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Abstract. This paper presents a study on the interfacial convective heat transfer coefficient in two-
energy equation model for convection in porous media. Such information is needed for turbulent 
heat transport modeling in porous media when local thermal non-equilibrium is considered. 
Recently, the literature documents proposals for macroscopic energy equation modeling for 
homogeneous, rigid and saturated porous media, considering the local thermal equilibrium 
hypothesis and laminar flow. This work intends to obtain functional relationships for the interfacial 
convective heat transfer coefficient closely packed beds. A periodical fully developed all is used to 
represent the entire domain. The macroscopic time-averaged equations for mass, momentum and 
energy are obtained based on the Double Decomposition concept (spatial deviations and temporal 
fluctuations).The numerical technique employed for discretizing the governing equations is the 
control volume method with a boundary-fitted non-orthogonal coordinate system. The SIMPLE 
algorithm is used to handle the pressure-velocity coupling. 
Keywords: Porous Media, Heat Transfer Coefficient, Thermal Non-Equilibrium 

 

1. INTRODUCTION  

In many industrial applications, turbulent flow through a packed bed represents an important 
configuration for efficient heat and mass transfer. Common models for such systems is the so-called 
“local thermal equilibrium hypothesis” where both solid and fluid phase temperatures are assumed 
to be represented by a unique value. However, in many instances it is important to take into account 
distinct temperatures for the porous material and for the working fluid. In transient heat conduction 
processes within porous media, for example, the assumption of local thermal equilibrium must be 
discarded, according to references Kaviany (1995) and Hsu (1999). Also, when there is significant 
heat generation in any one of the two phases, namely solid or fluid, average temperatures are no 
longer identical, so that the assumption of local thermal equilibrium must be reevaluated. According 
by Kuznetsov (1998) presented some cases where the temperature difference between the fluid and 
solid phases was found being small compared to the difference between the inlet fluid temperature 
and the initial temperature of the bed. This suggested that equations governing thermal non-
equilibrium forced flow through a packed bed contain a small parameter. The two- energy model 
was used for these cases where thermal equilibrium was assumed. Using the two energy equation 
model requires the knowledge of an extra parameter to be determined experimentally, namely the 
heat transfer coefficient between the fluid and solid phases. 

Quintard, M., (1998) argues that assessing the validity of the assumption of local thermal 
equilibrium is not a simple task that since the temperature difference between the two phases cannot 
easily be estimated, he suggests that use of a two-energy equation model is a possible solution to 
the problem. 



Kuwahara et. al (2001) proposes a numerical procedure to determine the macroscopic transport 
coefficients from a theoretical basis without any empiricism. They used only a single structural unit 
to simulate a porous medium and determine the interfacial heat transfer coefficient for the 
asymptotic case in which the conductivity of the solid phase is infinite. Nakayama et. al (2001) 
extend the closure model of Hsu (1999), so as to treat not only conduction but also convection in 
porous media. Having established the macroscopic energy equations for both phases, useful exact 
solutions were obtained for two fundamental heat transfer processes associated with porous media, 
namely, steady conduction in a porous slab with internal heat generation within the solid, and also, 
thermally developing flow through a semi-infinite porous medium. 

A new concept called double decomposition used to develop a macroscopic model for turbulent 
momentum transport in porous media was introduced by references, Pedras and de Lemos (2000), 
Pedras and de Lemos (2001a), Pedras and de Lemos (2001b), Pedras and de Lemos (2001c), Pedras 
and de Lemos (2003). This methodology, initially developed for the flow variables, has been 
extended by reference de Lemos and Rocamora (2002), to heat transfer in porous media. A general 
classification of all proposed models for turbulent flow and heat transfer in porous media has been 
recently published in de Lemos and Pedras (2001). Based on this same concept, Rocamora and de 
Lemos (2000) have developed a macroscopic turbulent energy equation for a homogeneous, rigid 
and saturated porous medium, considering local thermal equilibrium between the fluid and the solid 
matrix. 

This work proposes to obtain a numerical correlation of interfacial convective heat transfer 
coefficient in two-energy equation model for convection in porous media, which is needed treat 
turbulent heat transport modeling of incompressible flows in porous media considering local 
thermal non-equilibrium. 

 

2. MATHEMATICAL MODEL 
 

2.1 Microscopic Transport Equations 
 
The microscopic transport equations for the flow and energy for an incompressible fluid are 

given by: 
Continuity, 

0=⋅∇ u . (1) 
 
Momentum, 
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The microscopic energy equations for the fluid and solid phases in a rigid homogeneous porous 

medium can be stated as: 
Fluid, 
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Solid - (Porous Matrix), 
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where the subscripts f and s refer to fluid and solid phases, respectively. Here T is the temperature, 
p is the pressure, u  is the fluid instantaneous velocity, k  is the thermal conductivity, ρ  is the 
density, pc  is the specific heat and S is the heat generation term. If there is no heat generation either 
in the solid or in the fluid, one has further: 
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2.2 Macroscopic Transport Equations 
 

2.2.1 Time and Volume average operators and the Double Decomposition concept 
 
The macroscopic transport equations for a porous medium for the turbulent flow regime are 

obtained through the application of the time and volume average operators, with the help of the 
Local Volume Average Theorems (LVAT) [Pedras and de Lemos (2000), 2001a)]. These operators, 
for a generic quantity ϕ , are defined as: 
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Surface Volume Average (Fluid quantity), 
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where V∆  is a Representative Elementary Volume (REV) over which the volume averages are 
taken, fV∆  is the fluid volume contained in the REV, φ  is the porosity and t∆  is the time interval 
over which the time average is taken. 

Besides, the Double Decomposition concept, introduced by Pedras and de Lemos (2000), 
2001a-b-c, 2003), is used here to obtain the macroscopic equations for turbulent flow in a rigid, 
homogeneous and saturated porous medium. This concept establishes that, for a generic quantity ϕ , 
one can write: 

ϕϕϕϕϕϕϕ ′+〉′〈++〉〈=′+= iiii , or ϕϕϕϕϕϕϕ ′++
′

〉〈+〉〈=+〉〈= iiiiii  (9) 
 
Equation (9) envisage the two sequences of application of the average operators (time and 

volume), where ϕ ′i  represents the spatial deviation of the time fluctuation or the time fluctuation of 
the spatial deviation of the quantity ϕ . 

 
2.2.2 Macroscopic Flow Equations 

 
For the flow equations, de Lemos and Pedras (2001) [(7), (8)] have shown that the macroscopic 

equations can be expressed as: 
Continuity, 

0=⋅∇ Du ,  (10) 
 
Momentum, 
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where the last two terms in equation (11), represent the so-called Darcy and Forchheimer (1901) 
contributions. The symbol K  is the porous medium permeability, Fc  is the form drag coefficient 
(Forchheimer coefficient), ip〉〈  is the intrinsic average pressure of the fluid, ρ  is the fluid density, 
µ  represents the fluid viscosity and φ  is the porosity of the porous medium. The macroscopic 
Reynolds stress i〉′′〈− uuρφ  is given as, 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, k 
and 

φ
µ t , is the turbulent viscosity which is modeled in de Lemos and Pedras (2001) similarly to the 

case of clear flow, in the form, 
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Turbulent kinetic energy per unit mass, 
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Turbulent energy dissipation rate, 
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2.3 Macroscopic Energy Equation 

 
In this section, the macroscopic energy equation is obtained for a porous medium starting from 

the microscopic energy equations for the fluid and solid phases. Then, time averaging is applied 
followed by volume averaging (or vice versa). 

Applying the time average and then the volume average, or vice-versa, to equations (3) and (4) 
in a Representative Elementary Volume (REV), one obtains: 

( ) ( ){ }

( )[ ] ∫∫ ∇⋅
∆

+












∆
⋅∇+〉〈∇⋅∇

=











〉′〈+〉〈+〉〈〉〈⋅∇+

∂

〉〈∂

ii A
ff

A
ff

i
ff

i
f

i
f

iii
f

i
i

f

fp

dSTk
V

dSTk
V

Tk

TTT
t

T
c

nn

uuu

11

'

φ

φ
φ

ρ

 (16) 

 

( ) ( )

( )[ ]{ } ∫∫ ∇⋅
∆

−












∆
⋅∇−〉〈−∇⋅∇

=








∂
〉〈−∂

ii A
ss

A
ss

i
ss

i
s

sp

dSTk
V

dSTk
V

Tk

t
T

c

nn
11

1

1

φ

φ
ρ

 (17) 



 
where Ai is the interface area between the fluid and solid phases within the REV, ∆V is the REV 
volume, and n is the unit vector normal to the fluid-solid interface. 

Equations (16) and (17) are the macroscopic energy equations for the fluid and the porous 
matrix (solid) taking first the time average followed by the volume average operator. 

Further, using the double decomposition concept, Rocamora and de Lemos (2000) have shown 
that the fourth term on the left hand side of equation. (16) can be expressed as: 

 
i

f
iii

f
iiii

f
iii

f TTTTT 〉′′〈+〉′〈〉′〈=〉′+〉′〈′+〉′〈〈=〉′′〈 uuuuu )()(  (18) 
 
So, in view of equation (18), equation (16) can be rewritten as: 
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where to the underscored terms in equation (19) the following physical significance can be 
attributed: 

 
I Thermal dispersion associated with deviations of microscopic time average velocity and 

temperature. Note that this term is also present when analyzing laminar convective heat transfer in 
porous media. 

II Turbulent heat flux due to the fluctuating components of macroscopic velocity and 

temperature 
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III Turbulent thermal dispersion in a porous medium due to both time fluctuations and spatial 
deviations of both microscopic velocity and temperature. 

IV Tortuosity based on microscopic time average temperature. 
 
Two-energy equation model for conduction and convection in porous media considering a heat 

transfer coefficient between the fluid and solid phases are given by, respectively, 
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where, i
sT 〉〈  and i

fT 〉〈  denote the intrinsically averaged temperature of solid phase and fluid phase, 

sfh  and ia  are the interfacial convective heat transfer coefficient and specific surface area, 

respectively. Where, sfh  is given by, 
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The proposed model by Kuwahara et. al (2001) describing the microscopic structure of a porous 

medium will be used to obtain the interfacial heat transfer coefficient for the macroscopic transport 
model and a porous medium for the turbulent flow regime. 

 

3. PERIODIC CELL AND BOUNDARY CONDITIONS 
 
In order to evaluate the numerical tool to be used in the determination of the film coefficient 

given by (22), a test case was run for obtaining the flow field in a periodic cell, which is here 
assumed to represent the porous medium. Accordingly, consider now a macroscopically uniform 
flow through an infinite number of square rods placed in a staggered fashion, as shown in Figure 1. 
All square rods, which may be regarded as heat sinks (or sources), are isothermal and maintained at 
a constant temperature Tw, which is lower (higher) than the bulk mean temperature of the flowing 
fluid. 

The representative elementary volume V∆ , which should be smaller than a macroscopic 
characteristic length, can be taken as 2H x H for this periodic structure. Due to the periodicity of the 
model, only one structural unit as indicated by dashed lines in the Figure 1 may be taken as a 
calculation domain. 

The numerical method utilized to solve the microscopic flow and energy equations in the unit 
cell is the Finite Volume with Generalized Coordinates. The SIMPLE method of Patankar (1980) is 
used for the velocity-pressure coupling. Convergence is measured in terms of the normalized for 
each variable during iteration. The maximum residue allowed for the convergence check is set to 
10-7, as the variables are normalized by appropriate references. 

All computations have been carried out for a one structural unit 2H x H using a non-uniform 
grid arrangement of size 90×70 nodes, as shown in Figure 2, to ensure that the results were 
independent of the grid system. The Reynolds number was varied from 4x100 to 4x102 and the 
porosity φ was equal to 0.65. 

 

 

Figure 1. Physical model and its coordinate system. 
 



 

Figure 2. Non uniform computational grid used for running laminar calculations. 
 
At the periodically fully developed stage, the velocity must be identical to that at the inlet, 

whereas the temperature profile at the exit must be similar to that at the inlet. The situation is 
analogous to the case of forced convection in a channel with isothermal walls. Thus, the boundary, 
compatibility and periodic constraints are given by: 

On the solid walls, 
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On the periodic boundaries: 
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TB(x) is the bulk mean temperature of the fluid. Computations can be made using the equations 
based on the Darcy velocity, the length of structural unit H and the temperature difference (TB(0) – 
Tw) as references scales. For carrying out computations for a parametric study, it may be convenient 
to use the Reynolds number based on D as ν/Re DD 〉〈= u  and 2)/(1 HD−=φ . 

 

4. PRELIMINARY LAMINAR RESULTS AND DISCUSSION 

The preliminary results were velocity and temperature fields obtained for different Reynolds 
numbers, as shown in Figure 3 and Figure 4, respectively. When the Reynolds number is low (ReD 
= 10); Figure 3 (a), the velocity field at entrance and exit of the periodic cell appears to be very 



much similar to what we observe in a parallel plate channel. As increases Re (Figure 3 (b)), 
recirculation bubbles appear behind the rods. 

 

 
a) 

 
b) 

Figure 3. Velocity vectors for Pr = 1: a) ReD = 10; b) ReD = 100 
 
A numerical correlation of interfacial convective heat transfer coefficient was assumed the 

following function: 
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based on the porosity dependency , which is in agreement with Kuwahara et. al (2001) for packed 
bed of particle diameter D. 

Before carrying out numerical experiments to determine sfh , the validity of the present 
numerical procedure based on the periodic boundary conditions must be substantiated. 

The average cell heat transfer coefficient is calculated as: 
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When the Reynolds number is sufficiently high (Figure 4 (b)) the cooling effect due to the cold 
inlet fluid is pronounced within the fluid phase. Such convective heat transfer overwhelms thermal 
diffusion. 

 

 
(a) 

 
(b) 

Figure 4. Isotherms for Pr = 1: a) ReD = 10; b) ReD = 100. 
 
The velocity profiles for Re = 10 and Re = 100 are shown in Figure 5 and Figure 6 such that the 

resulting satisfy the boundary conditions and periodic constraints given by Eqs. (24) to (26). For 
entrance (x = 0) and exit (x= 2H) of the periodic cell the velocity profiles presents the similar 
results. When x = 2H – D/2 the velocity profile behind crushed because recirculation bubbles 
appear behind the rods for Reynolds number sufficiently high, as shown in Figure 6. 
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Figure 5. Velocity profiles for ReD = 10. 
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Figure 6. Velocity profiles for ReD = 100. 



The microscopic temperature results obtained with Pr = 1 for various values of ReD are 
processed using Eq. (28) and Eq.(29), the resulting values of the interfacial convective heat transfer 
coefficient sfh  are plotted with ReD in Figure 7. The figure compares both equations and suggest 
that high Reynolds number data vary in proportion to Re0.6, besides the correlation established by 
Kuwahara et. al (2001) agree well with heat transfer coefficient calculate by theoretical basis. 
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Figure 7. Effect of ReD on sfh  for Pr = 1. 

 

5. CONCLUDING REMARKS 

The numerical correlation of interfacial convective heat transfer coefficient was presented, 
which take into consideration the exchange of heat between the porous substrate and the working 
fluid. As a preliminary result, a macroscopically uniform laminar flow through a periodic model of 
isothermal square rods was computed, considering fully developed velocity and temperature fields. 
Upon noting the repetitiveness of flow and temperature profiles, only a single structural unit has 
been taken as the calculation domain. Quantitative agreement was obtained when comparing the 
preliminary results of numerical correlation heat transfer coefficient by theoretical basis with 
correlation established by Kuwahara et. al (2001). Further work will be carried out in order to 
simulate fully turbulent flow and heat transfer in porous media by means of the proposed two-
energy equation. Ultimately, it is expected that a correlation for the heat transfer coefficient be 
obtained so that the exchange energy between the solid and the fluid can be accounted for. 
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