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Abstract. This paper presents a study on the interfacial convective heat transfer coefficient in two-
energy equation model for convection in porous media. Such information is needed for turbulent
heat transport modeling in porous media when local thermal non-equilibrium is considered.
Recently, the literature documents proposals for macroscopic energy equation modeling for
homogeneous, rigid and saturated porous media, considering the local thermal equilibrium
hypothesis and laminar flow. This work intends to obtain functional relationships for the interfacial
convective heat transfer coefficient closely packed beds. A periodical fully developed all is used to
represent the entire domain. The macroscopic time-averaged equations for mass, momentum and
energy are obtained based on the Double Decomposition concept (spatial deviations and temporal
fluctuations).The numerical technique employed for discretizing the governing equations is the
control volume method with a boundary-fitted non-orthogonal coordinate system. The SMPLE
algorithmis used to handle the pressure-velocity coupling.

Keywords: Porous Media, Heat Transfer Coefficient, Thermal Non-Equilibrium

1. INTRODUCTION

In many industrial applications, turbulent flow through a packed bed represents an important
configuration for efficient heat and mass transfer. Common models for such systemsis the so-called
“local thermal equilibrium hypothesis” where both solid and fluid phase temperatures are assumed
to be represented by a unique value. However, in many instances it isimportant to take into account
distinct temperatures for the porous materia and for the working fluid. In transient heat conduction
processes within porous media, for example, the assumption of local thermal equilibrium must be
discarded, according to references Kaviany (1995) and Hsu (1999). Also, when there is significant
heat generation in any one of the two phases, namely solid or fluid, average temperatures are no
longer identical, so that the assumption of local thermal equilibrium must be reevaluated. According
by Kuznetsov (1998) presented some cases where the temperature difference between the fluid and
solid phases was found being small compared to the difference between the inlet fluid temperature
and the initial temperature of the bed. This suggested that equations governing thermal non-
equilibrium forced flow through a packed bed contain a small parameter. The two- energy model
was used for these cases where thermal equilibrium was assumed. Using the two energy equation
model requires the knowledge of an extra parameter to be determined experimentally, namely the
heat transfer coefficient between the fluid and solid phases.

Quintard, M., (1998) argues that assessing the validity of the assumption of local thermal
equilibrium is not a simple task that since the temperature difference between the two phases cannot
easily be estimated, he suggests that use of a two-energy equation model is a possible solution to
the problem.



Kuwahara et. a (2001) proposes a numerical procedure to determine the macroscopic transport
coefficients from a theoretical basis without any empiricism. They used only a single structural unit
to simulate a porous medium and determine the interfacial heat transfer coefficient for the
asymptotic case in which the conductivity of the solid phase is infinite. Nakayama et. a (2001)
extend the closure model of Hsu (1999), so as to treat not only conduction but also convection in
porous media. Having established the macroscopic energy equations for both phases, useful exact
solutions were obtained for two fundamental heat transfer processes associated with porous media,
namely, steady conduction in a porous slab with internal heat generation within the solid, and also,
thermally developing flow through a semi-infinite porous medium.

A new concept called double decomposition used to develop a macroscopic model for turbulent
momentum transport in porous media was introduced by references, Pedras and de Lemos (2000),
Pedras and de Lemos (20014), Pedras and de Lemos (2001b), Pedras and de Lemos (2001c), Pedras
and de Lemos (2003). This methodology, initially developed for the flow variables, has been
extended by reference de Lemos and Rocamora (2002), to heat transfer in porous media. A general
classification of all proposed models for turbulent flow and heat transfer in porous media has been
recently published in de Lemos and Pedras (2001). Based on this same concept, Rocamora and de
Lemos (2000) have developed a macroscopic turbulent energy equation for a homogeneous, rigid
and saturated porous medium, considering local thermal equilibrium between the fluid and the solid
matrix.

This work proposes to obtain a numerical correlation of interfacial convective heat transfer
coefficient in two-energy equation model for convection in porous media, which is needed treat
turbulent heat transport modeling of incompressible flows in porous media considering local
thermal non-equilibrium.

2. MATHEMATICAL MODEL

2.1 Microscopic Transport Equations

The microscopic transport equations for the flow and energy for an incompressible fluid are
given by:

Continuity,
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The microscopic energy equations for the fluid and solid phases in a rigid homogeneous porous
medium can be stated as:
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where the subscripts f and s refer to fluid and solid phases, respectively. Here T is the temperature,
p is the pressure, u is the fluid instantaneous velocity, k is the thermal conductivity, r is the

density, c,, isthe specific heat and Sis the heat generation term. If there is no heat generation either
in the solid or in the fluid, one has further:
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2.2 Macroscopic Transport Equations

2.2.1 Time and Volume aver age oper ator s and the Double Decomposition concept

The macroscopic transport equations for a porous medium for the turbulent flow regime are
obtained through the application of the time and volume average operators, with the help of the
Local Volume Average Theorems (LVAT) [Pedras and de Lemos (2000), 2001a)]. These operators,
for ageneric quantity | , are defined as:
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1 t+Dt

r:EQ j dt (6)

Intrinsic Volume Average,

1
e 8\ (7)
DV, D\?

51l

Surface Volume Average (Fluid quantity),
1 4 DV, o
AdV=—— — =f i , 8
3 5 4 (8)

where DV is a Representative Elementary Volume (REV) over which the volume averages are
taken, DV, isthe fluid volume contained in the REV, f isthe porosity and Dt isthe time interval
over which the time average is taken.

Besides, the Double Decomposition concept, introduced by Pedras and de Lemos (2000),
2001a-b-c, 2003), is used here to obtain the macroscopic equations for turbulent flow in a rigid,
homogeneous and saturated porous medium. This concept establishes that, for a generic quantity |
one can write:
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Equation (9) envisage the two sequences of application of the average operators (time and
volume), where 'j ¢ represents the spatial deviation of the time fluctuation or the time fluctuation of
the spatial deviation of the quantity | .

2.2.2 Macr oscopic Flow Equations

For the flow equations, de Lemos and Pedras (2001) [(7), (8)] have shown that the macroscopic
equations can be expressed as:

Continuity,
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Momentum,
éfu, DDu erri cefrup|uyu
+K f&pf) +mN%u, - NX(rf atd +—
ﬁ X( )H N(f &pfi) D X( )- eK IR

(11)



where the last two terms in equation (11), represent the so-called Darcy and Forchheimer (1901)
contributions. The symbol K is the porous medium permeability, c. is the form drag coefficient

(Forchheimer coefficient), &4pil isthe intrinsic average pressure of the fluid, r isthe fluid density,
n represents the fluid viscosity and f is the porosity of the porous medium. The macroscopic

Reynolds stress - rf &1t ® isgiven as,
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is the macroscopic deformation tensor, &M = &16u®l /2 isthe intrinsic turbulent kinetic energy, k
and m, , isthe turbulent viscosity which is modeled in de Lemos and Pedras (2001) similarly to the

case of clear flow, in the form,
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2.3 Macroscopic Energy Equation

In this section, the macroscopic energy equation is obtained for a porous medium starting from
the microscopic energy equations for the fluid and solid phases. Then, time averaging is applied
followed by volume averaging (or vice versa).

Applying the time average and then the volume average, or vice-versa, to equations (3) and (4)
in a Representative Elementary Volume (REV), one obtains:
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where A; is the interface area between the fluid and solid phases within the REV, DV is the REV
volume, and n is the unit vector normal to the fluid-solid interface.

Equations (16) and (17) are the macroscopic energy equations for the fluid and the porous
matrix (solid) taking first the time average followed by the volume average operator.

Further, using the double decomposition concept, Rocamora and de Lemos (2000) have shown
that the fourth term on the left hand side of equation. (16) can be expressed as:
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So, in view of equation (18), equation (16) can be rewritten as:
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where to the underscored terms in equation (19) the following physical significance can be
attributed:

|  Thermal dispersion associated with deviations of microscopic time average velocity and
temperature. Note that this term is also present when analyzing laminar convective heat transfer in
porous media.

[l Turbulent heat flux due to the fluctuating components of macroscopic velocity and
a8
o

[l Turbulent thermal dispersion in a porous medium due to both time fluctuations and spatial
deviations of both microscopic velocity and temperature.
IV Tortuosity based on microscopic time average temperature.
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Two-energy equation model for conduction and convection in porous media considering a heat
transfer coefficient between the fluid and solid phases are given by, respectively,
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where, &,fi and 4T, fi denote theintrinsically averaged temperature of solid phase and fluid phase,
hy and a are the interfacial convective heat transfer coefficient and specific surface area,
respectively. Where, hy isgiven by,

1 - 1 —
= NT, dS — epk NT, dS
py O %N v?‘

A \ \
N TG A A @a-anA) )

The proposed model by Kuwahara et. a (2001) describing the microscopic structure of a porous
medium will be used to obtain the interfacial heat transfer coefficient for the macroscopic transport
model and a porous medium for the turbulent flow regime.

3. PERIODIC CELL AND BOUNDARY CONDITIONS

In order to evaluate the numerical tool to be used in the determination of the film coefficient
given by (22), a test case was run for obtaining the flow field in a periodic cell, which is here
assumed to represent the porous medium. Accordingly, consider now a macroscopically uniform
flow through an infinite number of square rods placed in a staggered fashion, as shown in Figure 1.
All square rods, which may be regarded as heat sinks (or sources), are isothermal and maintained at
a constant temperature T,,, which is lower (higher) than the bulk mean temperature of the flowing
fluid.

The representative elementary volumeDV , which should be smaller than a macroscopic
characteristic length, can be taken as 2H x H for this periodic structure. Due to the periodicity of the
model, only one structural unit as indicated by dashed lines in the Figure 1 may be taken as a
calculation domain.

The numerical method utilized to solve the microscopic flow and energy equations in the unit
cell isthe Finite Volume with Generalized Coordinates. The SIMPLE method of Patankar (1980) is
used for the velocity-pressure coupling. Convergence is measured in terms of the normalized for
each variable during iteration. The maximum residue allowed for the convergence check is set to
107, asthe variables are normalized by appropriate references.

AII computations have been carried out for a one structural unit 2H x H using a non-uniform
grid arrangement of size 90" 70 nodes, as shown in Figure 2, to ensure that the results were
independent of the grid system. The Reynolds number was varied from 4x10° to 4x10? and the
porosity f was equal to 0.65.
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Figure 1. Physical model and its coordinate system.



Figure 2. Non uniform computational grid used for running laminar calculations.

At the periodically fully developed stage, the velocity must be identical to that at the inlet,
whereas the temperature profile at the exit must be similar to that at the inlet. The situation is
analogous to the case of forced convection in a channel with isothermal walls. Thus, the boundary,
compatibility and periodic constraints are given by:

On the solid walls,

u=0, T=T, (23)
On the periodic boundaries:
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Tg(x) is the bulk mean temperature of the fluid. Computations can be made using the equations
based on the Darcy velocity, the length of structural unit H and the temperature difference (Tg(0) —
Tw) as references scales. For carrying out computations for a parametric study, it may be convenient

to use the Reynolds number based on D as Re, =&ifD/n and f =1- (D/H)?.

4. PRELIMINARY LAMINAR RESULTSAND DISCUSSION

The preliminary results were velocity and temperature fields obtained for different Reynolds
numbers, as shown in Figure 3 and Figure 4, respectively. When the Reynolds number is low (Rep
= 10); Figure 3 (a), the velocity field at entrance and exit of the periodic cell appears to be very



much similar to what we observe in a parallel plate channel. As increases Re (Figure 3 (b)),
recirculation bubbles appear behind the rods.

Figure 3. Velocity vectorsfor Pr = 1: a) Rep = 10; b) Rep = 100

A numerica correlation of interfacial convective heat transfer coefficient was assumed the
following function:

h.D Y
ls(f :§[+ 4(1f f)g+l(1_ )2 Re, Pr/?, for 0.2<f <0.9 (28)
f
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based on the porosity dependency , which is in agreement with Kuwahara et. a (2001) for packed
bed of particle diameter D.

Before carrying out numerical experiments to determinehy, the validity of the present

numerical procedure based on the periodic boundary conditions must be substantiated.
The average cell heat transfer coefficient is calculated as.
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When the Reynolds number is sufficiently high (Figure 4 (b)) the cooling effect due to the cold
inlet fluid is pronounced within the fluid phase. Such convective heat transfer overwhelms thermal
diffusion.
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Figure 4. Isothermsfor Pr = 1: a) Rep = 10; b) Rep = 100.

The velocity profiles for Re = 10 and Re = 100 are shown in Figure 5 and Figure 6 such that the
resulting satisfy the boundary conditions and periodic constraints given by Egs. (24) to (26). For
entrance (x = 0) and exit (x= 2H) of the periodic cell the velocity profiles presents the similar
results. When x = 2H — D/2 the velocity profile behind crushed because recirculation bubbles
appear behind the rods for Reynolds number sufficiently high, as shown in Figure 6.
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Figure 5. Velocity profilesfor Rep = 10.
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The microscopic temperature results obtained with Pr = 1 for various values of Rey are
processed using Eq. (28) and Eq.(29), the resulting values of the interfacial convective heat transfer

coefficient hy are plotted with Rep in Figure 7. The figure compares both equations and suggest

that high Reynolds number data vary in proportion to Re®®, besides the correlation established by
Kuwaharaet. a (2001) agree well with heat transfer coefficient calculate by theoretical basis.
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Figure 7. Effect of Rep on hy for Pr=1.

5. CONCLUDING REMARKS

The numerical correlation of interfacial convective heat transfer coefficient was presented,
which take into consideration the exchange of heat between the porous substrate and the working
fluid. As apreliminary result, a macroscopically uniform laminar flow through a periodic model of
isothermal sgquare rods was computed, considering fully developed velocity and temperature fields.
Upon noting the repetitiveness of flow and temperature profiles, only a single structural unit has
been taken as the calculation domain. Quantitative agreement was obtained when comparing the
preliminary results of numerical correlation heat transfer coefficient by theoretical basis with
correlation established by Kuwahara et. a (2001). Further work will be carried out in order to
simulate fully turbulent flow and heat transfer in porous media by means of the proposed two-
energy equation. Ultimately, it is expected that a correlation for the heat transfer coefficient be
obtained so that the exchange energy between the solid and the fluid can be accounted for.
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