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Resumo. O presente trabalho se dedica ao desenvolvimento de uma malha híbrida analítico-
numérica, visando o estudo numérico dos processos de vaporização e combustão de uma coluna 
infinita de gotas. A malha estruturada desenvolvida no sistema de coordenada generalizadas possui 
duas regiões geradas a partir de transformações algébricas e uma gerada numericamente. As 
regiões da malha geradas analiticamente exploram características esféricas, nas proximidades de 
uma gota, e cilíndricas, nas regiões distantes da coluna de gotas, dos fenômenos físicos analisados. 
Em uma região intermediária, não é possível identificar, a princípio, qual destas características 
predomina. A malha na região intermediária é gerada numericamente, compatibilizando as regiões 
geradas analiticamente. Na região intermediária, o comportamento da malha se assemelha ao 
comportamento das linhas de corrente encontradas em problemas de combustão de uma coluna 
infinita de gotas. Apresenta-se como resultados a solução de um problema de combustão de uma 
coluna de gotas. 
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1. INTRODUÇÃO 

 
O desenvolvimento de uma malha híbrida analítico-numérica, visando o estudo numérico dos 

processos de vaporização e combustão de uma coluna infinita de gotas, é apresentado neste 
trabalho. Os estudos numéricos dos referidos problemas de combustão são motivados pela 
necessidade de melhorar a eficiência de motores Diesel, turbinas à gás e foguetes, bem como, 
reduzir a emissão de poluentes. Ademais, as dificuldades experimentais associadas aos problemas 
de combustão de colunas de gotas, especialmente em condições termodinâmicas supercríticas 
(Aggarwal et al, 2002), tornam relevantes os estudos numéricos de tais problemas. 

A interação entre gotas submetidas a processos de vaporização e combustão pode promover a 
deformação das chamas e das gotas, dependendo do espaçamento entre gotas, das propriedades 
termofísicas dos fluidos e das condições ambientais do sistema. Além disso, os efeitos interativos 
entre gotas, quando relevantes, aumentam o tempo de vida das gotas e o tempo de combustão. 

Estudos numéricos da combustão de colunas de gotas foram realizados por Leiroz (1996) em 
condições termodinâmicas subcríticas e por Caldeira (2004) em condições termodinâmicas 
supercríticas, revelando o coalescência das chamas, inicialmente presentes em torno de cada gota, 
ao redor da coluna de gotas. É importante notar que em condições supercríticas as gotas são 
definidas por critérios arbitrários de massa específica, temperatura ou concentração de espécie 
(Bellan, 2000 e Daou et al, 1998). 

 
2. MODELO FÍSICO-MATEMÁTICO 
 

O modelo físico considera uma coluna infinita de gotas em condições supercríticas. Neste 
modelo as propriedades termofísicas são constantes a menos da massa específica e o sistema é 



considerado isobárico. A reação de combustão é uma reação química simples (Kuo, 1986). 
Inicialmente, as gotas de combustível são esféricas, com mesmo diâmetro, e estão igualmente 
espaçadas, a temperatura da gota é menor que a do ambiente oxidante. 

O modelo matemático é representado pelas equações de conservação de massa, de quantidade de 
movimento e do potencial de Shvab-Zel`dovich (Kuo, 1986 e Daou et al, 1998) e pela equação de 
estado do gás ideal. Estas equações, na forma adimensional, são apresentadas nas Eq.(1) a Eq.(9), 
sendo escritas no sistema de coordenadas esféricas (R,θ), cuja origem é o centro da gota conforme 
mostrado na Figura 1. Nas equações de conservação de quantidade de movimento p é a pressão 
modificada (Daou et al, 1998) onde são agrupados os termos de pressão termodinâmica e expansão 
volumétrica, nestas equações, Re é o número de Reynolds. Na equação de conservação do potencial 
de Shvab-Zel`dovich, Pe é o número de Peclet. Na equação de estado fst é o potencial de Shvab-
Zel`dovich estequiométrico, e é a razão inicial entre as temperaturas da gota e do ambiente 
circundante e q é o calor liberado pela reação de combustão. As variáveis dependentes do sistema 
de equações são: massa específica (ρ), velocidade radial (u), velocidade azimutal (v) e o potencial 
de Shvab-Zel`dovich (f). 
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A adimensionalização empregada segue o exposto na Eq. (10), onde o subscrito “+” refere-se às 

grandezas dimensionais e o subscrito “∞” está relacionado às grandezas avaliadas em uma região 
muito afastada da coluna de gotas. Na Eq. (10) é a velocidade característica do problema, r e z +

cu



são as coordenadas cilíndricas conforme mostrado na Figura 1, µ é a viscosidade do fluido e é o 
raio inicial das gotas. 
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As simetrias existentes na coluna infinita de gotas conduzem a simplificações no domínio a ser 

estudado como mostrado na Figura 1. Nesta figura, b+ corresponde a metade da distância entre 
gotas e c+ é a posição de truncamento do domínio. 
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Figura 1. Modelo esquemático do problema físico: (a) geometria e (b) domínio. 

 
A condição inicial do problema é dada pela condição de estagnação do fluido e por: 

 
f = 1, onde 1R ≤  
f = 0, onde 1R >  

(11)

 
As condições de contorno são de fluxo nulo, para todas as variáveis dependentes, na direção 

normal aos contornos do domínio, conforme mostrado na Figura 1b. 
 

3. SOLUÇÃO NUMÉRICA 
 
O sistema de equações apresentado é rescrito no sistema de coordenadas generalizadas (ξ,η) 

seguindo o descrito por Thompson et al (1985). O método dos volumes finitos é empregado 
utilizado variáveis colocalizadas (Maliska,1995) e o acoplamento pressão modificada-velocidade é 
resolvido utilizando o SIMPLEC (Van Dormaal et al, 1984). As equações foram discretizadas 
utilizando o esquema WUDS (Raithby et al, 1974) na forma totalmente implícita. Os sistemas de 
equações algébricas foram resolvidos empregando-se o algoritmo GMRES (Press et al, 1992). 



A Figura 2 apresenta o comportamento qualitativo e as regiões da malha empregada na solução 
numérica. Primeiramente, a região 2 é gerada numericamente segundo o descrito por Thompson et 
al. (1985), resolvendo-se numericamente um sistema de equações diferenciais parciais com 
condições de contorno de fluxo nulo nos contornos da região 2, em seguida a região 3 e a região 1 
são geradas analiticamente. As equações de geração numérica de malha na região 2 são escritas nas 
Eq.(12) a Eq. (19) e as condições de contorno são escritas na Eq.(20). 
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O sistema de equações acima é numericamente resolvido utilizando-se o método das diferenças 
finitas, sendo o sistema algébrico resultante solucionado empregando-se o algoritmo de Gauss-
Seidel com SOR. 

A geração analítica da malha da região 3 é efetuada conhecendo-se os pontos da interface entre 
as regiões 2 e 3. A partir destes pontos são traçadas retas da direção cilíndrica radial, ligando os 
referidos pontos a fronteira de truncamento do domínio, sobre esta reta são distribuídos os pontos da 
malha nesta região. A distribuição dos pontos sobre na direção radial cilíndrica é dada por: 
 



 
Figura 2. Representação da malha no plano físico. 
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onde a é o valor de r na fronteira entre as regiões 2 e 3, N é o número de pontos na direção ξ e ξc é o 
valor de ξ na fronteira entre as regiões 2 e 3. A malha na região 3 possui características cilíndricas. 

Na região 1, a malha é gerada a partir dos pontos da fronteira entre as regiões 1 e 2, traçando 
retas destes pontos até a origem do sistema de coordenadas esféricas. Estas retas são retas radiais 
esféricas sobre a quais são arbitrados os pontos da malha. Na região 1 a malha possui características 
esféricas. Os pontos são distribuídos na região 1 segundo as seguintes equações: 
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onde y1 é uma constante arbitrária. 
Conhecidos os pontos da malha na região 3 em r e z e na região 1 em R e θ, estes pontos são 

transformados para o sistema de coordenadas generalizadas. Desta forma, todas as regiões da malha 
são escritas no sistema de coordenadas generalizadas. 

A malha empregada utiliza a metodologia apresentada por Moreira Filho et al (2002) onde os 
pontos gerados mapeam os volumes finitos e suas faces. Este procedimento visa melhorar o cálculo 
das métricas da transformação do sistema de coordenadas esférica para o de coordenadas 
generalizadas. 

A Figura 3 apresenta as regiões da malha no plano físico e no plano computacional. Esta figura 
demostra a simplificação do domínio ao se empregar o sistema de coordenadas generalizadas. 
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Figura 3. Regiões da malha no plano físico (a) e no plano computacional (b). 

 
4. RESULTADOS 
 

Os resultados apresentados a seguir consideram os seguintes parâmetros do modelo:  
e = 0,1, b = 2, Pe = 1, q = 2 e fst = 0,8. A análise de convergência da solução numérica foi realizada 
confrontando-se os casos descritos na Tabela 1.  

 
Tabela 1. Casos avaliados na análise de convergência da solução. 

 
CASO NÚMERO DE VOLUMES INTERVALO DE TEMPO c 

1 8050 (115x70) 0.002 15 
2 16300 (163x100) 0.001 15 
3 10500 (150x70) 0.002 20 

 
A partir dos casos relacionados na Tabela 1 verificou-se que as soluções para o potencial de 

Shvab-Zel`dovich possuem uma discrepância absoluta máxima inferior a 0,6%, enquanto as 
soluções para a velocidade u possuem uma discrepância relativas inferiores a 4%. Estes resultados 
são considerados satisfatórios sendo os campo de velocidade u e do potencial f apresentados nas 
Figuras 4 e 5. Nestas Figuras o tempo t = 0,1 corresponde a um tempo no inicio do processo de 
combustão e o tempo t = 0,7 corresponde a um tempo no final do processo de combustão. 

As isosuperfícies de velocidade u e de potencial f mostradas nas Figuras 4 e 5 apresentam-se 
deformadas devido ao processo interativo entre gotas. A deformação destas superfícies aumenta ao 
longo do tempo. Entretanto, os gradientes de velocidade e do potencial f são atenuados ao longo do 
tempo. 

O comportamento da isosuperfície referente ao potencial de Shvab-Zel`dovich estequiométrico 
(fst = 0,8) indica que a chama, inicialmente esférica, assume uma geometria elipsoidal.  
 
5. CONCLUSÕES 

 
O procedimento de geração de malha proposto, aliado ao sistema de coordenadas 

generalizadas, favorece a abordagem do problema matemático estudado em um único bloco. Os 
resultados apresentados são qualitativamente concordantes com a física do problema. A solução 
numérica foi considerada convergida, sendo avaliados o número de volumes da malha, a posição de 
truncamento do domínio e o intervalo de tempo. 

 
 



 
(a) 

Figura 4.  Campo de velocidades radial nos tempos t = 0,1 (a) e t = 0,7 (b). 
 

 
(b) 

Figura 4. (cont.) Campo de velocidades radial nos tempos t = 0,1 (a) e t = 0,7 (b). 



 
(a) 

 

 
(b) 

Figura 5. Campo do potencial f nos tempos t = 0,1 (a) e t = 0,7 (b). 
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HYBRID GRID GENERATION TO PROBLEMS OF VAPORIZATION AND 
COMBUSTION OF AN DROPLET-STREAM 
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Abstract. The present work describes the development of a hybrid grid for numerical studies of 
droplet-stream combustion and vaporization processes. The structured grid is developed using a 
generalized coordinate system. Initially, the solution domain is split into three subdomains. For two 
subdomains, grids are analytically generated using the spherical and cylindrical characteristics of 
the phenomena within the near and far fields of the droplet-stream. Numerical grid generation is 
applied in a transition region allowing the matching of the analytically generated grids. Results for 
droplet-stream combustion are discussed. 
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