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Abstract. Composite materials are being continually developed for a wide range of engineering
applications worldwide. An important class of composites consists of those with monodisperse solid
short fibers of circular cylindrical shape dispersed in a solid matrix. Manufacturing processes for
such composites usually press the components together, such that the fibers tend to align
perpendicularly to the applied pressure. Consequently, the fibers may become transversely aligned
(lying on parallel planes, but not parallel to each other in each plane). Few works in the literature
focus on predicting bulk thermal properties of short-fiber composites. Many of the analytical,
phenomenological and numerical approaches are restricted to much simplified microstructures, do
not take into account the thermal interactions between neighboring particles, or yet are based on
ad-hoc hypotheses. The purpose of the present work is to carry on a preliminary numerical study on
the effective thermal conductivity of composites with transversely-aligned short fibers, based on
first principles. The numerical approach used in this work stands out for its geometrical and
physical flexibility, and is able to handle fairly complex microstructures. The steady heat
conduction problem is solved in composites whose three-dimensional microstructures are modeled
by periodic cells composed of either cubic or parallelepipedonal subcells. In the subcells, short
circular cylindrical fibers are placed at their centers, the axes of the fibers lie in the same plane,
but are not parallel to each other. The effective thermal conductivities of such composites are
predicted as functions of the fiber volume fraction, ratio of phase conductivities and geometry of the
microstructure, characterized by the aspect ratio and distribution of the fibers inside the matrix. At
the present time, an interfacial thermal resistance between the phases is not considered, and neither
is the presence of voids and cracks in the matrix.
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1. INTRODUCTION

Composite materials, often made with fibers or particles dispersed in a continuous matrix of
another constituent, can attain a wide range of thermal properties, and are being continually
developed for engineering applications worldwide. The determination of bulk thermal properties of
composites, in terms of the microstructure and component properties, is thus a crucial effort.
Flexible numerical approaches to the study of heat conduction in modern composites are needed in
order to obtain more reliable and applicable results. Recent advances in computing capabilities have
enabled increased quality of numerical simulations; in particular, finite-element methodologies are
now able to handle three-dimensional geometries in a reasonable amount of time.

An important class of composites consists of those with monodisperse solid short fibers of
circular cylindrical shape dispersed in a solid matrix. Manufacturing processes for such composites
usually press the components together, such that the fibers tend to align perpendicularly to the
applied pressure. Consequently, the fibers may become transversely aligned, i.e., lying on parallel
planes, but not parallel to each other in each plane. Few works in the literature focus on predicting
bulk thermal properties of short-fiber composites. Many of the analytical, phenomenological and
numerical approaches are restricted to much simplified microstructures, do not take into account the
thermal interactions between neighboring particles, or yet are based on ad-hoc hypotheses.

The purpose of the present work is to carry on a preliminary numerical study on the effective
thermal conductivity of composites with transversely-aligned short fibers, based on first principles.
The numerical approach used in this work stands out for its geometrical and physical flexibility, and
is able to handle fairly complex microstructures. The following microstructural models are
investigated: to represent the arrangement of fibers in the composite, periodic cells composed of
either cubic or parallelepipedonal subcells are adopted, in which short circular cylindrical fibers are
placed at their centers; the axes of the fibers lie in the same plane, but are not (necessarily) parallel
to each other. The steady heat conduction problem is numerically solved by first applying a recently
implemented semi-automatic procedure to generate unstructured tetrahedral meshes in the overall
periodic-cell microstructures. Next, the meshes are used in a finite-element code to obtain the
effective conductivities as a function of the fiber volume fraction, ratio of phase conductivities and
geometry of the microstructure, characterized by the aspect ratio and distribution of the fibers inside
the matrix. Results such as these, originating from an attempt to model real microstructures, are
needed in the literature. At the present time, an interfacial thermal resistance between the phases is
not considered, and neither is the presence of voids and cracks (porosity) in the matrix.

2. BRIEF LITERATURE REVIEW

A large number of publications dedicated to the analytical, semi-analytical or numerical study of
the heat conduction problem in composite materials deal with geometrically simple microstructures,
constituted by a single particle or fiber embedded in the matrix. The dispersed phase is often
modeled as spherical particles or (long or short) fibers, the latter in the form of ellipsoids of
revolution or circular cylinders. Many analytical treatments do not take into account the effects of
the thermal interactions between neighboring particles. Therefore, the analytical expressions
derived are valid only for low (to moderate) volume fractions of the dispersed phase. In general, for
short-fiber composites, analytical and numerical predictions for the effective thermal conductivity
found in the literature are not in good agreement with experimental data. Much work needs to be
done to narrow this gap. Currently, there is no single approach based on first principles which
simultaneously treats three-dimensional microstructures, anisotropic phases, interactions between
neighboring fibers, interfacial thermal resistance, presence of voids and/or cracks in the matrix, and
distributions for the size, shape, position and orientation of the fibers. Comments on some previous
works that are used later in this paper for comparison with the numerical results are now made.



Perrins et al. (1979) used a Rayleigh-type analytical method to determine transport properties of
unidirectional fibrous composites, in which the long cylindrical fibers are arranged in the square or
hexagonal array. The expression derived for the calculation of the transverse effective thermal

conductivity of the square array, kTP , nondimensionalized with respect to the matrix conductivity,

is
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where T =12 and ¢ and a represent, respectively, the fiber volume fraction and the fiber-to-matrix

ratio of phase conductivities. Nomura and Chou (1980) derived upper and lower bounds for the
transverse effective thermal conductivity of unidirectional composites with ellipsoidal short fibers.
The approach is based on a perturbation technique using a Green’s function tensor, and the
correlation functions used to calculate the bounds are evaluated up to the third order term.

Mirmira (1999) and Mirmira and Fletcher (1999) carried out an experimental study of the heat
conduction problem in short-fiber composites, and at the same time developed an analytical
expression for the transverse effective thermal conductivity based on a phenomenological
micromechanical model which considers the fibers as circular cylinders. Mirmira (1999) and
Mirmira and Fletcher (1999) focused their study on graphite fiber organic matrix (GFOM)

composites with one of three kinds of fibers, denoted DKE X, DKA X and K22 XX. Their

M

expression for the transverse effective thermal conductivity, 4™, nondimensionalized with respect

to the matrix conductivity, is
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where k. and k,, are the fiber conductivities in the radial and tangential directions, respectively, &, is
the matrix conductivity, d is the fiber diameter, R is the interfacial thermal resistance, and V), is the

porosity content. Expression (2) takes into account, in an ad-hoc fashion, the influence on kTM of

the thermal properties of the phases, fiber volume fraction, fiber anisotropy, interfacial thermal
resistance, and presence of voids in the matrix. However, the fibers are seemingly assumed to be
longitudinally aligned, a less likely and less complex configuration than transversely aligned short
fibers.

Cruz (2001) reviewed the application of computational methods to the study of heat conduction
in composite materials. In particular, it was argued that approaches which combine homogenization
theory with finite elements offered great geometrical and physical flexibility to rigorously treat
complex microstructural configurations and phenomena. In fact, Rocha and Cruz (2001) accounted
for the interfacial thermal resistance in disordered unidirectional fibrous composites, while Matt
(2003) and Matt and Cruz (2002, 2001), respectively considering and not considering an interfacial
thermal resistance, predicted the effective thermal conductivity of three-dimensional composites
with spherical particles and with longitudinally aligned short fibers. The results obtained by Matt
and Cruz (2001) are used here for validation purposes.

The present work extends the one by Matt and Cruz (2001) to three-dimensional composites
with transversely aligned short fibers. Differently from many works found in the literature, the
effects due to variable fiber orientation and to the interactions between neighboring fibers are taken
into account. Other relevant physical parameters previously mentioned shall be progressively
incorporated in future extentions of this work.



3. METHODOLOGY

The methodology employed in this work consists of two main steps:

e application of the homogenization method to the variational form of the steady three-
dimensional heat conduction problem in the composite medium;

e numerical solution of the derived cell problem, defined in a representative volume element
of the composite microstructure, using the finite element method; once the temperature
distribution in the cell has been determined, the components of the effective thermal
conductivity tensor can be calculated.

The continuous and discrete formulations of the problem (i.e., the homogenization procedure and
the discretization by finite elements) and the mesh generation schemes are described in detail
elsewhere (Matt and Cruz, 2001; Matt and Cruz, 2002; Matt et al., 2003; Hirata, 2003).

The first model — Model I — for the composite microstructure consists of a periodic cell
composed of four equal cubic subcells, in which four short circular cylindrical fibers are placed at
the centers of the cubes. The axes of the fibers lie in the same vertical y;-y, plane, but are not
(necessarily) parallel to each other. Therefore, the so-constructed cell can represent composites with
both longitudinally aligned and transversely aligned short fibers. Each cubic subcell has sides of
length A. The four cylinders have the same diameter d and length o, and their axes lie in the y;-y»
plane located at y; = A/2. To represent transversely aligned fibers, the angles ¢, i=1,2,3,4, formed
by the i-th fiber axis and the y; axis, are chosen randomly (i.e., drawn from a uniform probability
density function) in the interval 0° < ¢ < 180°. The nondimensional diameter d/A4 and the
nondimensional length ¢/4 of the cylindrical fibers are determined as functions of the user-specified
fiber volume fraction, ¢, and aspect ratio, p, respectively defined by
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It is important to remark that, for an arbitrary value of the angle ¢, of a fiber, the geometry of the
periodic cell leads to a limitation on the range of values of the fiber aspect ratio p for a given value
of ¢ (Matt et al., 2003; Hirata, 2003). This limitation is due to the restriction that a fiber must not
touch the faces of its enclosing subcell, or

Vd? +6% <A. (4)

The second model — Model II — for the composite microstructure consists of a
parallelepipedonal periodic cell in which two circular cylindrical fibers are placed (slightly) oblique
to each other. With this new model, it is possible to simulate the high fiber volume fractions and
aspect ratios of some short-fiber composites used in practice. Nevertheless, another geometric
limitation is imposed: the axes of the fibers tend to be practically parallel to each other, with angles
of only a few degrees.

Representative examples of volume meshes in the periodic cells of Models I and II are shown in
Fig. (1). The schemes for the generation of the unstructured tetrahedral finite-element meshes of
this work rely on the software NETGEN (Schoberl, 2001), and are described elsewhere (Matt and
Cruz, 2001; Matt et al., 2003; Hirata, 2003). Effective conductivity results for Models I and II are
presented, respectively, in sections 5 and 6.



(a) (b)
Figure 1. Representative examples of volume meshes in the periodic cells of (a) Model I, and (b)
Model II.

4. VALIDATION

In this section, the implementation of the methodology is validated by comparing
(nondimensional) numerical and analytical results for the longitudinal and transverse effective
thermal conductivities of unidirectional fibrous composites, constituted by infinite circular
cylindrical fibers arranged in a regular square array. In order to reproduce the microstructure of
such composites, the angles ¢, i=1,2,3,4, are set equal to zero, and p is progressively increased to
approach the maximum value, p,,, =+m/4c, for which the planar surfaces of the fibers are tangent

to the y,-y3 faces of the cube. The numerical results (indicated by superscript ), & and k™
(subscript 1. for longitudinal conductivity, and r for transverse), are respectively compared to the
analytical ones, ki ™™ and k1%, Values of k™ are calculated using the well-known rule of mixtures,
k"™ = 1—c+a c. Values of k" are calculated using expression (1), derived by Perrins et al. (1979).

Sample results for k", &t and k"™, k1" are shown in Tab. (1). We can clearly observe that the
numerical results are in excellent agreement with the analytical ones. It is worth noting that, as an
additional validation test, numerical results for the effective thermal conductivities of composites
with longitudinally aligned short fibers have been compared to the ones obtained by Matt (2003)
and Matt and Cruz (2001), and the agreement is again excellent. Having, thus, successfully
validated the implementation of the methodology for the cases of unidirectional fibrous composites
and composites with longitudinally aligned short fibers, numerical results for the effective
conductivities of composites with transversely aligned short fibers are presented in the next two
sections.

Table 1. Validation of numerical scheme: effective conductivities, k", kr™ and & "™, k1", of
unidirectional fibrous composites, for fixed ratio of fiber-to-matrix conductivities, o=2.

p=2
¢ Pmax kLN kLRIvI kTN kTP
0.1 2.802 1.1000 1.1000 1.0690 1.0690
0.3 1.618 1.3000 1.3000 1.2223 1.2223




5. NUMERICAL RESULTS FOR THE EFFECTIVE THERMAL CONDUCTIVITIES OF
COMPOSITES WITH TRANSVERSELY ALIGNED SHORT FIBERS - MODEL I

New numerical values are now presented for the effective thermal conductivities of composites
with transversely aligned short fibers in cubic subcells. For these composites, each value of kr;",
i=1,2 (orthogonal directions in the plane of the axes of the fibers), is the arithmetic average of
fifteen different arrangements constructed with random values for the angles ¢, j=1,2,3,4. As one
might expect, the average values of kT,lN and kT,zN are the same. Table 2 shows the variation of kT,iN
as p is increased, for fixed values of the fiber volume fraction, ¢, and ratio of phase conductivities,
a. Table 3 shows the variation of kT,iN as « 1s increased, for fixed values of the fiber volume
fraction, ¢, and aspect ratio of the fibers, p.

Table 2. Effective conductivities kT,iN, i=1,2, of composites with transversely aligned short fibers,
for increasing p and fixed values of ¢ and c.

c=0.1 and a=2 c=0.2 and a=2
p kT,lN kT,ZN p kT,lN kT,2N
0.5 1.0760 1.0760 0.5 1.1412 1.1412
1.0 1.0781 1.0781 1.0 1.1605 1.1605
1.5 1.0948 1.0948 1.5 1.1648 1.1648

Table 3. Effective conductivities kT,iN, 1=1,2, of composites with transversely aligned short fibers,
for increasing « and fixed values of ¢ and p.

¢=0.1 and 1 ¢=0.2 and =1
a kT,lN kT,zN a kT,lN kT,zN
2 1.0781 1.0781 2 1.1605 1.1605
5 1.1930 1.1930 5 1.4150 1.4150
50 1.3622 1.3622 50 1.8412 1.8412

The analysis of Tabs. (2) and (3) reveals that the values of the effective thermal conductivities
increase when p (fixed ¢ and @) and « (fixed ¢ and p) are increased. Also, because the fibers are
more conducting than the matrix and perfect thermal contact is assumed, the effective conductivities
also increase when ¢ (fixed & and p) is increased. The values of kr " and k", for the same
parameter set {c, p, &}, agree up to the fourth decimal digit when the sample size contains at least
fifteen different configurations.

6. NUMERICAL RESULTS FOR THE EFFECTIVE THERMAL CONDUCTIVITIES OF
COMPOSITES WITH TRANSVERSELY ALIGNED SHORT FIBERS - MODEL II

Sample numerical values are now presented for the effective thermal conductivities of
composites with transversely aligned short fibers in parallelepipedonal cells. For these composites,
each effective conductivity value is the arithmetic average of three different configurations
constructed with random values for the angles ¢;, j/=1,2.

The GFOM composites used by Mirmira (1999) and Mirmira and Fletcher (1999) contain one of
three types of fibers: DKA X, DKE X or K22 XX fibers. The diameter and aspect ratio of such
fibers are =10 m and p=20, respectively. The variation of the thermal conductivity of the pure
cyanate ester resin matrix, measured by those authors as a function of temperature, is shown in
Tab. (4). Mirmira (1999) and Mirmira and Fletcher (1999) conducted an uncertainty analysis of
their experimental results. The uncertainty obtained for the longitudinal and transverse effective
thermal conductivities were 12.6% and 11.8%, respectively.



Table 4. Thermal conductivity of the resin matrix as a function of temperature € for the GFOM
composites used by Mirmira (1999) and Mirmira and Fletcher (1999).

6[°C] 20 40 60 80 100 | 120 | 140 | 160 | 180 | 200
km [W/m-K] 093 | 0.84 | 0.87 | 090 | 099 | 1.01 | 1.01 | 1.02 | 1.02 | 1.02

To tentatively compare numerical results with some experimental measurements by Mirmira
(1999) and Mirmira and Fletcher (1999), values of p and o =k¢ky, are chosen so as to match the
corresponding values of the composites with DKA X and K22 XX fibers. The influence of the
temperature @ in the numerical results is not explicit, but is taken into account through the variation
of the thermal conductivity of the matrix, kn. As Mirmira (1999) reports, for K22 XX fibers,
kr =k, = 617 W/m-K and k. = 2.4 W/m-K, for DKA X fibers, kr =k, = 900 W/mK and k. = 2.5
W/mK, R = 10° m*K/W, V, = 0.03. Tables (5) and (6) show the comparison between the
experimental data and the present numerical results.

Table 5. Experimental (k. ™*, kr™**?) and numerical (k.", k1") results for the longitudinal and
transverse effective conductivities of the K22 XX composites, for ¢ € {0.55, 0.65}.

K22 XX, ¢=0.55 K22 XX, ¢=0.65
0 [0 C] kLM,exp kTM,exp kLN kTN kLM,exp kTM,exp kLN kTN
20 [ 27.6452 | 3.3333 | 33.8484 | 4.0139 30.4086 | 4.8495 | 74.2294 | 6.1011
40 | 30.0952 |3.7738 |34.1388 | 4.0165 33.2262 | 5.3690 | 75.4586 | 6.1076
60 | 28.8046 |3.6782 |34.0414 | 4.0156 31.5402 | 5.2988 | 75.0443 | 6.1055
80 [27.4889 |3.4889 |33.9446 |4.0148 29.9667 | 5.0667 | 74.6346 | 6.1033
100 | 24.2020 | 3.1010 | 33.6576 |4.0122 26.7778 | 4.5050 | 73.4320 | 6.0967
120 | 22.9109 |3.0297 |33.5944 |4.0117 24.4455 | 4.4158 | 73.1701 | 6.0953
140 | 22.8317 |3.0297 |33.5944 |4.0117 24.1287 |4.4158 | 73.1701 | 6.0953
160 | 22.3726 |3.0000 | 33.5630 |4.0114 23.8137 |4.4020 | 73.0398 | 6.0946
180 |22.1569 |2.9902 | 33.5630 |4.0114 23.6961 | 4.4020 | 73.0398 | 6.0946
200 ]22.0490 [2.9706 |33.5630 |4.0114 23.5882 | 4.4020 | 73.0398 | 6.0946

Table 6. Experimental (k. ***, kr**?) and numerical (k.", k1") results for the longitudinal and
transverse effective conductivities of the DKA X composites, for ¢ € {0.55, 0.65}.

DKA X, ¢=0.55 DKA X, ¢=0.65
0 [0 C] kLM,exp kTM,exp kLN kTN kLM,exp kTM,exp kLN kTN
20 [ 53.8925 | 7.3118 | 34.8108 | 4.0223 71.5914 | 9.7850 | 78.3786 | 6.1224
40 | 59.0952 | 8.0952 |35.0210 | 4.0240 78.6429 | 10.810 | 79.3143 | 6.1270
60 |56.4828 | 7.7701 | 34.9506 |4.0234 74.8161 | 10.310 | 79.0000 | 6.1254
80 | 53.5778 | 7.5000 | 34.8806 |4.0228 71.8889 |9.7778 | 78.6880 | 6.1239
100 | 46.9596 | 6.7172 | 34.6721 |4.0211 62.7576 | 8.8889 | 77.7671 | 6.1194
120 | 42.7723 | 6.5248 | 34.6261 | 4.0207 60.9010 | 8.6931 | 77.5653 | 6.1184
140 |40.5050 | 6.3366 | 34.6261 | 4.0207 59.4753 | 8.6634 | 77.5653 | 6.1184
160 | 37.8627 | 6.0980 | 34.6031 | 4.0205 57.3431 | 8.5490 | 77.4648 | 6.1179
180 |25.7647 | 5.9902 | 34.6031 | 4.0205 56.0294 | 8.3824 | 77.4648 | 6.1179
200 |33.2451 | 5.8823 | 34.6031 | 4.0205 53.9314 | 8.0882 | 77.4648 | 6.1179

From Tabs. (5) and (6) it is observed that reasonable agreement is obtained in some instances,
and poor agreement in others. Still, the numerical results - k1™ - seem to be in better agreement with



the data - k""" - than the results predicted by expression (2) (Hirata, 2003). The observed
discrepancies between numerical results and experimental data vary quite a bit, and probably stem
from inaccuracies in the microstructural model and from effects that are not accounted for, such as
the presence of an interfacial thermal resistance and matrix porosity.

7. FINAL CONSIDERATIONS

Different from most of the previous analytical and numerical studies dedicated to the
determination of the macroscopic thermal conductivity of short-fiber composites, the present work
incorporates collectively the influence of relevant effects, namely the interaction between
neighboring fibers and variable fiber orientation. With the current microstructural models,
composites with both longitudinally and transversely aligned short fibers can be simulated. As
expected, only a fraction of the numerical results are in reasonable agreement with the experimental
measurements. Therefore, the results of this work encourage not only further improvements in the
microstructural models, but, also, the incorporation of effects due to the presence of an interfacial
thermal resistance and matrix porosity. It is believed that, in this way, more representative results of
the macroscopic thermal behavior of short-fiber composites will be obtained.
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