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Abstract. . The present work investigates the efficiency of Multigrid Method when applied to solve
two-dimensional laminar natural convection flows inside a square domain filled with porous
material. Numerical analysis is based on the finite volume discretization scheme applied to
structure orthogonal regular meshes. Performance of the correction storage (CS Multigrid
Algorithm is compared for Rayleigh number, Ra=10°. Up to Four grids were used for both V- and
W-cycles. Smultaneous and Uncoupled temperature-velocity solutions were also applied.
Advantages in using more than one grid are discussed. Results further indicate an increase in
computational effort for higher Ra and an optimal number of relaxation sweeps for both V- and W-
cycles.
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1. INTRODUCTION

The analysis of buoyancy-driven flow in an enclosed cavity provides a useful comparison
problem for evaluating the robustness and performance of numerical methods dealing with viscous
flow calculations. The importance of the enclosure natural-convection phenomena can best be
appreciated by noting severa application areas. The design of furnaces, in the operation of solar
collectors, which contribute to energy losses minimization to increase collector efficiency, nuclear
reactor insulation, ventilation rooms and crystal growth in liquids are some examples of
applications.

Natural convection occurs in enclosures as a result of gradients in density, which are in turn
due to variations in temperature or mass concentration. Natural convection in a infinite horizontal
layers of fluid heated from below has received extensive attention since beginning of 20" century,
when Bérnard, 1901 observed hexagona roll cells upon the onset of convection in molten
spermaceti with afree upper surface. The work of Rayleigh, 1926 was the first to compute a critical
value, Ra., for the onset of convection. The accepted theoretical value of this dimensionless group
is 1708 for rigid upper and lower surfaces.

The study of natural convection in enclosures still attracts the attention of researchers and a
significant number of experimental and theoretical works have been carried out mainly from the
80's.



During the conference on Numerical Methods in Thermal Problems, which took place in
Swansea, Jones, 1979 proposed that buoyancy-driven flow in a square cavity would be a suitable
vehicle for testing and validating computer codes. Following discussions at Swansea, were invited
contributions for the solution of the problem. A total of 37 contributions from 30 contributors or
groups of contributors in nine countries were received. The summarization and discussion of the
main contributions yielded the benchmark of de Vahl Davis, 1983, which is one of the most
important reference worksin this area.

The thermal convection in porous media has been studied extensively in recent years.
Underground spread of pollutants, grain storage, food processing are just some applications of this
theme. The monographs of Nield and Bejan, 1992 and Ingham and Pop, 1998 fully document
natural convection in porous media.

The case of free convection in arectangular cavity heated on a side and cooled at the opposing
side is an important problem in thermal convection in porous media. Walker and Homsy,1978,
Began, 1979, Prasad and Kulacki, 1984, Beckermann et al, 1986, Gross et a, 1986, Manole and
Lage, 1992 have contributed with some important results to this problem.

The recent work of Baytas and Pop, 1999, concerned a numerical study of the steady free
convection flow in rectangular and obligque cavities filled with homogeneous porous media using a
nonlinear axis transformation. The Darcy momentum and energy equations are solved numerically
using the (ADI) method.

Further, most iterative numerical solutions, convergence rates of single-grid calculations are
greatest in the beginning of the process, slowing down as the iterative process goes on. Effects like
those get more pronounced as the grid becomes finer. Large grid sizes, however, are often needed
when resolving small recirculating regions or detecting high heat transfer spots. The reason for this
hard-to-converge behavior is that iterative methods can efficiently smooth out only those Fourier
error components of wavelengths smaller than or comparable to the grid size. In contrast, Multigrid
methods aim to cover a broader range of wavelengths through relaxation on more than one grid.

The number of iterations and convergence criterion in each step along consecutive grid levels
visited by the algorithm determines the cycling strategy, usually a V- or W-cycle. Within each
cycle, the intermediate solution is relaxed before (pre-) and after (post-smoothing) the
transportation of values to coarser (restriction) or to finer (prolongation) grids (Brandt, 1977,
Stliben & Trottenberg, 1982, Hackbusch, 1985).

Accordingly, Multigrid methods can be roughly classified into two major categories. In the CS
formulation algebraic equations are solved for the corrections of the variables whereas, in the full
approximation storage (FAS) scheme, the variables themselves are handled in all grid levels. It has
been pointed out in the literature that the application of the CS formulation is recommended for the
solution of linear problems being the FAS formulation more suitable to non-linear cases (Brandt,
1977, Stiben & Trottenberg, 1982, Hackbusch, 1985). An exception to this rule seems to be the
work of Jiang, et al, (1991), who reported predictions for the Navier-Stokes equations successfully
applying the Multigrid CS formulation. In the literature, however, not too many attempts in solving
non-linear problems with Multigrid linear operators are found.

Acknowledging the advantages of using multiple grids, Rabi and de Lemos (1998a) presented
numerical computations applying this technique to recirculating flows in several geometries of
engineering interest. There, the correction storage (CS) formulation was applied to non-linear
problems. Later, Rabi and de Lemos (1998b) analyzed the effect of Peclet number and the use of
different solution cycles when solving the temperature field within flows with a given velocity
distribution. Optimal multigrid studies have also been conducted (Rabi and de Lemos, 2001, 2003).
In all those cases, the advantages in using more than one grid in iterative solutions were confirmed.
Furthermore, de Lemos & Mesquita, 1999, introduced the solution of the energy equation in their
Multigrid agorithm. Temperature distribution was calculated solving the whole equation set
together with the flow field as well as uncoupling the momentum and energy equations. A study on
optimal relaxation parameters was there reported.



More recently Mesguita & De Lemos, 2000a-b) analyzed the influence of the increase of points
of the mesh and optimal values of the parameters of the Multigrid cycle for different geometries.

The present contribution extends the early work on CS Multigrid methods to the solution of
temperature field in porous media. More specifically, steady-state laminar flows in a square cavity
totally filled with a porous material are calculated with up to 4 grids. A schematic of such
configurations is show in Figure 1, refers to the two-dimensional flow of a Boussinesq fluid of
Prandtl number 1 in a square cavity of H=1 m completely filled with porous medium. The cavity,
assumed to be of infinite depth along the z-axis, is isothermally heated from the left and cooled
from the opposing side. The other two walls are insulated. The no-dlip condition is applied on the
velocity at all walls and the resulting flow is treated as steady. The controlling parameter is the
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Figure 1 — The cavity under consideration

2. Mathematical For mulation and Numerics

The equations used are demonstrated in the work of Pedras and de Lemos, 2001, Pedras and de
Lemos (2000) and de Lemos and Braga (2003). This work extends the development therein in order
to include the buoyancy term in the governing equations.

Accordingly, the Boussinesq hypothesis can be written as,

r =l b T )J. Substituting this term in the momentum equation, the buoyancy term reduces
to,
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DV, 1

a gb(T-T )R = —
refg ( ref) DV DVf

6 ref gb (T - Tref )dV
> )

Therefore, the buoyancy term becomes,
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Therefore, for steady laminar flow and makingIrref =f

continuity, momentum and temperature take the form:

, the macroscopic equations for
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where Yois the Darcy velocity, r is the density of the fluid, p is the total pressure and mis the
dynamic viscosity. The gravity acceleration vector is defined by g and bs is the macroscopic

thermal expansion coefficient. & i and T« are the macroscopic and the reference temperatures
respectively. The thermal conductivity for the fluid and solid are labeled ki and ks respectively.
Finally, ¢, is the specific heat and f is the porosity, K is the permeability and cr is the Forchheimer
coefficient.

2.1. Numerical Modd

The solution domain is divide into a number of rectangular control volumes (CV), resultingin a
structure orthogonal non-uniform mesh. Grid points are located according to a cell-centered scheme
and velocities are store in a collocated arrangement (Patankar, 1980 ). A typical CV with its main
dimensions and internodal distances is sketched in Figure 2 Writing equations (2)-(4) in terms of a
genera form |
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where j standsfor U, V, and P. Integrating the equation 7 over the control volume of Figure2,
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Integration of the three terms in 8, namely: convection, diffusion and source, lead to a set of

algebraic equations. These practices are described elsewhere (e.g. Patankar, 1980 ) and for this

reason they not repeated here. In summary, convective terms are discretized using the upwind
differencing scheme (UDYS), diffusive fluxes make use of the central differencing scheme.
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Figure 2 - Control Volume for discretization

Substitution of al approximate expressions for interface values and gradients into the
integrated transport equation 8, gives the final discretization equation for grid node P

anP:an E+a\NjW+aNjN+a‘Sj S+b (9)



with the east face coefficient, for example, being define as

a. = max[- C,,0]+ D, (10)

In (10) D, =md,/Dx.,and C, =(ru).d, are the diffusive and convective fluxes at the CV east face,
respectively, and

2.2. Multigrid Technique

Assembling equation (9) for each control volume of Figure 2 in the domain of Figure 1 defines
alinear algebraic equation system of the form,

AT =Db, (11)

where Ag is the matrix of coefficients, Ty is the vector of unknowns and by is the vector
accommodating source and extra terms. Subscript “k” refers to the grid level, with k=1
corresponding to the coarsest grid and k=M to the finest mesh.
defined as

As mentioned, multigrid is here implemented in a correction storage formulation (CS) in which
one seeks coarse grid approximations for the correction defined as d, =T,- T, where T,” is an
intermediate value resulting from a small number of iterations applied to (11). For alinear problem,
one shows that dx is the solution of (Brandt, 1977, Stiiben & Trottenberg, 1982, Hackbusch, 1985),

Ad, =r, (12)

wheretheresidue is defined as
r,=b, - AT/ 13)

Eg. (10) can be approximated by means of a coarse-grid equation,

A, d . =r, (14)
with the restriction operator 1! used to obtain

M, =15, (15)

The residue restriction is accomplished by summing up the residues corresponding to the four
fine grid control volumes that compose the coarse grid cell. Thus, equation (15) can be rewritten as,
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Diffusive and convection coefficients in matrix Ax need also to be evaluated when changing grid
level. Diffusive terms are recalculated since they depend upon neighbor grid node distances
whereas coarse grid mass fluxes (convective terms) are smply added up at control volume faces.
This operation , is commonly found in the literature (Peric, et a, 1989, Hortmann et al, 1990).

Once the coarse grid approximation for the correction d,, has been caculated, the

prolongation operator 1, takesit back to the fine grid as

d, = 1¢.dy n



In order to update the intermediate value
T, =T, +d, (18)

Figure 3 illustrates a 4-grid iteration scheme for both the V- and W-cycles where the different
operations are: s=smoothing, r=restriction, cg=coarsest grid iteration and p=prolongation. Also,
the number of domain sweeps before and after grid change is denoted by n”© and n™, respectively.
In addition, at the coarsest k level (k=1), the grid is swept n® times by the error smoothing operator.
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Figure (3) Sequence of operationsin a4-grid iteration: (a) V-cycle; (b) W-cycle.

3. RESULTS AND DISCUSSION

The computer code developed was run on aIBM PC machine with a double Pentium 1GHz
processor. Grid independence studies were conducted such that the solutions presented herein are
essentialy grid independent. For both V- and W-Cycles, pre- and post-smoothing iterations were
accomplished via the Gauss-Seidel algorithm while, at the coarsest-grid, the TDMA method has
been applied (Patankar, 1980).Also, cases in Figurel were run with the finest grid having size
80x80.

Figures 4 shows isotherms for a flow in a square cavity filled with porous material for Rayleigh
numbers ranging from 10° to 10°. The cavity is heated of the left side and cooled from the opposing
side.

At Ra=10°, Fig. (5), the streamlines are a single flattened vortex, with its center in the center of the
cavity. In contrast with the clear cavity case the porous matrix make the flow be more intense near
the heated and cooled walls and damped in the center. Corresponding isotherms, Fig. (4a), indicate
that the most of the heat transfer is due to convection mechanism.

The vortex is generated due the horizontal temperature gradient across the section. This gradient,
dT/dy, is negative everywhere, giving a clockwise vertical rotation.

For higher values of Ra, not shown here, the flow tends to be stratified as in the clear medium, but
in a lesser value of Ra. The Prandtl number and the conductivity ratio between the solid and fluid
phases are assumed to be a unit.

The residue is normalized and calculated according to

RT = /3 2
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Where ij identifies a given control volume on the finest grid and nb refers to its neighboring control
volumes. Figures 6 shows residue history for the square cavity filled with porous material case
following the two cycles pictured on Figure 3, namely the V- and W-cycles. The solution follows a
simultaneous approach in the sense that the temperature is always relaxed after the flow field,
within the multigrid cycle. It isinteresting to note that for the V—cycle (Figure 6), the computational
effort related to values among too many grids became relevant.

a) b)
Figure 4 - Isothermswith D, =1 mmand f =0.8 for: @) Ra=10°, b) Ra=10".

a)
Figure 5 - Streamlines for Ra=10% with Dp=1mm and f =0.8, Present Results and Baytas and Pop, 1999, respectively.
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Figure 6 — Residue history of Temperature for Square filled with porous Material Ra= 10
V- Cycle.
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