition-corrected porosity to unity. 

With respect to the last of Eqs. (11), it is observed that the dimensionless activity level φ0 is the 
value for φ when c = 0. It is then assumed c∞ = 0 so that φ0 = 0 and Eq. (16) can be rewritten as 
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2.3. Local and Average Rate of Heat and Mass Transfer 
 
The rate of heat and mass transfer across the vertical wall is expressed in dimensionless form by 

means of the Nusselt and Sherwood numbers respectively. For the problem under investigation, the 
latter is a measure of the average 222Rn activity transferred into room air. 

By defining a local heat transfer coefficient hy (W⋅m−2⋅K−1) according to 
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and evoking Fourier’s law of heat conduction, one can express the local Nusselt number Nuy, with 
the help of Eqs. (11), as follows 
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The average heat transfer coefficient h and the average Nusselt number Nu are evaluated as 

 

 ∫∫
=









∂
θ∂

−==
1

0 0X0
y dd 1 Y

XH
kyh

H
h

H

   ⇒   ∫
=









∂
θ∂

−==
1

0 0X

dNu Y
Xk

hH  (25) 

 
Similarly, a local 222Rn activity transfer coefficient γy (m⋅s−1) can be defined as 
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where cw is the 222Rn activity concentration at the wall. By evoking Fick’s law of diffusion and 
again recalling Eqs. (11), the local Sherwood number Shy can be expressed as 

 

 
ow

Rn

o

y
y )(

Sh
D
y

cc
J

D
y

∞−
=

γ
=    ⇒   

0Xw
y

=φ
=

φ
=

YYSh  (27) 

 
Expressions for average 222Rn activity transfer coefficient γ and average Sherwood number Sh are 
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3. NUMERICAL METHOD 

 
This work adapted an existing finite-volume simulator which has been successfully used for the 

solution of heat and mass transfer problems in porous media (Mohamad, 2003). Equations (12) to 
 and  are converted into a system of algebraic equations after integration over each control 

volume in the solution domain. As a preliminary approach, uniformly spaced meshes were used. 
(15) (22)

Staggered grid arrangement is adopted so as to prevent pressure oscillations. Algebraic 
equations are solved iteratively and velocity components are under-relaxed by a factor of 0.7 
whereas other relaxation factors are set to unity. Convergence criteria are based on local and global 
conservation of mass, momentum, energy and species within pre-selected error tolerances. 

 



In order to ensure that results are grid size independent, 8000 iterations were performed on the 
following meshes: 162 × 82, 202 × 102, 252 × 127 and 302 × 152. Controlling parameters adopted 
for a test case were A = 2, Pr = Sc = 1, Gr = 106 and R = 0. It should be noted that by inserting the 
latter value in Eq. (22), the 222Rn activity transfer problem becomes similar to that of a vertical wall 
subjected to constant heat flux. Hence, the corresponding heat-mass transfer analogy holds. 

Table 1(a) compares numerical results obtained for Nuy at Y = 1, as calculated by Eq. (24), to 
values from correlations for free convection over a uniform temperature vertical wall (Ede, 1967; 
LeFreve, 1956; McAdams, 1954; Eckert, 1950). Table 1(b) shows simulated results for Shy at Y = 1, 
as calculated by Eq. (27), and values for Nuy taken from correlations for free convection over a 
constant heat flux vertical wall (Fujii and Fujii, 1976; Vliet, 1969; Vliet and Liu, 1969). This latter 
comparison stems from a heat-mass transfer analogy, as discussed in the preceding paragraph. 

 
Table 1. Comparison between numerical results and values computed from correlations 

for (a) local Nusselt number Nuy and (b) local Sherwood number Shy, both at Y = 1. 
 

(a) Local Nusselt number Nuy at Y = 1 
Numerical result from grid size of  Computed value as suggested by 

162 × 82 202 × 102 252 × 127 302 × 152  Ede LeFreve McAdams Eckert 
15.58517 15.25721 14.93420 14.66468  12.61345 12.67163 13.99308 13.59076

(b) Local Sherwood number Shy at Y = 1 
Numerical result from grid size of  Computed value (for Nuy) as suggested by 

162 × 82 202 × 102 252 × 127 302 × 152  Fujii and Fujii Vliet and Liu 
19.32559 18.88084 18.46145 18.12191  14.48468 16.27068 

 
Differences between predictions for either successive Nuy or Shy remain at approximately 2% or 

less, following the above grid size refinement sequence. Numerical values differ from those given 
by correlations possibly due to edge effects. As calculations on the 302 × 152 grid demand a 
considerable computational effort, results shown in this work were obtained using the 252 × 127 
grid. It is worth mentioning that correlations from (Fujii and Fujii, 1976; Vliet, 1969; Vliet and Liu, 
1969) are based on the modified local Grashof number, . In this case, the required 
local Nusselt number Nu

yy
*
y NuGrGr ⋅=

y was taken from numerical results on the 302 × 152 grid. 
 

4. NUMERICAL RESULTS AND DISCUSSION 
 
Representative values for 222Rn transport problems are Do ≅ 1.1 × 10−5 m2⋅s−1 (Yu et al., 1993) 

and λ = 2.098 × 10−6 s−1 (UNSCEAR, 2000). For that reason, the present investigation is limited to 
the following controlling parameters: A = 2, Pr = 0.71 (room air), Sc = 1.36 (as from Do above and 

 ≅ 1.5 × 10υ −5 m2⋅s−1 for room air) and R = 0.01. The Grashof number is allowed to vary within the 
range 106 ≤ Gr ≤ 108. 

Figures 2 and 3 show the dimensionless V and U profiles, respectively, at Y = 1 for Gr = 106, 107 
and 108. Although full Navier-Stokes equations are being numerically solved, Eqs. (12) to (14), the 
simulator was able to reproduce the basic features of a free-convection boundary-layer flow over a 
vertical wall under Boussinesq approximation. Large values are particularly observed for V because 
velocity components are normalized by /H, which is quite small. Identical profiles are obtained 
for the same set of controlling parameters but assuming R = 0 instead. These profiles are not 
presented for clarity. This behavior is expected as it was assumed that 

υ

222Rn mass flux causes no 
substantial changes to the bulk air density. 
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Figure 2. Profiles for the dimensionless V velocity component at Y = 1. 
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Figure 3. Profiles for the dimensionless U velocity component at Y = 1. 
 
Figure 4 exhibits the dimensionless temperature θ profiles at Y = 1 for Gr = 106, 107 and 108. 

Similar to what happens to V and U, identical θ profiles are obtained for both R = 0.01 and R = 0 
(profiles for R= 0 are not shown for clarity). This is also expected for the same rationale discussed 
in the previous paragraph. It should be noted that only an initial portion of the X domain is 
presented (instead of the whole 0 ≤ X ≤ A representation) since all θ profiles drop to zero within a 
short range. 
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Figure 4. Profiles for the dimensionless temperature θ at Y = 1. 
 
Figure 5 explicitly shows the dimensionless 222Rn activity concentration φ profiles at Y = 1 for 

both R = 0.01 and R = 0 for Gr = 106, 107 and 108. Analogous to θ profiles, only an initial portion of 
the X domain is presented as all φ profiles drop to zero within a short range. It is also worth noting 
that the fixed exhalation rate at the wall, last of Eqs. (17), was satisfactorily reproduced. 
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Figure 5. Profiles for the dimensionless 222Rn activity concentration φ at Y = 1. 
 
Despite of the additional sink (decay) term in Eq. (22), no considerable differences are observed 

between profiles from simulations using R = 0.01 and R = 0. This can be explained in terms of the 
 



relatively small decay-to-diffusion parameter suggested by the physical problem under investigation 
(R = 0.01), which makes decay effects become negligible. Larger values of R (and hence decay 
effects) are likely to be found in 222Rn transport across long distances H, e.g. across the atmosphere 
(Piliposian and Applebly, 2003), or through porous media where lower diffusivity D can be found 
(Yu et al., 1993; UNSCEAR, 2000). 

Finally, Fig. 6 plots both the average Nusselt and Sherwood numbers obtained from simulations 
using R = 0.01, as evaluated respectively according to Eqs. (25) and (28), for Grashof numbers in 
the range 106 ≤ Gr ≤ 108. Results show that the ascending profiles for Nu and Sh with respect to Gr 
are virtually parallel in a log-log scale. The upward natural convective flow field increases 
inasmuch as Grashof number becomes higher and such more intense air movement seems to 
enhance heat and mass transfers basically in the same way. 

It is worth bearing in mind that air is assumed to have constant temperature T∞ (θ = 0) and 222Rn 
activity concentration c∞ (φ = 0) at the lower level (y = Y = 0), Eqs. (9) and (19). Such conditions 
demand special analysis as far as a closed cavity (i.e. room) is concerned. All previous results refer 
to a limited portion of an isothermal constant-exhalation vertical wall. No attempts were made as to 
analyze effects due to windows, fans or opposing and/or adjacent walls in the present investigation. 
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Figure 6. Average Nusselt and Sherwood numbers as function of Grashof number for R = 0.01. 
 

5. CONCLUDING REMARKS 
 
A section of a constant-temperature constant-exhalation rate vertical wall was investigated. 

Radon activity penetrates into room air whose ascending laminar buoyancy-driven flow is assumed 
to follow Boussinesq approximation. Despite full Navier-Stokes equations were numerically solved, 
boundary conditions were adopted in order to simulate satisfactorily the expected free convection 
flow field over an isothermal vertical wall. 

Decay (sink) rates were taken into account but 222Rn activity source terms were not included. In 
accordance to a previous definition, the decay-to-diffusion ratio R proved to be relatively small for 
the controlling parameters adopted. Numerical results showed no considerable changes if compared 
to those obtained assuming a similar mass transfer scenario without the decay term. In other words, 

 



 

the 222Rn transfer investigated showed a diffusive dominant nature under the assumptions made. It 
is presumed that decay effects should be observed in problems corresponding to higher values of R. 

It was found that heat and mass transfer rates are enhanced by increasing the Grashof number. 
Activity concentration results were numerically obtained assuming that the incoming fluid (i.e., air 
arriving at the lower wall level) exhibits a constant reference value c∞. Means to guarantee such 
condition should then be provided or designed. 

 
6. ACKNOWLEDGEMENT 

 
The first author is grateful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior, Brazil) for the financial support (Process BEX 0624/03-9). 
 

7. REFERENCES 
 

Eckert, E.R., 1950, “Introduction to the Transfer of Heat and Mass”, McGraw-Hill, New York. 
Ede, A.J., 1967, “Advances in Heat Transfer”, vol. 4, Academic Press, New York. 
Fujii, T. and Fujii, M., 1976, Int. J. Heat Mass Transfer, vol. 19, pp. 121-122. 
LeFreve, E.J., 1956, “Laminar free convection from a vertical plane surface”, Proc. 9th Int. Congr. 

Applied Mechanics, Brussels, vol. 4, pp. 168-174. 
McAdams, W.H., 1954, “Heat Transmission”, 3rd ed., McGraw-Hill, New York. 
Mohamad, A.A., 2003, “Heat transfer enhancements in heat exchangers fitted with porous media. 

Part I: constant wall temperature”, Int. J. Thermal Sciences, vol. 42, pp. 385-395. 
Piliposian, G.T. and Appleby, P.G., 2003, “A simple model of the origin and transport of 222Rn and 

210Pb in the atmosphere”, Continuum Mech. Thermodyn., vol. 15, pp. 503-518. 
Rabi, J.A. and Mohamad, A.A., 2004, “A parametric approach for the prediction of 222Rn 

exhalation rates from phosphogypsum-based embankments”, Proceedings of ICAPM 2004 – 
International Conference on Applications of Porous Media, May 24-27, Evora, Portugal. 

Rutherford, P.M., Dudas, M.J. and Samek, R.A., 1994, “Environmental impacts of 
phosphogypsum”, Science of the Total Environment, vol. 149, pp. 1-38. 

UNSCEAR – United Nations Scientific Committee on the Effects of Atomic Radiation, 2000, 
“Sources and effects of ionizing radiation”, New York, U.N. 

Vliet, G.C., 1969, “Natural convection local heat transfer on constant-heat-flux inclined surfaces”, 
J. Heat Transfer, vol. 91C, pp. 511-516. 

Vliet, G.C. and Liu, C.K., 1969, “An experimental study of natural convection boundary layers”, J. 
Heat Transfer, vol. 91C, pp. 517-531. 

Yu, C., Loureiro, C., Cheng, J.-J., Jones, L.G., Wang, Y.Y., Chia, Y.P. and Faillace, E., 1993, “Data 
Collection Handbook to Support Modeling Impacts of Radioactive Materials in Soil”, Argonne 
National Laboratory, Argonne, Illinois. 


