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Abstract. Thermal dispersion in porous media is an import phenomenon in combustion and in
steam injection systems for Enhanced Oil Recovery methods. Accordingly, the study of flow through
porous media has gained much attention lately and advances in proper modeling of such flows,
which includes non-linear effects, have been published. In this work, the results of thermal
dispersion tensors calculations for two porous media with distinct morphologies, one formed by a
gpatially periodic array of longitudinally-displaced elliptic rods and the other with transversally-
displaced liptic rods, are presented and discussed. For the sake of simplicity, just one unit-cell,
together with periodic boundary conditions for mass and momentum equations, and Neumann and
Dirichlet conditions for the temperature equation, was used to represent such media. The numerical
methodology herein employed is based on the control-volume approach. Turbulence is assumed to
exist within the fluid phase and high and low Reynolds k-e models are used to model such non-
linear effects. The flow equations at the pore-scale were numerically solved using the SMPLE
method on a non-orthogonal boundary-fitted coordinate system.
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1. Introduction

Duetoits great application in the industry and science, the study of the flow in porous media has
received great attention lately and advances in proper modeling of such flows, including non-linear
effects, have been published (Pedras and de Lemos, 2001a; de Lemos and Pedras, 2001; Rocamora
and de Lemos, 2000; Pedras and de Lemos, 2001b; Pedras and de Lemos, 2001c; Pedras et al.,
2003a; Pedras et al., 2003b; Pedras and de Lemos, 2003). Engineering systems based on fluidized
bed combustion, enhanced oil reservoir recovery, combustion in an inert porous matrix,
underground spreading of chemical waste and chemical catalytic reactors are just afew examples of
such applications. In some of these applications the thermal dispersion in porous media is an



important phenomenon, in which one has used (Hsu and Cheng, 1990; Kaviany, 1995; Ochoa-Tapia
and Whitaker, 1997; Moyne, 1997; Quintard et al., 1997; Kuwahara and Nakayama, 1998;
Nakayama and Kuwahara, 1999) the notion of a Representative Elementary Volume (REV, Fig. 1)
for the mathematical treatment of governing equations. These models, based on the macroscopic
point of view, lose details on the flow pattern inside the REV and, together with ad-hoc information,
provide global flow properties such as average velocities and temperatures.

Such flows can also be analyzed by modeling the topology of the porous medium and resolving
the flow equations at the pore-scale. This treatment reveals the flow structure at the pore-scale level
and was used by (Quintard et al., 1997; Kuwahara and Nakayama, 1998; Nakayama and Kuwahara,
1999; Rocamora and de Lemos, 2002) to calculate the thermal dispersion tensors with periodic
boundary condition for the mass, momentum and the energy equations.

The aim of this work is to present the thermal dispersion calculations results obtained for two
porous media, one formed by a spatially periodic array of longitudinally-displaced elliptic rods and
the other with transversally-displaced élliptic rods. The motivation of the use of these two types of
porous media is that they spanning from a low-drag porous media, driven principally by viscous
drag (longitudina ellipses), to high-drag porous media, driven principally by form drag (transverse
ellipses), Pedras and de L emos (2003).

For the sake of simplicity, just one unit-cell, together with periodic boundary conditions for
mass and momentum equations, and Neumann and Dirichlet conditions for the temperature
equation, was used to represent such media. Turbulence is assumed to exist within the fluid phase
and high and low Reynolds k-e models are used to model such non-linear effects.

The flow equations at the pore-scale were numerically solved using the SIMPLE method on a
non-orthogonal boundary-fitted coordinate system. The integrated results were compared to the
existing data presented in the literature.

REV

Figure 1. Representative elementary volume (REV).
2. Microscopic Equations

The following microscopic transport equations describe the flow field and the heat transfer
process within a porous medium, where barred quantities represent time-averaged components and
primes indicate turbulent fluctuations:

Fluid Phase (incompressible fluid):
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where u is the microscopic velocity, r; and r the fluid and solid densities, p the
thermodynamic pressure, m and m the dynamic and turbulent viscosities, T, and T, the fluid and
solid temperatures, ¢, and c, the fluid and solid specific heat at constant pressure, k; and k the

fluid and solid thermal conductivities, k the turbulent kinetic energy and e the dissipation of k. In
the equations s, , s, and s, are effective Prandtl numbers, C;, C, and C, are dimensionless
constantsand f, and f,, damping functions.

In this work the use of the low Re k-e model is justified by the fact that the turbulent flow in
porous media occurs for Reynolds numbers (based on the pore) relatively low. To account for the

low Reynolds effects, the following damping functions and model constants were adopted (Abe et
al., 1992):
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While for the high Re k-e model it was used the standard constants of Launder and Spalding (1974).
For the unit-cell represented in Fig. (2) and with the assumption of macroscopic fully developed
uni-dimensional flow, the boundary conditions utilized are given as follow:

atthewals, T=0: T, =T.; n, Xk NT,) =- n, Xk.NT): k=0 and e = ngnk (13)



on x=0 and x=H periodic boundaries (momentum equation),
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where n; and ng are the coordinates normal to the interface (Fig. 1) and u and v the components
of u.
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Figure2. Unit-cell: a) longitudinal-eliptic rods (a/b=5/3) and b) transverse-elliptic rods
(a/b=3/5).

The temperature boundary conditions will be presented in the next section.

3. Thermal Dispersion Modeling

Using the double decomposition concept (Pedras and de Lemos, 2001a) of agenera quantity j |,
inthe b phase,
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and following the procedure of Rocamora and de Lemos (2000) and Rocamora and de Lemos

(2002), the volume averaging of the energy equations (3) and (9) over the REV, assuming local
thermal equilibrium between the solid and fluid phases, namely T, " = &, = & A, renders:
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where § , fi is the volume average of j ,, § , i theintrinsic average of j , inthe b phase, j §
the time fluctuation of j ,, j, the space deviation of j ,, f the volume fraction of fluid and

f,=1-f; the volume fraction of solid. The effective conductivity, K 4 , the tortuosity tensor,
K. » and the dispersion tensor, K 4, are defined as:
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Pedras et al. (2003b) and Pedras et al. (2004) utilized Eqg. (20) for calculating the diagonal
components of K, in an infinite porous medium formed by a spatially periodic array of
longitudinally-displaced dliptic rods (Fig. 2a) and by a spatially periodic array of transversally-
displaced dlliptic rods (Fig. 2b), respectively. In both cases the authors utilized two types of
boundary conditions for the temperature, the Dirichlet boundary conditions:

Teeo =T - DA A, and -Ty:O :-ITy:H (21)
for the longitudinal thermal dispersion, (K. )., caculation, and,

Teeo =Ty and T,o =T, - DA, (22)

for the transverse thermal dispersion, (Kys),,, calculation. And the Neumann boundary conditions,
Fig (3a) for the (Ks)« calculation and Fig (3b) for the (K;),, calculation.
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Figure 3. Neumann Boundary conditions for the temperature k; ﬂT =K, ﬂT

v =Ty

4. Numerical M odedl

The governing equations were discretized using the finite volume procedure, Patankar (1980).
The SIMPLE algorithm for the pressure-velocity coupling was adopted to correct both the pressure
and the velocity fields. The process starts with the solution of the two momentum equations. Then
the velocity field is adjusted in order to satisfy the continuity principle. This adjustment is obtained
by solving the pressure correction equation. After that, the turbulence model equations and the
energy equation are relaxed to update the k, e and temperature fields. Details on the numerical
discretization and procedure can be found in Pedras and de Lemos (2001b), Pedras et al. (2003b)
and Pedras et al. (2004).



5. Results and Discussion

A total of twenty seven runs, for each case, were carried out with a fluid phase Prandtl number
of 0.72 and a thermal conductivity ratio, ks/k; , between the solid and fluid phase of 2. Values for

(Kgs)x and (Kgs),, Were obtained varying the Pe, =[&ifiH /a; from 10° to 4.10° and the

f,=1- abp/H?, from 0.60 to 0.90.

The longitudinal components of the thermal dispersion tensor for the two porous media are
shown in Fig. (4) as a function of Peclet number and for different porosities. In the Fig. (44) the
therma dispersion calculation was carried out with Neumann boundary conditions for the
temperature (Fig. 3a), while Fig (4b) was carried out with Dirichlet boundary conditions (Eq. 21).
For the longitudina ellipses its overal dependence on the Peclet number was

(Kgis)w/Ki =3.52" 10"*Pe,*®, including Neumann and Dirichlet boundary conditions. While for

the transverse ellipsesits overall dependence was (K, ) . /K¢ =4.74" 10°Pe,"*, showing, in both

cases, the usual behavior of (~Pe,") as expected. The power dependence on the Peclet number of
about 1.65 was lower than the square dependence of Taylor dispersion in atube. This behavior can
be ascribed to the turbulence, which contributes to the enhancement of the transverse dispersion.
The results of Quintard et al. (1997) show a dependence of about 1.3 for a staggered arrangement of
cylinders and spheres and 1.7 for in-line arrangement. Their work was restricted to Stokes' flow and
the value of 1.3 was ascribed to the enhancement of the transverse dispersion in the staggered
arrangement.

As previously mentioned, these distinct morphologies produce large different pressure drops
(Pedras and de Lemos, 2003), however, for the longitudinal component of the thermal dispersion
tensor this not occur, they have amost the same results. A possible explanation is that in both cases
mass flow rate imposed were the same (producing identical Peclet numbers), i.e., they have the
same thermal convection in the longitudinal direction.
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Figure4. Longitudinal thermal dispersion comparing: a) using Neumann Boundary conditions (Fig.
3a) b) using Dirichlet Boundary conditions (Eqg. 21).

The transverse components of the thermal dispersion tensor for the two porous media are shown
in Fig. (5) as a function of Peclet number and for different porosities. In the Fig. (5a) the thermal
dispersion calculation was carried out with Neumann boundary conditions for the temperature (Fig.
3b), while Fig (5b) was carried out with Dirichlet boundary conditions (Eq. 22). For the longitudinal

ellipses its overall dependence on the Peclet number was (Kgs,),, /K; =2.29" 10*Pe,"*, including
Neumann and Dirichlet boundary conditions. While for the transverse ellipses its overdl
dependence was (Kg,),, /K =1.43" 10 °Pe,"™. As expected, in both cases their transverse
components are much smaller than their longitudinal component for large Peclet numbers.
Differently from the longitudina components, the values of the transverse components differ
greatly between the longitudinal ellipses and transverse elipses. This can be explained by the fact
that in the transverse direction the change in the morphology provides different convective heat

transfer between the north and south faces of the unit-cell. The transverse ellipses provided greater
convective heat transfer in the transverse direction than the longitudinal ellipses.
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Figure5. Transverse thermal dispersion comparing: a) using Neumann Boundary conditions (Fig.
3b) b) using Dirichlet Boundary conditions (Eq. 22).

6. Conclusions

Results of thermal dispersion components calculated for a periodic porous medium represented
by a unit-cell with Neumann and Dirichlet boundary conditions for the energy equation and periodic
boundary condition for mass and momentum equations were presented for two distinct porous
medium morphologies and compared among them. The longitudinal components of the thermal
dispersion show little variation with the morphology of the medium, while the transverse
components show great variation.
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