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Abstract. Thermal dispersion in porous media is an import phenomenon in combustion and in 
steam injection systems for Enhanced Oil Recovery methods. Accordingly, the study of flow through 
porous media has gained much attention lately and advances in proper modeling of such flows, 
which includes non-linear effects, have been published. In this work, the results of thermal 
dispersion tensors calculations for two porous media with distinct morphologies, one formed by a 
spatially periodic array of longitudinally-displaced elliptic rods and the other with transversally-
displaced elliptic rods, are presented and discussed. For the sake of simplicity, just one unit-cell, 
together with periodic boundary conditions for mass and momentum equations, and Neumann and 
Dirichlet conditions for the temperature equation, was used to represent such media. The numerical 
methodology herein employed is based on the control-volume approach. Turbulence is assumed to 
exist within the fluid phase and high and low Reynolds k-ε models are used to model such non-
linear effects. The flow equations at the pore-scale were numerically solved using the SIMPLE 
method on a non-orthogonal boundary-fitted coordinate system. 
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1. Introduction 

 Due to its great application in the industry and science, the study of the flow in porous media has 
received great attention lately and advances in proper modeling of such flows, including non-linear 
effects, have been published (Pedras and de Lemos, 2001a; de Lemos and Pedras, 2001; Rocamora 
and de Lemos, 2000; Pedras and de Lemos, 2001b; Pedras and de Lemos, 2001c; Pedras et al., 
2003a; Pedras et al., 2003b; Pedras and de Lemos, 2003). Engineering systems based on fluidized 
bed combustion, enhanced oil reservoir recovery, combustion in an inert porous matrix, 
underground spreading of chemical waste and chemical catalytic reactors are just a few examples of 
such applications. In some of these applications the thermal dispersion in porous media is an 



 
important phenomenon, in which one has used (Hsu and Cheng, 1990; Kaviany, 1995; Ochoa-Tapia 
and Whitaker, 1997; Moyne, 1997; Quintard et al., 1997; Kuwahara and Nakayama, 1998; 
Nakayama and Kuwahara, 1999) the notion of a Representative Elementary Volume (REV, Fig. 1) 
for the mathematical treatment of governing equations. These models, based on the macroscopic 
point of view, lose details on the flow pattern inside the REV and, together with ad-hoc information, 
provide global flow properties such as average velocities and temperatures. 
 Such flows can also be analyzed by modeling the topology of the porous medium and resolving 
the flow equations at the pore-scale. This treatment reveals the flow structure at the pore-scale level 
and was used by (Quintard et al., 1997; Kuwahara and Nakayama, 1998; Nakayama and Kuwahara, 
1999; Rocamora and de Lemos, 2002) to calculate the thermal dispersion tensors with periodic 
boundary condition for the mass, momentum and the energy equations. 
 The aim of this work is to present the thermal dispersion calculations results obtained for two 
porous media, one formed by a spatially periodic array of longitudinally-displaced elliptic rods and 
the other with transversally-displaced elliptic rods. The motivation of the use of these two types of 
porous media is that they spanning from a low-drag porous media, driven principally by viscous 
drag (longitudinal ellipses), to high-drag porous media, driven principally by form drag (transverse 
ellipses), Pedras and de Lemos (2003). 
 For the sake of simplicity, just one unit-cell, together with periodic boundary conditions for 
mass and momentum equations, and Neumann and Dirichlet conditions for the temperature 
equation, was used to represent such media. Turbulence is assumed to exist within the fluid phase 
and high and low Reynolds k-ε models are used to model such non-linear effects. 
 The flow equations at the pore-scale were numerically solved using the SIMPLE method on a 
non-orthogonal boundary-fitted coordinate system. The integrated results were compared to the 
existing data presented in the literature. 
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Figure 1. Representative elementary volume (REV). 

2. Microscopic Equations 

 The following microscopic transport equations describe the flow field and the heat transfer 
process within a porous medium, where barred quantities represent time-averaged components and 
primes indicate turbulent fluctuations: 
 
Fluid Phase (incompressible fluid): 
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Solid Phase: 
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where u  is the microscopic velocity, fρ  and sρ  the fluid and solid densities, p  the 
thermodynamic pressure, µ  and tµ  the dynamic and turbulent viscosities, fT  and sT  the fluid and 
solid temperatures, pfc  and psc  the fluid and solid specific heat at constant pressure, fk  and sk  the 
fluid and solid thermal conductivities, k  the turbulent kinetic energy and ε  the dissipation of k . In 
the equations kσ , εσ  and tσ  are effective Prandtl numbers, 1C , 2C  and µC  are dimensionless 
constants and 2f  and µf  damping functions. 
 In this work the use of the low Re k-ε model is justified by the fact that the turbulent flow in 
porous media occurs for Reynolds numbers (based on the pore) relatively low. To account for the 
low Reynolds effects, the following damping functions and model constants were adopted (Abe et 
al., 1992): 
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 09.0=µC , 5.11 =C , 9.12 =C , 4.1=kσ , 3.1=εσ . (12) 

While for the high Re k-ε model it was used the standard constants of Launder and Spalding (1974). 
 For the unit-cell represented in Fig. (2) and with the assumption of macroscopic fully developed 
uni-dimensional flow, the boundary conditions utilized are given as follow: 
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on 0=x  and Hx =  periodic boundaries (momentum equation), 
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on 0=y  and Hy = , 
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where fn  and sn  are the coordinates normal to the interface (Fig. 1) and u  and v  the components 
of u . 

x 

y 

H 

H 

solid 

fluid 

a) 

a 

b 

  H 

solid 

fluid 

b) 

a 

b 

 
Figure 2. Unit-cell: a) longitudinal-elliptic rods ( 35=ba ) and b) transverse-elliptic rods 

( 53=ba ). 
 
 The temperature boundary conditions will be presented in the next section. 

3. Thermal Dispersion Modeling 

 Using the double decomposition concept (Pedras and de Lemos, 2001a) of a general quantity βϕ  
in the β  phase, 
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and following the procedure of Rocamora and de Lemos (2000) and Rocamora and de Lemos 
(2002), the volume averaging of the energy equations (3) and (9) over the REV, assuming local 
thermal equilibrium between the solid and fluid phases, namely 〉〈=〉〈=〉〈 TTT s

s
f

f , renders: 
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where 〉〈 βϕ  is the volume average of βϕ , β
βϕ 〉〈  the intrinsic average of βϕ  in the β  phase, βϕ ′  

the time fluctuation of βϕ , βϕi  the space deviation of βϕ , fφ  the volume fraction of fluid and 

sφ fφ−= 1  the volume fraction of solid. The effective conductivity, effK , the tortuosity tensor, 

torK , and the dispersion tensor, disK , are defined as: 
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 Pedras et al. (2003b) and Pedras et al. (2004) utilized Eq. (20) for calculating the diagonal 
components of disK  in an infinite porous medium formed by a spatially periodic array of 
longitudinally-displaced elliptic rods (Fig. 2a) and by a spatially periodic array of transversally-
displaced elliptic rods (Fig. 2b), respectively. In both cases the authors utilized two types of 
boundary conditions for the temperature, the Dirichlet boundary conditions: 

 xHxx TTT 〉〈∆−= ==0  and Hyy TT == =0  (21) 

for the longitudinal thermal dispersion, xxdisK )( , calculation, and, 

 Hxx TT == =0  and yHyy TTT 〉〈∆−= ==0  (22) 

for the transverse thermal dispersion, yydisK )( , calculation. And the Neumann boundary conditions, 
Fig (3a) for the xxdisK )(  calculation and Fig (3b) for the yydisK )(  calculation. 
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Figure 3.  Neumann Boundary conditions for the temperature q
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4. Numerical Model 

 The governing equations were discretized using the finite volume procedure, Patankar (1980). 
The SIMPLE algorithm for the pressure-velocity coupling was adopted to correct both the pressure 
and the velocity fields. The process starts with the solution of the two momentum equations. Then 
the velocity field is adjusted in order to satisfy the continuity principle. This adjustment is obtained 
by solving the pressure correction equation. After that, the turbulence model equations and the 
energy equation are relaxed to update the k, ε and temperature fields. Details on the numerical 
discretization and procedure can be found in Pedras and de Lemos (2001b), Pedras et al. (2003b) 
and Pedras et al. (2004). 



 
5. Results and Discussion 

 A total of twenty seven runs, for each case, were carried out with a fluid phase Prandtl number 
of 0.72 and a thermal conductivity ratio, fs kk , between the solid and fluid phase of 2. Values for 

xxdisK )(  and yydisK )(  were obtained varying the HPe fH α/|| 〉〈= u  from 010  to 310.4  and the 

fφ 21 Habπ−= , from 0.60 to 0.90. 
 The longitudinal components of the thermal dispersion tensor for the two porous media are 
shown in Fig. (4) as a function of Peclet number and for different porosities. In the Fig. (4a) the 
thermal dispersion calculation was carried out with Neumann boundary conditions for the 
temperature (Fig. 3a), while Fig (4b) was carried out with Dirichlet boundary conditions (Eq. 21). 
For the longitudinal ellipses its overall dependence on the Peclet number was 

fxxdis kK )( 65.12 Pe1052.3 H
−×= , including Neumann and Dirichlet boundary conditions. While for 

the transverse ellipses its overall dependence was fxxdis kK )( 65.12 Pe1074.4 H
−×= , showing, in both 

cases, the usual behavior of ( n
HPe~ ) as expected. The power dependence on the Peclet number of 

about 1.65 was lower than the square dependence of Taylor dispersion in a tube. This behavior can 
be ascribed to the turbulence, which contributes to the enhancement of the transverse dispersion. 
The results of Quintard et al. (1997) show a dependence of about 1.3 for a staggered arrangement of 
cylinders and spheres and 1.7 for in-line arrangement. Their work was restricted to Stokes’ flow and 
the value of 1.3 was ascribed to the enhancement of the transverse dispersion in the staggered 
arrangement. 
 As previously mentioned, these distinct morphologies produce large different pressure drops 
(Pedras and de Lemos, 2003), however, for the longitudinal component of the thermal dispersion 
tensor this not occur, they have almost the same results. A possible explanation is that in both cases 
mass flow rate imposed were the same (producing identical Peclet numbers), i.e., they have the 
same thermal convection in the longitudinal direction. 
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Figure 4. Longitudinal thermal dispersion comparing: a) using Neumann Boundary conditions (Fig. 

3a) b) using Dirichlet Boundary conditions (Eq. 21). 
 
 The transverse components of the thermal dispersion tensor for the two porous media are shown 
in Fig. (5) as a function of Peclet number and for different porosities. In the Fig. (5a) the thermal 
dispersion calculation was carried out with Neumann boundary conditions for the temperature (Fig. 
3b), while Fig (5b) was carried out with Dirichlet boundary conditions (Eq. 22). For the longitudinal 
ellipses its overall dependence on the Peclet number was fyydis kK )( 88.04 Pe1029.2 H

−×= , including 
Neumann and Dirichlet boundary conditions. While for the transverse ellipses its overall 
dependence was fyydis kK )( 05.13 Pe1043.1 H

−×= . As expected, in both cases their transverse 
components are much smaller than their longitudinal component for large Peclet numbers. 
 Differently from the longitudinal components, the values of the transverse components differ 
greatly between the longitudinal ellipses and transverse ellipses. This can be explained by the fact 
that in the transverse direction the change in the morphology provides different convective heat 
transfer between the north and south faces of the unit-cell. The transverse ellipses provided greater 
convective heat transfer in the transverse direction than the longitudinal ellipses. 
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Figure 5. Transverse thermal dispersion comparing: a) using Neumann Boundary conditions (Fig. 

3b) b) using Dirichlet Boundary conditions (Eq. 22). 
 

6. Conclusions 

 Results of thermal dispersion components calculated for a periodic porous medium represented 
by a unit-cell with Neumann and Dirichlet boundary conditions for the energy equation and periodic 
boundary condition for mass and momentum equations were presented for two distinct porous 
medium morphologies and compared among them. The longitudinal components of the thermal 
dispersion show little variation with the morphology of the medium, while the transverse 
components show great variation. 
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